Parton flavor separation at large fractional momentum

Alberto Accardi
Hampton U. & Jefferson Lab

Pavia U.
13 July 2010
Outline

- Introduction
 - Quark, gluons and nucleons
 - Parton distributions
 - Global fits

- Why large fractional momentum (x)

- Up and down: the CTEQ6X fit

- Gluons, intrinsic charm

- Outlook: the Electron-Ion Collider
Quarks, gluons and nucleons
Hadrons are made of quarks

- 6 flavors (and 3 colors):
 - up, down, strange – light
 - charm, bottom, top – heavy

- confined in colorless hadrons
 - mesons – 2 quarks
 - baryons – 3 quarks
 - tetraquarks (?)
 - pentaquarks (???)

nucleons

- Proton
- Anti-proton
- Neutron
- Lambda
- π^+
- K^0
- π^0
- J/ψ
Nucleons are made of 3 quarks...

Fractional momentum:

\[x = \frac{p_{\text{parton}}^+}{p_{\text{nucleon}}^+} \]

\[p^\pm = \frac{1}{\sqrt{2}}(p_0 \pm p_3) \]
Nucleons are made of 3 quarks...

Fractional momentum:

\[x = \frac{p^+_{\text{parton}}}{p^+_{\text{nucleon}}} \]

\[p^\pm = \frac{1}{\sqrt{2}} (p_0 \pm p_3) \]
Fractional momentum:

\[x = \frac{p^+_{\text{parton}}}{p^+_{\text{nucleon}}} \]

\[p^\pm = \frac{1}{\sqrt{2}}(p_0 \pm p_3) \]
... and gluons, sea quarks ...

Fractional momentum:

\[x = \frac{p^+_{\text{parton}}}{p^+_{\text{nucleon}}} \]

\[p^\pm = \frac{1}{\sqrt{2}} (p_0 \pm p_3) \]
... spinning and orbiting around!

... but this is another story ...
Probing the nucleon parton structure

- Need a large momentum transfer $Q^2=q_\mu q^\mu$ to resolve the parton structure

- Example 1: Deep Inelastic Scattering (DIS)

\[Q^2 = p_{\gamma,Z}^2 \]
Probing the nucleon parton structure

- Need a large momentum transfer \(Q^2 = q_\mu q^\mu \) to resolve the parton structure

- Example 2: Drell-Yan lepton pair creation (DY)

\[
Q^2 = (p_\ell + p_{\bar{\ell}})^2
\]
Probing the nucleon parton structure

- Need a large momentum transfer $Q^2 = q_\mu q^\mu$ to resolve the parton structure

- Example 3: jet production in p+p collisions

\[Q^2 = E_{jet}^2 \]
Factorization of hard scattering processes

- **p**erturbative QCD factorization of short and long distance physics

\[d\sigma_{\text{hadron}} = \sum_{f_1, f_2, i, j} \phi_{f_1} \otimes \hat{\sigma}_{\text{parton}}^{f_1 f_2 \rightarrow ij} \otimes \phi_{f_2} \]

- **Universality**: PDF from DIS describe also DY, p+p→jets+X, ...

Parton Distribution Fns (from inclusive DIS)

pQCD cross section
Factorization of hard scattering processes

- Hard scattering, computable in pQCD – e.g., in DIS (at Leading Order)

\[q^\mu \rightarrow (k+q) \rightarrow q^\nu \]

\[= - \frac{1}{2} \left(g_{\mu\nu} - \frac{q_\mu q_\nu}{q^2} \right) e_f^2 \delta \left(1 + \frac{q^2}{2k \cdot q} \right) \]

\[+ \left(k_\mu - q_\mu \frac{k \cdot q}{q^2} \right) (\mu \leftrightarrow \nu) \frac{e_f^2}{k \cdot q} \delta \left(1 + \frac{q^2}{2k \cdot q} \right) \]

- PDF – field theoretical definition (at Leading Order)

\[\varphi_q(x) = \int \frac{dz^-}{2\pi} e^{i z^- k^+} \langle p | \bar{\psi}(z^- n) \frac{\gamma \cdot \bar{n}}{2} \psi(0) | p \rangle \]
Global PDF fits

Problem: we need a set of PDFs in order to calculate a particular hard-scattering process

Solution:

- Choose a data set for a choice of different hard scattering processes
- Generate PDFs using a parametrized functional form at initial scale Q_0; evolve them from Q_0 to any Q using DGLAP evolution equations
- Use the PDF to compute the chosen hard scatterings
- Repeatedly vary the parameters and evolve the PDFs again
- Obtain an optimal fit to a set of data.

