Overview of Theory Program

David Richards

Science and Technology Review
14th July, 2009

Vadim Guzey → Breakout Session
Outline

• Members
• Role of Theory Center
• Highlights – *outstanding new results in*
 • *Spectrum of QCD*
 • *Hadron Structure*
 • *Physics of Nuclei*
 • *Physics beyond the Standard Model*
• Theory Campaigns:
 • EBAC
 • Lattice QCD
 • EIC
• Summary
JLab Theory Center: Senior Staff

• Chief Scientist / Theory Director: Anthony Thomas

• 5 Laboratory staff (4.5 FTE)
 - Robert Edwards lattice gauge theory
 - Franz Gross (1/2 time)
 - Wally Melnitchouk phenomenology
 - David Richards Deputy Director (lattice gauge theory)
 - Christian Weiss phenomenology

Distinguished Visitors: W. Bentz, M. Burkardt, F. Close, R. Crewther, V. Flambaum, Harald Fritzsch, P. Guichon, J-M Laget, D. Leinweber, G. Miller, M. Peardon, T. Pena, S. Ryan, A. Sibirtsev, A. Stadler,…

• 8 staff with joint appointments (4.0 FTE → 50 % Lab support)
 - Ian Balitsky (ODU) Jozef Dudek (ODU)
 - Jose Goity (Hampton) Rocco Schiavilla (ODU)
 - Kostas Orginos (W&M) Anatoly Radyushkin (ODU)
 - Wally van Orden (ODU) Will Detmold (W&M)
Associate Senior Staff: Carl Carlson (W&M)

Bridge Positions
- University of Virginia (Chris Dawson)
- Hampton University (Andrei Afanasev)
- University of Connecticut (Peter Schweitzer)

5 JLab postdoctoral fellows (5 FTE)
- Huey Wen Lin – since Fall 06 → 5-year at Univ. Washington
- Marc Schlegel - since Fall 06 → PDF at Tübingen
- Ping Wang - since Fall 07 → faculty at IHEP, Beijing
- Vadim Guzey – since Fall 07
- Chris Thomas – since Fall 08

Isgur Distinguished Postdoctoral Fellow
- Alessandro Bacchetta – since Mar 08 → faculty at Pavia

Joint post-doctoral position in phenomenology with Hampton Univ.
- Alberto Accardi

Joint post-doctoral position in LQCD with Adelaide
- Andre Sternberg
Key Roles of Theory at JLab

• Contribute to Intellectual Leadership of Lab
 – Success of 12 GeV; Preparing for EIC
• Support of Experimental Program @ 6 GeV
 - development/analysis of proposals; interpretation of data
• Projects of large scope/duration: EBAC, Lattice QCD
• Education
 – 9 graduate students (6 supported by JLab)
 • Giovanni Chirilli: JSA/Jefferson Lab Graduate Fellowship 2008-9
 • Ian Cloet: shared 2008 SURA Thesis Prize
 – HUGS (Hampton University Graduate School).
 – Virginia Physics Consortium – Graduate-level course in Hadronic Physics (Wally Melnitchouk)
 – Theory-Center mini-lectures (Bacchetta)
 – High-school Mentorships
 – Science Undergraduate Laboratory Internship (SULI)
 • 2008: Tim Hobbs and Yoni Kahn (Wally Melnitchouk)
 • 2009: Hannes Schimmelpfennig
 – RIFU
 • 2008: Ermal Rrapaj (Jo Dudek)

Joint Positions Vital

Hobbs: First prize in Users Group poster competition
Distinguished Members

- 8 Fellows of the American Physical Society;
- 1 Fellow Australian Academy of Science and Institute of Physics;
- Serve on IAC of all major conferences and workshops in related fields;
- Organization and planning of major workshops:
- Tony Thomas chairs IUPAP Working Group (WG.9) on International Cooperation in Nuclear Physics;

Will Detmold - 2009 OJI - “Multi-Meson Systems in Lattice QCD”
Excited Baryon Analysis Center

