Hard exclusive vector meson production: Mechanism and GPD description

C. Weiss (JLab), MENU2010, Williamsburg, 02–Jun–10

- Mechanism of high–Q^2 meson production
 Small–size configurations ↔ color transparency
 Challenges in quantitative implementation
 Tests of reaction mechanism

- Gluon–dominated region $W > 10$ GeV
 HERA, COMPASS, EIC
 Reaction mechanism: t–slopes, universality, α'
 GPD–based description

- Quark exchange region $W \sim$ few GeV
 JLab 6/12 GeV, EIC
 Comparison $\rho^+ \leftrightarrow \rho^0$, $\omega \leftrightarrow \phi$
 CLAS data: Fradi
 Missing strength from scalar $q\bar{q}$ exchange:
 Chiral symmetry breaking

→ Transverse quark/gluon imaging of nucleon

→ Spin/flavor structure of GPDs

→ Meson structure
Mechanism of high–Q^2 meson production

- Partonic mechanism at high Q^2
 \[Q^2 \gg \text{hadronic scale}: \text{Meson produced predominantly in } q\bar{q} \text{ configuration of transverse size } r \sim 1/Q \]

 \[Q^2 \to \infty: \text{pQCD interaction, factorization theorem} \]
 Brodsky et al. 94; Collins, Frankfurt, Strikman 96

 Target structure in GPDs: Universal, process–independent

- Quantitative questions
 Distribution of sizes/configurations for given Q^2?
 Effective QCD scale, finite–size corrections
 Role of different partons/exchanges?
 Quark vs. gluon GPDs in ρ^0
 Partonic kinematics $x_{1,2}$: Scattering from quarks vs. $q\bar{q}$ pair knockout? Re/Im of amplitude

 ... should be addressed before detailed modeling!
Gluon–dominated region: Mechanism I

- Simplifications at $W > 10$ GeV
 - Gluon exchange dominant in $\rho^0 \leftrightarrow \phi, J/\psi$
 - Coherence length $\gg 1$ fm:
 - Dipole picture in nucleon rest frame
 - Im $A \gg$ Re A: DGLAP region of gluon GPD

- Test approach to small–size regime
 - Δ_T^2 slope measures transverse size of interaction region: Decreases at large Q^2, becomes universal
 - Seen in HERA data!

- Further tests
 - Q^2 dependence, σ_L dominance
 - $\phi : \rho^0 = 2 : 9$ from SU(3)
Gluon-dominated region: Mechanism II

- Test reaction mechanism through W–dependence: Changes with t through effective Regge slope α'
 - Soft process: Pomeron trajectory
 - Hard processes: $\alpha'(Q^2) \ll \alpha'_{\text{soft}}$, drops with Q^2, Seen in HERA data!

$\sigma \sim W^{4\alpha'_{\text{soft}}} t$

$\alpha'(Q^2) \ll \alpha'_{\text{soft}}$

$\frac{Q^2 + M_Y^2}{4} [\text{GeV}^2]$
Gluon–dominated region: GPD description

- Successful GPD–based phenomenology including finite–size effects
 - Dipole picture with size distribution \textit{Frankfurt, Strikman, Koepf 95}
 - Hard scattering with intrinsic k_T \textit{VGG 98; Kroll, Goloskokov 05+}

- Lower energies
 - ϕ still gluon–dominated at JLab energies
 - Nucleon gluonic consistent with HERA \textit{Frankfurt, Strikman 02}
 - ρ^0: Quark exchange – new challenges!

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure.png}
\caption{Graphs showing the behavior of ϕ and ρ with W [GeV].}
\end{figure}
Quark exchange region: Mechanism

- Comparison $\rho^+ \leftrightarrow \rho^0 \leftrightarrow \phi$: Quark exchange!

 Approximate u–quark dominance
 $\rho^0 : \omega : \rho^+ \sim 1 : 1 : 2$

- Valence quarks or $q\bar{q}$ pair?

 W dependence at $W < 4$ GeV
 suggest spin–0 exchange
 Guidal, Morrow: Modified D–term in GPD?

Chiral symmetry breaking:
Correlated spin–0 pairs in nucleon

Most likely $q\bar{q}$ exchange
with non-perturb. interactions
(“soft mechanism”)

CLAS 09 Fradi et al. **Black** ρ^+, **Red** ρ^0 **Blue** ω **Green** ϕ

Scattering from quark

Knockout of $q\bar{q}$ pair
Quark exchange region: Mechanism

- t-slopes and their Q^2 dependence

 Interpretation more difficult: exponential fits dominated by large $|t| \sim 1 - 2 \text{ GeV}^2$

 Possibly factors $\sqrt{-t}$ from nucleon helicity flip

 Approach to small-size regime at large Q^2? . . . Need also low-Q^2 data!
Summary

- Experimental input essential for understanding reaction mechanism of exclusive meson production
 - Not “GPDs or not GPDs,” but quantitative questions
 - Kinematic dependences more important than pushing for highest Q^2

- Successful GPD–based phenomenology in gluon–dominated region
 - Substantial finite–size effects at $Q^2 \sim$ few GeV2, physically motivated
 - No reason why it should not work at lower energies!

- New insights into reaction mechanism from CLAS $\rho^+/\rho^0/\omega/\phi$ data
 - Likely $q\bar{q}$ exchange with non-perturbative interactions
 - Toward a partonic description of meson production at JLab 6 and 12 GeV!