Examples: CTEQ6.6, MRST2008 for unpolarized protons
DSSV, LSS for polarized protons

For details, see J. Owens' lectures at the 2007 CTEQ summer school
Global PDF fits as a tool

- Test new theoretical ideas
 - *e.g.*, constrain amount of intrinsic charm

- Phenomenology explorations
 - *e.g.*, can CDF / HERA “excesses” be at all due to glue/quark underestimate at large x?

- Test / constrain models
 - *e.g.*, by extrapolating d/u at $x=1$
 - Possibly, constrain nuclear corrections

- Limitations
 - existing data
 - experimental errors
 - theoretical errors
Why large x ?
Why large x?

- Large uncertainties in quark and gluon PDF at $x > 0.4$ – e.g., CTEQ6.1

PDF errors
- propagation of exp. errors into the fit
- statistical interpretation
- reduced by enlarging the data set

Theoretical errors
- often poorly known
- difficult to quantify
- can be dominant
Why large x?

- Large uncertainties in quark and gluon PDF at $x > 0.4$
- Precise PDF at large x are needed, e.g.,
 - at LHC, Tevatron
 1) QCD background in high-mass new physics searches
 2) Lumi monitoring at high mass (Z,W cross-section)
- Example: Z' production

\[M_{Z'} \gtrsim 200 \text{ GeV} \quad x = \frac{m_T}{\sqrt{s}} e^y \]

$x \geq 0.02$ (LHC), 0.1 (Tevatron)

but recent work raises the bar:
\[M_{Z'} \gtrsim 900 \text{ MeV} \]
Why large x?

- Large uncertainties in quark and gluon PDF at $x > 0.4$
- Precise PDF at large x are needed, e.g.,
 - at LHC, Tevatron
 1) QCD background in high-mass new physics searches
 2) Lumi monitoring at high mass (Z, W cross-section)
- Example 2: 1996 CDF p_T excess

Kuhlmann et al. PLB409(97)

… or valence u …

NLO state of the art at the time

Kuhlmann et al. PLB476(00)

enhanced glue at large x
(compatible with older data)
Why large x?

- Large uncertainties in quark and gluon PDF at $x > 0.5$
- Precise PDF at large x are needed, e.g.,
 - at LHC, Tevatron
 1) QCD background in high-mass new physics searches
 2) Luminosity monitoring at high-mass – Z, W cross sections
- non-perturbative nucleon structure – e.g., d/u at $x \rightarrow 1$

\[
\frac{F_2}{F_2^{\text{NN}}_p} \approx \frac{1 + 4d/u}{4 + d/u}
\]
Why large x?

- Large uncertainties in quark and gluon PDF at $x > 0.5$
- Precise PDF at large x are needed, e.g.,
 - at LHC, Tevatron
 1) QCD background in high-mass new physics searches
 2) Luminosity monitoring at high-mass – Z, W cross sections
 - non-perturbative nucleon structure – e.g., $\Delta u/u, \Delta d/d$ at $x \to 1$
Why large x?

- Large uncertainties in quark and gluon PDF at $x > 0.5$
- Precise PDF at large x are needed, e.g.,
 - at LHC, Tevatron
 1) QCD background in high-mass new physics searches
 2) Luminosity monitoring at high-mass – Z, W cross sections
 - non-perturbative nucleon structure
 - spin structure of the nucleon at small x

\[
\sigma(p\bar{p} \rightarrow \pi^0 X) \propto \Delta q(x_1) \Delta g(x_2) \hat{\sigma}^{qg\rightarrow qg} \otimes D_{q}^{\pi^0}(z)
\]

\[
x_1 \sim \frac{p_T}{\sqrt{s}} e^y
\]

\[
x_2 \sim \frac{p_T}{\sqrt{s}} e^{-y}
\]
Why large x?

- Large uncertainties in quark and gluon PDF at $x > 0.5$

- Precise PDF at large x are needed, e.g.,
 - at LHC, Tevatron
 1) QCD background in high-mass new physics searches
 2) Luminosity monitoring at high-mass – Z,W cross sections
 - non-perturbative nucleon structure
 - spin structure of the nucleon at small x

\[
\sigma(p\bar{p} \rightarrow \pi^0 X) \propto \Delta q(x_1) \Delta g(x_2) \delta^{gg \rightarrow qg} \otimes D^\pi_1 (z)
\]
Why large x?