- Analyse wealth of experimental data on baryon resonance production at Jlab and elsewhere
- Goal: ensure that the OMB Milestones in Hadronic Physics are satisfied:
 - HP2009: Complete the combined analysis of available data on single \(\pi, \eta, \) and \(K \) photo-production of nucleon resonances and incorporate the analysis of two-pion final states into the coupled-channel analysis of resonances.
 - HP2012: Measure the electromagnetic excitations of low-lying baryon states (<2 GeV) and their transition form factors over the range \(Q^2 = 0.1 \) – 7 GeV\(^2\) and measure the electro- and photo-production of final states with one and two pseudoscalar mesons.
- Led by Harry Lee (ANL/Jlab)
- Three Post-doctoral Fellows
 - Mark Paris \(\rightarrow \) GWU
 - Hiroyuki Kamano (since Fall 2007)
 - Kazuo Tsushima (since Fall 2007)
 - Satoshi Nakamura (from Fall 2009)
Continuing high productivity

<table>
<thead>
<tr>
<th>Types of Publications</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>To Appear</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phys Rev Lett and Phys Lett</td>
<td>13</td>
<td>16</td>
<td>11</td>
<td>13</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Other Refereed Journals</td>
<td>84</td>
<td>41</td>
<td>47</td>
<td>56</td>
<td>31</td>
<td>18</td>
</tr>
<tr>
<td>Invited Talks in Conf. Proc Published</td>
<td>14</td>
<td>10</td>
<td>15</td>
<td>15</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Invited Talks in Conf. Proc. Not Published</td>
<td>28</td>
<td>60</td>
<td>69</td>
<td>109</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>Instrumentation Papers</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Contributed Papers</td>
<td>15</td>
<td>13</td>
<td>24</td>
<td>11</td>
<td>1</td>
<td>6</td>
</tr>
</tbody>
</table>
Highlights

• Themes
 • The Spectrum of QCD
 • The Structure of Hadrons in QCD
 • The Physics of Nuclei
 • The Standard Model and Beyond
How quarks and gluons form hadrons and nuclei

The Spectrum of QCD
Lattice QCD and Baryon Spectrum

Nucleon Mass Spectrum (Exp)

Hadron Spectrum Collaboration, arXiv:0901.0027

Lattices generated at ORNL under INCITE

Emergence of pattern seen in experiment!
GlueX intends to photoproduce meson resonances

- Major motivator is the search for mesons with exotic J^{PC} quantum numbers - believed these can arise from excitation of the gluonic field (hybrids)

- Model calculations suggest that exotic photocouplings can be large - can lattice QCD weigh in on this?

Similar physics in radiative transitions (at CLEO-c, BES, PANDA ...) charmonium (heavy quarks) is a simple test-bed for the calculations

- In charmonium there are relatively successful non-relativistic potential models - can verify these and go beyond making statements about the excited glue without model assumptions
Preparing for GlueX: Radiative Transitions

Use of variational method, and the optimized meson operators, to compute radiative transitions between excited states and exotics.

\[\Gamma(\eta_{c1} \to J/\psi \gamma) \approx 100 \text{ keV} \]

considerable phenomenology developed from the results - supports non-relativistic models and limits possibilities for form of excited glue

Radiative width of hybrid comparable to conventional meson – important for GlueX
Anisotropic Clover Lattice Generation

• “Clover” Anisotropic lattices $a_t < a_s$: major gauge generation program under INCITE and discretionary time at ORNL designed for spectroscopy

Novel way of specifying quark masses and scale

Low-lying hadron spectrum

Lattice Roadmap for Spectroscopy

“Extreme Scale” Computing Workshop,
Jan 26-28, 2009

- Spectrum and properties of mesons
- Nucleon transition form factors
- Spectrum and photo-couplings of isovector mesons
- Cascade Spectrum
- N* Spectrum
- Photocouplings in charmonium

10x tera 100x tera peta 10x peta 100x peta 1 Exa-flop year

GlueX

Thomas Jefferson National Accelerator Facility
EBAC: extract and Interpret N*
Accomplishments

- Dynamical coupled-channel analysis of $\pi N \rightarrow \pi N$, $\pi \pi N$ reactions.
- Dynamical coupled-channel analysis of electromagnetic π production reactions.
- Extraction of nucleon resonances from dynamical coupled-channel model.

