Non-perturbative nucleon structure and multiparton interactions

C. Weiss (JLab), MPI@LHC 2010, Glasgow, 29–Nov–10

• Nucleon structure in QCD
 Non-pert short-distance scale ~ 0.3 fm
 Many–body system: Wave function, densities, correlations

• Transverse distribution of partons
 Exclusive processes in $ep/\gamma p$ and GPDs
 HERA, COMPASS
 Hard processes in pp
 Hard vs. soft interactions

• Multiparton processes
 Mean-field: Transverse geometry
 Correlations: QCD vacuum structure
 Connections: Higher twist in DIS, intrinsic k_T, . . .
Nucleon structure: Parton picture

- **QCD vacuum not empty**

 Strong non-perturbative gluon fields of size $\rho \sim 0.2 - 0.3$ fm

 Lattice QCD simulations

 $\bar{q}q$ pair condensate, π as collective excitation

- **Slow–moving nucleon $P \sim \rho^{-1}$**

 $\langle N | O | N \rangle$ from Euclidean correlation functions

 \rightarrow lattice, analytic methods

 No concept of “particle content!”

- **Fast–moving nucleon $P \gg \rho^{-1}$**

 Closed system: Wave function description

 Gribov, Feynman

 Components with different particle number

 Hard process: “Snapshot” with spatial resolution $1/Q^2$

 pQCD radiation: Scale dependence
Nucleon structure: Many–body system

- Nucleon many–body system
 Different components of wave function, effective dynamics
 “Face” changes with excitation energy and resolution scale!

- Physical properties
 Longitudinal momentum densities incl. flavor, spin

 Transverse spatial distributions ←
 Multiparton correlations: ←
 Transverse, longitudinal
 Orbital motion: Transverse momenta, polarization effects
 Quantum fluctuations: Dispersion
Transverse distribution: Exclusive processes

- $Q^2, M^2 \gg$ hadronic scale: Meson produced in small-size configuration

QCD factorization theorem $Q^2_{\text{eff}} \gg |t|$
Collins, Frankfurt, Strikman 96

GPDs: Gluonic form factor of nucleon, universal, process–independent
Ji 96, Radyushkin 96

Operator definition $\langle N' | \text{twist-2} | N \rangle$, renormalization, non-pert. methods

- Transverse spatial distribution of gluons $x' = x$

$$G(x, \rho) = \int \frac{d^2 \Delta_T}{(2\pi)^2} e^{-i\rho \Delta_T} \text{GPD}(x, t)$$
2D Fourier

Tomographic image of nucleon at fixed x, changes with x and Q^2

- Large x: Quark GPDs, polarization, longitudinal momentum transfer $x' \neq x$

JLab12: DVCS, meson production
Transverse distribution: Gluons from J/ψ

- Transverse distribution of gluons from exclusive J/ψ (also ϕ, ρ)

 Transverse profile from relative t–dep.

 Average size from slope
 $$\langle \rho^2 \rangle_g = 2B_{J/\psi} - \text{finite–size corr.}$$

- Interesting observations

 Average gluonic size $\langle \rho^2 \rangle_g$ much smaller than soft nucleon size $\sim 1 \text{ fm}^2$

 Grows with effective Regge slope
 $$\alpha'_g \approx 0.14 \text{ GeV}^{-2} < \alpha'_{\text{soft}}$$

 Parametrization available: Frankfurt, Strikman, CW 10

- Q^2 dep. from DGLAP evolution

 Partons decay locally in transverse space

 Size changes because initial partons at $x_0 > x$ sit at smaller transv. distances

 Small effect
Transverse distribution: Hard processes in pp

- Hard process from parton–parton collision
 Local in transverse space $p_T^2 \gg (\text{transv. size})^{-2}$

- Cross section as function of pp impact parameter b

$$\sigma_{12}(b) = \int d^2\rho_1 \, d^2\rho_2 \, \delta(b - \rho_1 + \rho_2) \times G(x_1, \rho_1) \, G(x_2, \rho_2) \, \sigma_{\text{parton}}$$

Calculable from known transverse distributions
Integral $\int d^2b$ reproduces inclusive formula

Normalized distrib $P_{12}(b) = \sigma_{12}(b)/[\int \sigma_{12}]$

- New information available

 Model spectator interactions depending on b

 Predict probability of multiple hard processes

 Dynamical correlations? FSW04

 Diffraction: Gap survival probability

 Determined largely by transverse geometry FHSW 07
Transverse distribution: Hard vs. soft interactions