- Large uncertainties in quark and gluon PDF at $x > 0.5$
- Precise PDF at large x are needed, e.g.,
 - at LHC, Tevatron
 1) QCD background in high-mass new physics searches
 2) Luminosity monitoring at high-mass – Z,W cross sections
 - non-perturbative nucleon structure
 - spin structure of the nucleon at small x
 - neutrino oscillations
Why large x ... and low Q^2?

- JLab and SLAC have precision DIS data at large x, BUT low Q^2

- need of theoretical control over

1) higher twist $\propto \Lambda^2/Q^2$
2) target mass corrections (TMC) $\propto x_B^2 m_N^2/Q^2$
3) heavy-quark mass corrections $\propto m_Q^2/Q^2$
4) nuclear corrections

5) jet mass corrections (JMC) $\propto m_j^2/Q^2$
6) large-x resummation
7) large-x DGLAP evolution
8) quark-hadron duality
9) parton recombination at large x
10) perturbative stability at low-Q^2
11) ...

this talk

accardi@jlab.org Pavia U., 13 Jul 2010
Up and down: the CTEQ6X fit

Accardi, Christy, Keppel, Melnitchouk, Monaghan, Morfín, Owens, Phys. Rev. D 81, 034016 (2010)
Collaboration and goals

JLab / Fermilab/ Florida State U. collaboration

Initial Goals:

- Extend PDF global fits to larger values of x_B and lower values of Q
- Wealth of data from older SLAC experiments and newer Jlab, DY
- see if PDF errors can be reduced using new JLAB data
CTEQ6X vs. CTEQ

CTEQ
- \(Q^2 \geq 4 \text{ GeV}^2 \) \(W^2 \geq 12.25 \text{ GeV}^2 \)
- not so large \(x \), not too low \(Q^2 \)
- hope \(1/Q^2 \) corrections not large

CTEQ6X
- TMC, HT, deuteron corrections
- Progressively lower the cuts:

<table>
<thead>
<tr>
<th>(Q^2) [GeV(^2)]</th>
<th>(W^2) [GeV(^2)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTEQ = cut0</td>
<td>4</td>
</tr>
<tr>
<td>cut1</td>
<td>3</td>
</tr>
<tr>
<td>cut2</td>
<td>2</td>
</tr>
<tr>
<td>cut3</td>
<td>1.69</td>
</tr>
</tbody>
</table>

- Better large-\(x \), low-\(Q^2 \) coverage
CTEQ

\[Q^2 \geq 4 \text{ GeV}^2 \quad W^2 \geq 12.25 \text{ GeV}^2 \]

- not so large \(x \), not too low \(Q^2 \)
- hope \(1/Q^2 \) corrections not large

CTEQ6X

- TMC, HT, deuteron corrections
- Progressively lower the cuts:

<table>
<thead>
<tr>
<th></th>
<th>(Q^2) [GeV(^2)]</th>
<th>(W^2) [GeV(^2)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTEQ</td>
<td>4</td>
<td>12.25</td>
</tr>
<tr>
<td>cut1</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>cut2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>cut3</td>
<td>1.69</td>
<td>3</td>
</tr>
</tbody>
</table>

- Better large-\(x \), low-\(Q^2 \) coverage
Target mass corrections

- Nachtmann variable: \(\xi = \frac{2x_B}{1 + \sqrt{1 + 4x_B^2 m_N^2/Q^2}} < 1 \) at \(x_B = 1 \)

- **Standard Georgi-Politzer (OPE)**
 [Georgi, Politzer 1976; see review by Schienbein et al. 2007]
 [see also Leader, d'Alesio, Murgia, 2009]
 - leads to non-zero structure functions at \(x_B > 1 \) (!)