Plans

- Combined coupled-channel analysis
- Amplitude extractions from complete measurements
- Connection with hadron-structure calculations
Progress in 2008-2009 - I

- Complete analysis of $p(\pi, 2\pi)N$ data
 Red: no coupled-channel
- Obtain fits of CLAS $p(e, e'\pi)N$ data
 Dashed: no coupled-channel
 Clear evidence of coupled-channel effects
Progress in 2008-2009 - II

Extraction of nucleon resonances from dynamical coupled-channel model

Trajectories of extracted resonance poles

P_{11} resonances, extracted within EBAC-CC model

New information on interpreting Roper

Suzuki et al (Kamano, Lee), submitted to PRL
How quarks and gluons form hadrons and nuclei

Hadron Structure
Theory Support for “GPD” Program

- **GPDs and nucleon structure**
 - Nucleon imaging and polarization effects [Burkardt]
 - Chiral dynamics at large distances [Weiss]
 - GPD/TMD connection [Schlegel, Bacchetta]
 - Model calculations [Schweitzer]
 - Orbital angular momentum [Thomas]
 - Lattice calculation of GPD moments [--> Lattice]

- **Extracting GPDs from DVCS/meson production data**
 - DVCS: t-channel based GPD parametrizations [Guzey]
 - DVCS: Nuclear targets [Guzey]
 - Meson production: Reaction mechanism, finite-size effects
 - ("higher twist"), model-independent comparative studies [Weiss]
 - GPDs in pp scattering [Weiss]

- **Communication/representation:** Working Group meetings
 (experiment + theory), topical lectures, strong representation at international conferences, contributions to 2007 NSAC LRP
Medium modifications of bound nucleon GPDs

Jlab expt. DVCS on 4He

Coherent

incoherent
Transverse Momentum Distributions

Bacchetta et al

Sivers’ Effect

Tomographic images of nucleon in momentum space
Example of extraction from experiments

Fits based on HERMES and COMPASS single-spin asymmetries in semi-inclusive DIS. Similar measurements are a large component of the future Jlab@12GeV plans

Arnold, Efremov, Goeke, Schlegel, Schweitzer, arXiv:0805.2137
See also work by A. Prokudin, future post-doc at JLab
Connections between TMDs and GPDs

GTMD (Generalized Transverse Momentum Distribution)
“mother distribution”

\[F(x, \xi, k_T^2, k_T \cdot \Delta_T, \Delta_T^2) \]

\[\int d^2 k_T \]

\[H(x, \xi, t) \rightarrow \xi = 0, \Delta_T = 0 \]

Model-dependent connections

GPD

Meissner, Metz, Schlegel, arXiv:0906.5323

TMD
Higher-twist effects from g_2

- Sizeable higher-twist terms $\sim 15\text{-}40\%$ can be isolated in g_2:

 $$g_2(x) = g^\text{WW}_2(x) + g^\text{HT}_2(x)$$

 $$g^\text{WW}_2 = -g_1 + \int_x^1 \frac{dy}{y} g_1(y)$$

 $$g^\text{HT}_2 = \tilde{g}_T - \int_x^1 \frac{dy}{y} \tilde{g}_T(y) + \int_x^1 \frac{dy}{y} \tilde{g}_T(y)$$

 "Wandzura-Wilczek relation"

- 2 different contributions to g^HT_2
 - can be separated by measuring g_{1T} in double LT spin asymmetries

 $$\tilde{g}_T(x) = g_2(x) - \frac{d}{dx} \int d^2k_T \frac{k_T^2}{2M} g_{1T}(x, \vec{k}_T)$$

- Preliminary data on g_{1T} coming soon from Hall A
Lattice QCD

- Lattice group has major effort in understanding *nucleon* structure: Moments of GPDs and structure functions, Form Factors,…
- Extending to other flavor sectors

Flavor “off-forward” GPDs

Octet baryon axial-vector couplings

![Graph showing axial-vector couplings](image)

Octet baryon charge radii

![Graph showing charge radii](image)

P Wang, A Thomas et al., arXiv:0810.1021
Lattice QCD Roadmap

- Gluon contributions to hadron structure
- Form factors up to scaling region
- High precision axial charge
- Isovector form factors and moments of generalized parton distributions
- Individual contributions of up, down, and strange quarks to hadron structure

Jlab @ 12GeV

1 Exa-flop year
Pion Form Factor – Holographic QCD

- Simple analytic result
 \(F_\pi(Q^2) = \frac{4}{Q^2z_0^2} \left[1 - \frac{1}{I_0(Qz_0)} \right] \)