- Transverse size in soft interactions from \(pp \) elastic amplitude + unitarity

\[
\sigma_{\text{soft inel}}^{pp}(b) = 1 - |1 - \Gamma(s, b)|
\]

\[
R^2(\text{soft}) \gg \langle \rho^2 \rangle_g(x > 10^{-4}) \quad \text{"Two-scale picture"}
\]

- Two classes of \(pp \) collisions
 Peripheral: Most of inelastic cross section
 Central: High probability for hard process

- Hard processes select central collisions
 Event structure very different from min. bias

Geometric correlations:
Hard process \(\rightarrow \) centrality \(\rightarrow \) event chars
E.g. transverse multiplicity \(\rightarrow \) Talk Frankfurt

New tests of dynamical mechanisms in particle production
Multiparton processes: Transverse geometry

- Double collision rate parametrized by $1/\sigma_{\text{eff}}$
 \rightarrow Talks Blok, Treleani

 Mean field $\sigma_{\text{eff}} = \pi R_{13}^2$ avg distance btw collision points. Calc from transverse distributions

 $$\sigma_{\text{eff}}^{1/2} (\text{mean field}) = \int d^2b \, P_{12}(b) \, P_{34}(b)$$

 Numerically stable. Convolution becomes simple product of t-dependent gluon form factors measured in exclusive $ep/\gamma p$

 Enhancement compared to mean field expectation indicates dynamical correlations

- CDF 3 jet $+ \gamma$ rate two times larger than mean field with $\langle \rho^2 \rangle (x \sim 0.1)$

 Substantial correlations! Dynamical explanation?

- LHC: High rates for multijet events

 Background to new physics processes

 Detailed studies of parton correlations

 New field of study. Great interest!
Multiparton processes: Dynamical correlations

- QCD vacuum structure implies non-perturbative parton correlations
 - Cf. short-range NN correlations in nuclei
 - Dynamical scale $\rho \ll R$ from chiral symm. breaking
 - Euclidean \rightarrow Minkowski?
 - CDF data consistent with transverse lumps of size $\rho \sim 0.3$ fm
 - FSW04

- Theoretical challenges
 - Primordial vs. DGLAP–induced correlations?
 - Operator definition of multiparton distributions?
 - Hope to learn more at this meeting!

- Connections with other DIS observables
 - Intrinsic $k_T \sim \rho^{-1}$ in semi-inclusive DIS
 and single–spin asymmetries
 - Higher–twist effects in inclusive DIS $\langle k_T^2 \rangle \sim \rho^{-2}$
 - Balla, Polyakov, CW 97; Sidorov, CW 05
Diffraction: Rapidity gap survival

- Central exclusive diffraction
 Heavy system produced in hard two–gluon exchange
 Concurrent soft spectator interactions must not produce particles
 Khoze, Martin, Ryskin 97+

- Survival probability S^2
 Mean–field S^2 calculable from transverse gluon distn and pp elastic amplitude
 Model–independent, pure transverse geometry FHSW06
 Basic suppression by factor $\sim 30 - 40$ from elimination of scattering at small b $\sqrt{s} = 14$ TeV
 Additional suppression by factor $> 2 - 3$ from dynamical correlations, black–disk regime
 Requires detailed modeling

\[S^2 = \int d^2b \ P_{\text{hard}}(b) \ |1 - \Gamma(b)|^2 \]

- Diffraction pattern in p_{T1}, p_{T2}
 Experimental tests: CMS/TOTEM or LHC420
 STAR pp2pp @ $\sqrt{s} = 500$ GeV
Summary

- Parton picture of nucleon structure relates non-perturbative dynamics with observables in hard processes

- Transverse spatial distribution of partons essential input in analysis of pp collisions with hard processes

 Fundamental twist–2 characteristic, GPD
 Measurable in hard exclusive processes in $ep/\gamma p$
 Future data: COMPASS, JLab 12, EIC/LHeC
 Governs underlying event, multiparton rates, gap survival in diffraction, . . .
 New ways of testing reaction dynamics in pp@LHC

- Indications of strong non-perturbative parton–parton correlations in nucleon

 “Imprint” of QCD vacuum on partonic structure
 CDF data show enhancement by factor ~ 2 compared to mean field
 Affects rate of multiparton processes in pp@LHC
 New opportunities for nucleon structure studies
 “Next step” after one–body densities