- **Collinear factorization** [Accardi, Qiu, JHEP 2008; Accardi, Melnitchouk 2008]
 Structure fns as convolutions of parton level structure fns and PDF

\[
F_{T,L}(x_B, Q^2, m_N) = \sum_f \int_\xi \frac{\xi}{x_B} \frac{dx}{x} \, h_{T,L}^{f f}(\frac{\xi}{x}, Q^2) \varphi_f(x, Q^2)
\]

- respects kinematic boundaries

- **\(\xi \)-scaling**, uses CF with \(x_{\text{max}} = 1 \) [Aivazis et al '94; Kretzer, Reno '02]

\[
F_{T,L}^{nv}(x_B, Q^2, m_N) \equiv F_T^{(0)}(\xi, Q^2)
\]

- leads to non-zero structure functions at \(x_B > 0 \) (!)
“Higher-Twists” parametrization

Parametrize by a multiplicative factor (same for p and n, for simplicity):

$$F_2(data) = F_2(TMC) \times \left(1 + \frac{C(x_B)}{Q^2}\right)$$

with

$$C(x_B) = a x^b (1 + c x)$$

Important: $C(x_B)$ includes

- dynamical higher-twists (parton correlations, e.g., $\langle p|\bar{\psi}D_AD_A\psi|p\rangle$)
- all uncontrolled power corrections:
 - TMC model uncertainty, Jet Mass Corrections
 - NNLO corrections (power-like at small Q)
 - large-x resummation
 - ...

Pavia U., 13 Jul 2010
Deuterium corrections

- nucleon Fermi motion and binding energy
- use non-relativistic deuteron wave-function
- finite-Q^2 corrections

\[F_{2A}(x_B) = \int_{x_B}^{A} dy S_A(y, \gamma, x_B) F_{2}^{TMC+HT}(x_B/y, Q^2) \]

\[\gamma = \sqrt{1 + 4x_B^2 m_N^2 / Q^2} \]

\[\frac{x_B}{y} = -\frac{q^2}{2p_N \cdot q} \]

- off-shell effects can be included in S_A

Pavia U., 13 Jul 2010
Reference fit vs. CTEQ6.1

- **Reference fit:**
 - cut0, no corrections
 - PDF errors with $\Delta \chi = 1$

<table>
<thead>
<tr>
<th>data</th>
<th>CTEQ6.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIS (JLab)</td>
<td>NO</td>
</tr>
<tr>
<td>SLAC</td>
<td>NO</td>
</tr>
<tr>
<td>NMC</td>
<td>✓</td>
</tr>
<tr>
<td>BCDMS</td>
<td>✓</td>
</tr>
<tr>
<td>H1</td>
<td>✓</td>
</tr>
<tr>
<td>ZEUS</td>
<td>✓</td>
</tr>
<tr>
<td>DY E605</td>
<td>✓</td>
</tr>
<tr>
<td>DY E866</td>
<td>NO</td>
</tr>
<tr>
<td>W CDF ’98 (ℓ)</td>
<td>✓</td>
</tr>
<tr>
<td>W CDF ’05 (ℓ)</td>
<td>NO</td>
</tr>
<tr>
<td>W D0 ’08 (ℓ)</td>
<td>NO</td>
</tr>
<tr>
<td>W D0 ’08 (e)</td>
<td>NO</td>
</tr>
<tr>
<td>W CDF ’09 (W)</td>
<td>NO</td>
</tr>
<tr>
<td>jet CDF</td>
<td>✓</td>
</tr>
<tr>
<td>jet D0</td>
<td>✓</td>
</tr>
<tr>
<td>jet γ+jet D0</td>
<td>NO</td>
</tr>
</tbody>
</table>
CTEQ6X vs CTEQ6.1

- CTEQ6X fit:
 - cut3, TMC+HT
 - deuteron corrections

- TMC, HT compensate each other

- u-quark:
 - almost unchanged

- d-quark suppressed
 - due to deuteron corrections

- Reduced PDF errors
 - about 30-50%

Q^2 = 10 GeV^2
CTEQ6X vs CTEQ6.1

CTEQ6X fit:
- cut3, TMC + HT
- deuteron corrections

TMC, HT compensate each other

u-quark:
- almost unchanged

d-quark suppressed
- due to deuteron corrections

Reduced PDF errors
- about 30-50%
Deuterium corrections

- d-quarks are very sensitive to deuterium corrections
- Off-shell corrections completely absorbed by the d-quark

free \equiv free p+n
dens \equiv density model corrections
nuc \equiv WBA smearing model
offsh \equiv off-shell corrections

[Melnitchouk et al., '94]
Impact on LHC

- Parton luminosities: \(L_{i,j}(M) = \frac{1}{S} \int_{M^2/s}^1 \frac{dx}{x} q_i(x, M^2) q_j(M^2/(xs), M^2) \)

- Nuclear model uncertainty \(\sim 10\% \) at large \(x \):
 - dominates \(Z \) cross-sections used as luminosity monitor

\[L_{i,j}(M) = \frac{1}{S} \int_{M^2/s}^1 \frac{dx}{x} q_i(x, M^2) q_j(M^2/(xs), M^2) \]

- exp = experimental
- RS = renorm. scale
- MC = charm mass
- TS = charm threshold
- SS = strangeness suppr.
d-quarks at large x

- Large theoretical undertainties on d-quark at large x

 - coming from deuteron corrections

 (no deuteron \Rightarrow d unconstrained at large x)

 - unavoidable at the moment: model dependent

- How to progress?