- Pion charge radius
 \(\langle r^2_\pi \rangle_{\text{AdS/QCD}} = \frac{9}{8} z_0^2 \approx 0.42 \text{ fm}^2 \)

- Experiment: \(\langle r^2_\pi \rangle \approx 0.45 \text{ fm}^2 \)

- Large-\(Q^2 \) behavior:
 \(Q^2 F_\pi(Q^2) \to \frac{4}{z_0^2} \approx 0.42 \text{ GeV}^2 \)

- Anomalous form factor \(\pi^0 \gamma \gamma^* \) in this model is given by the same expression

- Slope \(a_\pi \equiv -m_\pi^2 \left[\frac{dF_{\gamma^*\pi^0}(Q^2)}{dQ^2} \right]_{Q^2=0} \)

 \[= \frac{3}{16} m_\pi^2 z_0^2 \approx 0.035 \]

- Experimentally
 \(a_\pi = 0.026 \pm 0.024 \pm 0.0048, \)
 \(a_\pi = 0.025 \pm 0.014 \pm 0.026 \) (1992)

 Interesting to measure in modifications of PRIMEX
New *BaBar data (May 2009)* indicate no flattening of $\gamma\gamma^*\pi$ form factor

Model for light-front pion wave function that is consistent with flat leading-twist pion distribution amplitude

Such a model can describe *BaBar high-Q^2 data.*

Asymptotic pQCD calculation.

Lattice calculation consistent with such a form

A Radyushkin, arXiv:0906:0323
How nucleons bind together to form nuclei

Physics of Nuclei
How nucleons bind together to form nuclei

Variety of approaches:
– Constructing nuclear interactions and currents:
 • One-boson-exchange phenomenology and similar (Gross, Schiavilla, Van Orden)
 • Effective field theory approach (A. Thomas)
 • Hadronic interactions in Lattice QCD (Detmold, Orginos)
– Structure and reactions of nuclei:
 • Relativistic approaches to nuclear dynamics (Gross, Schiavilla, A. Thomas, Van Orden)
 • Form factors and weak transitions in few-nucleon systems (Gross, Schiavilla, A. Thomas, Van Orden)
 • EFT studies of the structure of few-nucleon systems (Gross, Schiavilla)
 • Nuclear reactions of astrophysical interest (Schiavilla)
 • Nuclear effects on nucleon properties V. Guzey
Lattice QCD for Nuclear Physics

Kaon condensation

Isospin
Chemical potential

\[\frac{\mu_{K^-}}{m_K} \]

\[\mu_{K^-} - 1 \]

\[(2.5 \text{ fm})^3 \rho_{K^-} \]

NPLQCD (Detmold, Orginos): PRL 100, 082004 (2008); PRD 77, 057502 (2008); PRD 78, 014507 (2008); PRD 78, 054514 (2008)
Three-baryon system

Relative uncertainty in ground-state energy

Feasibility of extracting three-nucleon interaction demonstrated

NPLQCD (Detmold, Orginos), arXiv: 0905.0466

\[\delta E_{\Xi\Xi n} = 4.6 \pm 5.0 \pm 7.9 \pm 4.2 \text{MeV} \]
Standard Model and Beyond
Axion Search: LIPSS

- *`Dark matter puzzle’*: Cosmology and recent data from space telescopes provide evidence that most of the mass of the observable universe cannot be associated with any of the known Standard-Model elementary particles.
- **Axions** - hypothetical particles proposed to solve a strong CP problem in Quantum Chromodynamics - are dark matter candidates.

“Light shining through a wall…”

- **Theoretical idea**: Sikivie (1983); Ansel’m (1985); Van Bibber et al (1987)
- **First limits on axion-photon mixing obtained by BFRT Collab, (BNL,1993)**
- **Implemented at JLAB FEL by LIPSS Collaboration (2007-present)**

![Diagram of light shining through a wall](image.png)

LIGHT BEAM experiment that would confirm the existence of axions passes a laser beam through a strong magnetic field, converting some photons to axions [green beam]. The axions penetrate a wall before passing through another magnetic field that converts some of the particles back to photons, which form an extremely faint spot on the far wall.
Published LIPSS Result

- No signal observed, regions above curves excluded by the experiment
- LIPSS reached the sensitive region for scalar coupling
- In agreement with other measurements: BFRT, GammeV, BMV

BSM Physics: mixing between photons and paraphotons.

