Landscape of nucleon structure in QCD

C. Weiss (JLab), EINN 2009, Milos, 27–Sep 2009

- Parton picture as a many-body system
 - Wave function description, different components
 - Unified perspective large $x \leftrightarrow$ small x, $ep \leftrightarrow pp$
 - Role of QCD vacuum structure

- Physical properties
 - Momentum distributions
 - Transverse spatial structure
 - Orbital motion of partons
 - Correlations
 - PDFs
 - GPDs, form factors
 - TMDs, angular momentum
 - “Higher twist,” multiparton distributions

 cf. condensed matter, nuclei

 “expanding interest”
Nucleon structure in QCD

- **QCD vacuum not empty**

 Strong non-perturbative gluon fields, scale $\mu \gg 1 \text{ fm}^{-1}$

 $\bar{q}q$ pair condensate, π as collective excitation

- **Slow–moving nucleon** $P \sim \mu$

 $\langle N|O|N \rangle$ from Euclidean correlation functions

 \rightarrow lattice, analytic methods

 No concept of “particle content”

- **Fast–moving nucleon** $P \gg \mu$

 Closed system: Wave function description

 Gribov, Feynman

 Components with different numbers of particles

 Deep–inelastic processes in $ep, pp, \gamma p$:

 “Snapshot” with resolution $1/Q$

 Perturbative fluctuations \rightarrow scale dependence
Nucleon structure: Landscape

- Many-body system with different components

 Energy of configurations $\sim 1/x$ momentum fraction

- Measurable properties

 Longitudinal momentum densities
 Transverse spatial distributions
 Orbital motion: k_T dependence, angular momentum
 Correlations between partons
Parton densities: Unpolarized quarks and gluons

- Global QCD fits to ep/pp data with controlled uncertainties
 CTEQ, MSTW, GJR, Alekhin
 “Infrastructure” for LHC

- Quark densities at large x still poorly known
 Reveal basic qqq configuration of N
 JLab 12 GeV \rightarrow L. Cardman

- Gluon density at $x > 0.3$: Direct probes?
 High-mass jets at LHC
 $+ d/u$ from JLab 12 GeV
 Open charm at EIC?
 \rightarrow H. Avakian, EIC Workshop
Parton densities: Non-singlet sea quarks

- Non-singlets $\bar{d} - \bar{u}$, $s - \bar{s}$ etc. are of non-perturbative origin

 Weak scale/scheme dependence

- $\bar{d} - \bar{u}$ from FNAL E866 Drell–Yan and HERMES SIDIS

 Pion cloud at distances $\sim 1/M_\pi$
 carries only $\sim 30\%$ of asymmetry

 Strikman, CW

- $s \neq \bar{s}$ from NuTeV CC neutrino DIS
 with $W^+ + s \rightarrow c$ tagging

 $K\Lambda$ fluctuations? Brodsky, Ma

 Semi-inclusive DIS with EIC!

 Much room for improvement!
 Direct impact on vacuum/nucleon structure
Parton densities: Polarization

- NLO QCD fits to polarized inclusive and semi-inclusive ep and pp data
 → D. De Florian
 New fragmentation functions DSS 07

- Gluon polarization $\Delta G(x)$ small
 Dynamical explanation?
 Nucleon spin requires quark/gluon orbital angular momenta!
 Improvement from COMPASS
 + JLab 12 GeV inclusive data
 Future EIC → D, De Florian, H, Avakian, EIC Workshop

- Polarized sea quark flavor asymmetries:
 First hint that $\Delta \bar{u} - \Delta d > 0$, large
 Non-perturbative vacuum fluctuations, chiral symmetry breaking
 Dorokhov, Kochelev; Diakonov et al.

De Florian, Sassot, Stratmann, Vogelsang 09
$Q^2 = 10$ GeV2
Transverse spatial distributions: GPDs

- GPD at $x' = x$: Transverse form factor of quarks with longitudinal momentum x
 \[
 \text{GPD}(x, \Delta_T) \rightarrow \mathcal{F}(x, b) \text{ Burkardt}
 \]

- Nucleon’s transverse size grows with decreasing x

 Different mechanisms

- Hard exclusive processes $eN \rightarrow e' + M + N$: QCD factorization theorem
 Müller et al.; Ji; Radyushkin; Collins, Frankfurt, Strikman

 Pointlike in transverse space: \[
 \int d^2k_T
 \]

 Recent results $\gamma^* \gamma \rightarrow \pi^0$? Radyushkin, Polyakov

- Practical challenges

 Higher twist effects in hard process: intrinsic k_T, finite size of produced meson

 $x \neq x'$, non-diagonal pieces
Transverse spatial distributions: Gluons

- Transverse distribution of gluons from exclusive J/ψ photoproduction
 - HERA: Small x, overall area only
 - $x > 10^{-2}$ poor . . . COMPASS?
 - Valence gluons: ϕ electroproduction with JLab 12 GeV
 - “Gluon imaging” with EIC

- Essential ingredient in small–x phenomenology
 - QCD dipole model in impact parameter representation Frankfurt et al.; Kowalski et al.
 - Saturation in ep, nuclear enhancement \rightarrow F. Gelis
Transverse spatial distributions: Quarks

- **Exclusive amplitude**: Two parts

 GPD contains both, related by Lorentz invariance, “polynomiality”

 Included in GPD parametrizations

 → M. Polyakov, D. Müller

- **Dynamics of $q\bar{q}$ knockout?**

 Cf. absolute cross sections

 QCD vacuum structure!