 - Avoid them

 - Free nucleon targets \Rightarrow not enough data so far

 - Constrain them

 - Q^2 dependence of D/p ratios at large x (maybe)

 - Use quasi-free nucleon targets

 - Use ratio of ^3He - ^3H mirror nuclei
Free nucleon targets

Constraints on large-\(x\) \(d\)-quarks from

\[p + p(\bar{p}) : \text{DY at large } x_F \]

\[p + p(\bar{p}) : \text{W-asymmetry at large rapidity} \]

\[(D0 \text{ and CDF}) \]

\[\nu + p \text{ and } \bar{\nu} - p \]

- **WA21 already has data**
 (but hard to reconstruct cross-sections from published “quark distributions”)

- **MINERvA with a hydrogen target**

- **Parity Violating DIS**

- **L/R electron asymmetry \(\Rightarrow \gamma/Z\) interference \(\propto d/u\)**

- **Charged current structure functions**
 [H1 and ZEUS]

\[\bar{\nu}(\bar{\nu}) p \longrightarrow l^\pm X \]

\[p p(\bar{p}) \longrightarrow \mu^+ \mu^- X \]

\[p p(\bar{p}) \longrightarrow W^\pm X \]

\[\bar{e}_L(e_R) p \longrightarrow e X \]

\[e p \longrightarrow \nu X \]

planned for Jlab at 12 GeV

accardi@jlab.org

Pavia U., 13 Jul 2010
HERA combined data

[JHEP 1001, 2010]

- H1 and ZEUS combined data on e^+p and e^-p collisions, NC & CC

Reaches into the critical x range
Too limited x coverage
These data alone insufficient for d-quark at large x
combine with deuterium data, cross check nuclear corrections
Constraining the nuclear corrections

- Quasi-free nucleon targets *
 [BONUS, E94-102 and EG6 at JLab 6 GeV]

\[e \, A \rightarrow e \, (A - 1) \, X \]

- \(^3\)He - \(^3\)H mirror nuclei *

\[\frac{^3H}{^3He} \approx \frac{n \, 2 + p/n}{p \, 2 + n/p} \]

* planned for Jlab at 12 GeV
Gluons
Observables for gluons

- Jets in $p+p$ collision – CT09
 - limited statistics
 - only very large Q^2, and smallish x

- $dF_2 / d(\ln Q^2)$
 - indirect
 - limited leverage at large x, large errors

- Longitudinal F_L
 - directly sensitive to gluons
 - so far not many data points
 - JLab / JLab12 will improve large-x coverage, but low Q^2
HT for F_L have little constraints from theory, some guidance from renormalon calculations

- Perturbatively unclear at large x
- When fitted, large at NLO, decrease at NNLO

“The high x and low Q^2 domain is 'dangerous'. This is another reason, along with target mass, to avoid fitting data in this region”

[Martin, Stirling, Thorne, PLB635(06)]

Should we dare more?
[see e.g., Alekhin et al., arXiv:0710.0124]
Target Mass Corrections

- Difference between Coll. Fact. [Accardi, Qiu] and OPE [Georgi, Politzer] for F_2
- different slope in $Q^2 \Rightarrow$ different gluons from $dF_2/d(ln Q^2)$!

Accardi, Qiu JHEP '08

\[
\begin{align*}
F_2/F_2^{(0)} & \quad F_2^{CP}/F_2^{(0)} \\
F_n^{nv}/F_2^{(0)} & \quad Q^2 = 2 \text{ GeV}^2 \\
F_2/F_2^{(0)} & \quad Q^2 = 25 \text{ GeV}^2 \\
\end{align*}
\]

MRST2002

Accardi, Qiu JHEP '08

\[
\begin{align*}
F_2/F_2^{(0)} & \quad F_2^{CP}/F_2^{(0)} \\
F_n^{nv}/F_2^{(0)} & \quad x_B = 0.8 \\
F_2/F_2^{(0)} & \quad x_B = 0.4 \\
\end{align*}
\]

MRST2002
Target Mass Corrections

- Very different F_L correction
- Can the differences be absorbed in HT terms?
- Play F_L and F_2 off each other \Rightarrow can differentiate TMC method??