Afanasev et al, arXiv:0810.4189
EFT Fits to Lattice Data

- Stress: This involves just 4 SU(3) parameters plus Λ, fit to lowest 8 data points
- There is a great deal of physics to be extracted from this fit

Young & Thomas, arXiv:0901.3559 [nucl-th]
Summary Fits to LHPC and CP-PACS

Of particular interest:

\[\sigma \text{ commutator well determined: } \sigma_{\pi N} = 51 \ (6) \ (2) \ (2) \text{ MeV} \]

and strangeness sigma commutator small

\[m_s \frac{\partial M_N}{\partial m_s} = 18 \ (10) \ (6) \ (3) \text{ MeV} \]

\text{NOT several 100 MeV!}

Profound Consequences for Dark Matter Searches
Hadronic Uncertainties in the Elastic Scattering of Supersymmetric Dark Matter

John Ellis,1,* Keith A. Olive,2,† and Christopher Savage2, ‡

CERN-PH-TH/2008-005
UMN-TH–2631/08
FTPI–MINN–08/02

We find that the spin-independent cross section may vary by almost an order of magnitude for $48 \text{ MeV} < \Sigma_{\pi N} < 80 \text{ MeV}$, the ± 2-σ range according to the uncertainties in Table I. This uncertainty is already impacting the interpretations of experimental searches for cold dark matter. Propagating the ± 2-σ uncertainties in $\Delta_{s}^{(p)}$, the next most important parameter, we find a variation by a factor ~ 2 in the spin-dependent cross section. Since the spin-independent cross section may now be on the verge of detectability in certain models, and the uncertainty in the cross section is far greater, we appeal for a greater, dedicated effort to reduce the experimental uncertainty in the π-nucleon σ term $\Sigma_{\pi N}$. This quantity is not just an object of curiosity for those interested in the structure of the nucleon and non-perturbative strong-interaction effects: it may also be key to understanding new physics beyond the Standard Model.

\[
\mathcal{L} = \alpha_{2i} \bar{\chi} \gamma^{\mu} \gamma^{5} \chi \bar{q}_i \gamma_{\mu} \gamma^{5} q_i + \alpha_{3i} \bar{\chi} \chi \bar{q}_i q_i
\]
Opportunities beyond 12 GeV: EIC

- EIC Collaboration (BNL & JLab, since 2007):
 Substantial JLab Theory involvement

 - ep/eA Physics Working Group Conveners
 - Models for physics simulations; conceptual development
 - EIC Workshops: Stony Brook 07, Hampton 08, Berkeley 08
 - Representation at international conferences: DIS 07/09, Trento 08, INT 09
 - White Paper for 2007 LRP

- New development (2008): Medium-energy ep/eA collider for nuclear physics at JLab

 - Natural extension of 12 GeV nucleon structure/QCD program
 - Conceptual/technical development in co-operation with CASA group and JLab users

- Future: Expand/intensify collider R&D effort

 - Exciting opportunities: Sea quarks, gluons, spin, QCD vacuum, nuclei in QCD, . . .
 - Theory input essential for physics program, simulations
 - Depends critically on Lab staff!
Lattice QCD

- Jefferson Laboratory partner with BNL and FNAL in lattice QCD effort.

 FNAL
 - Weak matrix elements

 BNL
 - RHIC and HEP

 JLAB
 - Hadronic Physics

 SciDAC - R&D Vehicle

Close (two-way) connection with HPC Group
- Balint Joo, Saul Cohen vital to theory effort
- Robert Edwards vital to software effort

Lattice QCD at JLab has major impact on DOE’s Nuclear Physics Program
- $5M ARRA for LQCD
Summary

• JLab Theory Center has major impact in **inspiring, facilitating, and interpreting** the JLab program at both 6 and 12 GeV and preparing for EIC.

• Recent initiatives coming to fruition – Lattice QCD, EBAC; new theoretical focus on large-x structure functions

"Sir, I have found you an argument; but I am not obliged to find you an understanding. “ – That’s where theorists are useful…

Boswell's Life of Johnson