 π^+ production: Pion pole term

- **DVCS $eN \rightarrow e'N\gamma$: Both needed**

 Im/Re from spin/charge asymmetries

 → F.X. Girod, A. Mussgiller

 Dispersion approach: Im \rightarrow Re, subtraction constant

→ A. Fradi: CLAS ρ^+
Transverse spatial distributions: Charge, current

\[\int dx \]

- Partonic interpretation of elastic FF: Transverse charge/current density
 Burkardt, Miller
 \[F_{\text{el}}(\Delta T) \xrightarrow{2D \text{ Fourier}} \rho_T(b) \]

- Transverse charge densities from empirical FFs
 Neutron negative at center, counter to \(\pi^- p \) picture Miller
 Deformation through transverse polarization, extension to \(N \to \Delta \) Carlson, Vanderhaeghen

- Calculable in lattice QCD:
 Local operators in \(N, \Delta \to C \), Lorce
 New insights from “old” observables

Transversely polarized \(p, n \). Carlson, Vanderhaeghen 07
Orbital motion: Transverse momentum

- Transverse motion, k_T dependence observable in semi-inclusive DIS

- QCD factorization with $\gamma^* N$ collinear: TMDs, soft factor

 Matching of non-pert. and pert. mechanisms Ji et al., Bacchetta et al.

- Measures of parton orbital motion

 Sivers: Deformation of k_T distribution by transverse nucleon spin; interference of $\Delta L = 1$ wave function components + FSI

 Pretzelosity: Deviation from spherical shape through $\Delta L = 2$ in wave function Miller

- EIC: Fully differential measurements, low ↔ high p_T

Phenomenological extraction of Sivers distribution from HERMES and COMPASS SIDIS data, Anselmino et al, 08

→ Workshop summary by A. Bacchetta
Orbital motion: Angular momentum

\[J_q \sim \langle N | \mathbf{x} \times \mathbf{T} | N \rangle \]

- Two basic definitions of quark/gluon angular momentum
 - Matrix element of EM tensor in rest frame
 - Ji sum rule, GPDs
 - \(L \) in partonic wave function

- Need to understand connection!
 - Many interesting issues: Gauge dependence
 - M. Burkardt, A. Bacchetta

- Rest frame calculations of \(J_q \)
 - Lattice: Dynamical fermions, no disconnected diagrams
 - Ph. Hägler
 - Quark model at low scale
 - Myhrer, Thomas
 - Chiral quark–soliton model
 - Wakamatsu

- Requires comprehensive approach:
 - SIDIS + GPDs (Ji sum rule)
Correlations

• Transverse correlations in partonic wave function

 Cf. short–range NN correlations in nuclei
 JLab Hall A, CLAS

 Vacuum fluctuations $\rho \ll R_{\text{had}}$

• Sea quarks have intrinsic $k_T \sim \rho^{-1}$
 \gg valence quarks

 → Semi-inclusive DIS
 → Higher twist in inclusive DIS $\sim \langle k_T^2 \rangle$ Sidorov, CW

• Observable in pp through enhancement of multiple hard processes

 CDF 3 jet + gamma data consistent with $\rho \sim 0.3$ fm

 High rates for multijets at LHC!
Small x and new correspondences $ep \leftrightarrow pp$

- **Unitarity limit and saturation** $\rightarrow F. Gelis$
 Appearance of new dynamical scale $Q_s(x) \gg \mu_{\text{vac}}$, systematic approximations!
 Nucleon/nuclear wave function develops component with $k_T \sim Q_s$ observable in particle production at RHIC, LHC, eA at EIC

- **Hard diffractive scattering** $pp \rightarrow p + H + p$
 Interplay between hard process and soft spectator interactions:
 Rapidity gap survival
 Sensitive to transverse distribution of partons . . .
 probe GPDs in pp scattering! LHC, Tevatron, RHIC?

- **Ultraperipheral pA/AA collisions** \rightarrow D. D'Enterria
 $\gamma A/\gamma\gamma$ scattering with Weizsäcker–Williams photons
 from field of heavy nucleus $Z \gg 1$ RHIC, LHC
 \rightarrow Small–x physics, e.g. high–p_T jets $W(\gamma p) = 10$ TeV at LHC = 30× HERA!
 \rightarrow Heavy quarkonium spectroscopy
 \rightarrow Higher–order QED processes
Summary

- The nucleon as a many–body system – a unifying perspective
 - different probes, excitation energies, resolution scales . . .
 - physical properties

- New synergies/correspondences between $ep \leftrightarrow pp \leftrightarrow \gamma p$

- Great prospects with present and future facilities

 | COMPASS | RHIC | Ultraperipheral RHIC, LHC |
 | JLab 12 GeV | LHC | J-Parc |
 | EIC/ENC/LHeC | GSI FAIR | GlueX at JLab |