Accardi, Qiu JHEP '08

\[R = \frac{\sigma_L}{\sigma_T} \]

\[Q^2 = 2 \text{ GeV}^2 \]

\[Q^2 = 25 \text{ GeV}^2 \]

\[x_B = 0.8 \]

\[x_B = 0.4 \]
Intrinsic charm
Intrinsic vs. radiative charm

Usual assumption in global fits: at threshold

\[c(x, Q_c \approx m_c) = 0 \]

charm generated during DGLAP evolution

but QCD predicts intrinsic charm

\[a \bar{c} \text{ pair fluctuation already exists, peaked at large } x \sim 0.4 \]

\[\text{fully participates in DGLAP evolution} \]

\[c, \bar{c} \text{ asymmetry: small @ NLO (pQCD) or large (nonpert. models)} \]
Phenomenological implications

- SM and beyond at Tevatron and LHC
 - Higgs and single top production sensitive to heavy quarks
 - Novel Higgs production mechanisms at large $x_F \approx 0.7-0.9$
 [Brodsky et al. PRD73(06), NPB907(09)]

- W production
 [Nadolsky et al. PRD78(08)]
Indications from global fits

[see Pumplin PRD 73(06) for review of models]

1) Brodsky-Hoyer-Peterson-Sakai [PLB 93 (80)]
\[c(x) = \bar{c}(x) = A x^2 [6x(1 + x) \ln x + (1 - x)(1 + 10x + x^2)] \]

2) meson-cloud model
[Navarre et al '96, '98; Melnitchouk, Steffens, Thomas '97, '99]
\[c(x) = Ax^{1.897} (1 - x)^{6.095} \]
\[\bar{c}(x) = \bar{A}x^{2.511} (1 - x)^{4.929} \]

3) phenomenological “sea-like”
\[c(x) = \bar{c}(x) \propto \bar{d}(x) + \bar{u}(x) \]
Indications from global fits

All models allow $\text{IC} = 0\text{-}3\%$ intrinsic charm
- Evolution redistributes IC to lower x, but large-x peak persists
- sea-like spread out over x
Experimental evidence - D0

D0 measured excess of γ+charm jets compared CTEQ6.6 [D0, PRL102(09)]

\[g + Q \rightarrow \gamma/Z + Q \]
\[q + \bar{q} \rightarrow \gamma/Z + g \rightarrow \gamma/Z + Q\bar{Q} \]

- Difference due to
 - intrinsic charm?
 - underestimate of $g \rightarrow c\bar{c}$?
How to measure hadronic collisions

\[\gamma/Z + \text{charm jet} \]
- sensitive to \[g + Q \rightarrow \gamma/Z + Q \] and \[q + \bar{q} \rightarrow \gamma/Z + g \rightarrow \gamma/Z + Q\bar{Q} \]
- \(y_\gamma y_{jet} > 0 \) and \(y_\gamma y_{jet} < 0 \) sensitive to different \(x_1, x_2 \)
- allows constraints on \(Q, \bar{Q}, \) and gluons
- angular dependence to distinguish above sub-processes

Also,

- High \(x_F \) \(pp \rightarrow J/\psi X \)
- High \(x_F \) \(pp \rightarrow J/\psi J/\psi X \)
- High \(x_F \) \(pp \rightarrow \Lambda_c X \)
- High \(x_F \) \(pp \rightarrow \Lambda_b X \)
- High \(x_F \) \(pp \rightarrow \Xi(c\bar{c}d) X \) (SELEX)
How to measure – DIS

- HERA charm and bottom events
 - already included in the fits
 - most data at small x, where $\gamma g \rightarrow c\bar{c}$ dominates over $\gamma c \rightarrow c X$
 - needs larger x

- JLab 6/12
 - Ideally placed across the charm threshold
 - D^+ vs. D^- sensitive to $c/c\bar{c}$ asymmetry

- EIC (LHeC ??)
 - jet measurements are possible
 - larger Q^2 range than Jlab, larger x than HERA
Target and heavy-quark mass corrections

DIS in collinear factorization: [Accardi, Qiu JHEP '08]

Currently being revisited

\[F_{T,L}(x_B, Q^2, m_N) = \sum_f \int_{x_f^{\text{min}}}^{x_f^{\text{max}}} \frac{dx}{x} h_{T,L}^{f} \left(\frac{\xi_f}{x}, Q^2 \right) \varphi_f(x, Q^2) \]

\[\xi_f = \xi \left[1 - \frac{\xi^2 x^2 m_f^2}{Q^2} \right]^{-1} \quad m_f \to 0 \quad \xi \to x_B \]

\[x_f^{\text{min}} = \xi \frac{Q^2 + (c - 1)m_f^2 + \Delta[m_f^2, -Q^2, cm_f^2]}{2Q^2} \quad m_f \to 0 \quad \xi \to x_B \]

\[x_f^{\text{max}} = \xi \frac{Q^2/x_B + 3m_f^2 + \Delta[m_f^2, -Q^2, Q^2(1/x_B - 1)]}{2Q^2} \quad m_f \to 0 \quad \xi/x_B \to 1 \]

\[\Delta[a, b, c] = \sqrt{a^2 + b^2 + c^2 - 2(ab + bc + ca)} \quad \xi = 2x_B/(1 + \sqrt{1 + 4x_B^2 M_N^2 / Q^2}) \]
Outlook: the Electron-Ion Collider
The EIC for dummies

- Future US-based e+p (e+A) collider – 2 designs:
 - **BNL – eRHIC:** \(E_e = 5-30 \text{ GeV} \quad E_p = 250 \text{ GeV} \quad \mathcal{L} \sim 10^{34} \text{ cm}^{-2}/\text{s}^{-1} \)
 - **Jlab – MEIC:** \(E_e = 3-11 \text{ GeV} \quad E_p = 60 \text{ GeV} \quad \mathcal{L} \sim 10^{34} \text{ cm}^{-2}/\text{s}^{-1} \)
The EIC for dummies

Future US-based e+p (e+A) collider – 2 designs:

- **BNL – eRHIC:** $E_e = 5$-30 GeV $E_p = 250$ GeV $\mathcal{L} \sim 10^{34}$ cm$^{-2}$/s$^{-1}$
- **Jlab – MEIC:** $E_e = 3$-11 GeV $E_p = 60$ GeV $\mathcal{L} \sim 10^{34}$ cm$^{-2}$/s$^{-1}$

![Graph showing proton and deuteron data](image)

MEIC will probe lower x in the shadowing region, and higher Q^2 at large x.
Projected Results - F_2^p Relative Uncertainty

- MEIC 4+60
- 1 year of running (26 weeks) at 50% efficiency, or 230 fb^{-1}

Solid lines are statistical errors, dotted lines are stat+syst in quadrature

For MeRHIC the luminosity is probably down by a factor of ~10, so these error bars will go up ~50%

Huge improvement in Q^2 coverage and uncertainty

Will, for instance, greatly aid global pdf fitting efforts

![Graph showing Q^2 vs. relative error for different x_B values. The graph includes data points from JLab, SLAC, BCDMS, NMC, ZEUS, H1, and MEIC. The text indicates only statistical errors on projected results.](image)
Projected Results - F_2^d Relative Uncertainty

- MEIC 4+30
- 1 year of running (26 weeks)
 at 50% efficiency, or 35 fb$^{-1}$

Even with a factor 10 less statistics for the deuteron the improvement compared to NMC is impressive

EIC will have excellent kinematics to measure n/p at large x!

Projected Results - F_2^d Relative Uncertainty

- Only stat. errors on projected results

Accardi, Ent, in progress
Impact on global fits

Sensible reduction in PDF error, likely larger than shown if energy scan is performed.
Structure functions at the EIC

• Bread and butter: inclusive DIS
 o Detailed rates: F_2 and F_L, p and D
 o charm and bottom str.fns.?
 o Impact on global fits: large-x, small-x and saturation

• Electroweak structure functions
 o flavor separation, charge symmetry violation, new spin str.fns.
 o requires high luminosity – needed rates under study

• Spectator tagging will open up an exciting physics program
 o Ongoing detector design – angular & momentum resolution
 o Rate estimates needed
 o p vs. n tagging:
 ✓ “effective” neutron target
 ✓ control nuclear effects on an “effective” proton
 o Tagging with 4He targets ???
 ✓ EMC effect

accardi@jlab.org

Pavia U., 13 Jul 2010
Conclusions

✿ Flavor separation at large x important
 → to understand the nucleon structure
 → for phenomenological applications

✿ but needs theoretical corrections
 → target/hadron/quark mass, HT, nuclear corrections, ...

✿ u, d quarks: ongoing CTEQ6X studies
✿ Gluons: will be included in the CTEQ6X global fit
✿ Intrinsic charm: interesting direction for the future

✿ Lots of progress available at the EIC

The future is bright ... and busy!
BACKUP SLIDES
Effects of corrections on reference fit

- Apply the theoretical corrections one at a time

- 2 important lessons:
 - **cut0 removes TMC+HT** (as desired)
 - **nuclear corrections are large starting from** \(x > 0.5 \) !! ("safe cuts" aren't safe everywhere)
Stability of the d-quark fit

- Relatively stable against kinematic cuts, but
 - the d-quark suppression is lessened by the less restrictive cuts
 - effect still sizable at $x=0.5–0.7$ in the nominal range of validity of cut0
Extracted twist-2 PDF much less sensitive to choice of TMC
- fitted HT function compensates the TMC
- except when no TMC is included
- Inclusion of TMC allow for economical HT parametrization (3 params)
Extracted higher-twist term depends on the type of TMC used

- $Q^2 > 1.69\text{ GeV}^2$ and $W^2 > 3\text{ GeV}^2$ (referred to as “cut03”)
- lower cuts $\Rightarrow x_B < 0.85$ compared to $x_B < 0.7$ in CTEQ/MRST
- No evidence for negative HT
Off-shell corrections

\[F_2^p = \frac{4}{9} x u \left(1 + \frac{d}{4u}\right) \]
no corrections

\[F_2^d = \frac{5}{9} x u \left(1 + \frac{d}{u}\right) \]
O.S. corrections

\[
\frac{\delta d}{d} = \frac{4}{3} \frac{\delta F_2^d}{F_2^d} \left(1 + \frac{1}{d/u}\right).
\]

1.5% on \(F_2^d \) \(\Rightarrow \) 40% on \(d \)-quark !!!

\[\downarrow \text{d-quark is strongly correlated to choice of Off-Shell correction!} \]

\[\downarrow \text{on-shell or mild off-shell correction} \Rightarrow \text{d-quark suppression} \]

\[\downarrow \text{might as well be enhanced...} \]

\[\downarrow \text{Need to constrain the models!} \quad \text{see later} \]
PDF errors at large x are reduced by lowering the cuts

Note: these are exp. errors propagated in the fit

nuclear correction uncertainty for d-quarks likely larger than this!
Quasi-free nucleon targets

BONUS and E94-102 experiments at JLab

- DIS on deuterium with tagged proton
 - tagged proton momentum is measured
 - neutron off-shellness can be reconstructed

- Study the off-shell dependence of $F_2(n)$ and quark PDFs

$$q \equiv q_D(x, Q^2, p^2)$$

- Extrapolate to a free neutron target $p^2 \rightarrow M_n^2$
D/p ratios

- Strong Q^2 dependence of nuclear smearing
- use fixed x_B data up to larger Q^2
- needs resonance region ⇒ quark-hadron duality
- off-shell corrections can't be constrained

![Graphs showing D/p ratios at different Q^2 values.](image)
• $E_e = 4 \text{ GeV}, \ E_p = 60 \text{ GeV}$
 - larger s (~4000 MeRHIC, or ~2500 MEIC) would cost luminosity
 - $0.004 < y < 0.8$
 - Luminosity $\sim 3 \times 10^{34}$
 - 1 year of running (26 weeks) at 50% efficiency, or 230 fb^{-1}
 - Somewhat smaller Q^2 reach and large luminosity is better choice at large x, $\sigma \sim (1-x)^3$

Projected Results IIa - F_2^p with CTEQ6X PDFs

only stat. errors on projected results
Projected Results IIb - F_2^d

- $E_e = 8$ GeV, $E_N = 30$ GeV ($s = 1000$)
- Luminosity $\sim 3.5 \times 10^{33}$ (scales with synchrotron limit)
- Smaller neutron str. fn. + reduced luminosity = factor of 10 loss in rate.
- One year of running (26 wk) at 50% efficiency, or 35 fb^{-1}

Can tag spectator proton, measure neutron, concurrently

only stat. errors on projected results