Exclusive processes and nucleon structure

C. Weiss (JLab), EIC Workshop Rutgers, 14–Mar–2010

- Nucleon structure in QCD
 Quark/gluon transverse distributions, correlations, orbital motion

- High-Q^2 exclusive processes and GPDs
 Reaction mechanism and tests
 Large vs. small x

- Exclusive processes from 12 GeV to EIC
 DVCS: GPDs from dispersion analysis
 Meson production: Quark imaging
 $J/\psi, \phi$: Gluon imaging
 N^* and meson structure
 Nuclei: Color transparency, shadowing, coherent processes
Nucleon structure: Landscape

- **Nucleon in QCD many–body system**

 Partonic picture: Different components, effective dynamics

 Correspondence with rest frame picture: Euclidean QCD, lattice, instantons

- **Components probed in \(ep \) scattering**

 JLab 12 GeV Valence region: 3q, 5q

 EIC Sea quarks, gluons, \(Q^2 \) dependence

- **Physical properties**

 Parton densities

 Transverse spatial distributions

 Orbital motion, angular momentum

 Correlations

 + nuclear modifications
Exclusive processes: GPDs

- $Q^2 \gg$ hadronic size$^{-2}$: Reaction pointlike, partonic mechanism

 QCD factorization theorem
 GPDs universal, process–independent
 Müller et al. 94; Brodsky et al. 94; Collins et al. 96; Radyushkin 96, Ji 96

- Nucleon structure from GPDs

 $\xi = 0$ Transverse spatial distribution of of partons with longitudinal momentum $x \rightarrow$ Miller

 $|x| < \xi$ $q\bar{q}$ correlations in nucleon

 Moments Form factors of local twist–2 operators
 EM tensor, angular momentum \rightarrow Schweitzer

- Test reaction mechanism!

 Model–independent features: Universality, Q^2 scaling, kinematic dependences, . . .

 Finite–size corrections: Theory estimates
 Frankfurt et al 96, Kroll, Goloskokov 05+
Exclusive processes: Large vs. small x

<table>
<thead>
<tr>
<th>$x \ll 0.1$</th>
<th>$x > 0.1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross sections</td>
<td>Gluon/singlet quark J/ψ, ϕ, ρ^0, γ large vs. non-singlet quarks ρ^+, π, K small</td>
</tr>
<tr>
<td></td>
<td>Valence quark dominance $\rho^+ \approx \rho^0$, $\phi \ll \rho^0$ → Guidal</td>
</tr>
<tr>
<td>GPD interpretation</td>
<td>Skewness small $\xi \ll 1$ theoretically controlled</td>
</tr>
<tr>
<td></td>
<td>$t \approx -\Delta^2_\perp$</td>
</tr>
<tr>
<td></td>
<td>Transverse imaging</td>
</tr>
<tr>
<td></td>
<td>Skewness sizable, non-perturbative</td>
</tr>
<tr>
<td></td>
<td>$t = f(\xi, \Delta_\perp)$, t_{min} large</td>
</tr>
<tr>
<td></td>
<td>Transverse structure + longitudinal correlations</td>
</tr>
<tr>
<td>Higher twist</td>
<td>Space–time picture: Dipole model</td>
</tr>
<tr>
<td></td>
<td>HT \sim finite dipole size</td>
</tr>
<tr>
<td></td>
<td>Successful phenomenology incl. absolute cross sections HERA</td>
</tr>
<tr>
<td></td>
<td>“Knockout” of $q\bar{q}$ pair</td>
</tr>
<tr>
<td></td>
<td>Sudakov suppression</td>
</tr>
</tbody>
</table>
DVCS: Observables and analysis

- Interference BH–DVCS allows one to access DVCS at amplitude level

 \[
 \text{HERMES, JLab } \quad \text{DVCS} \times \text{BH} \quad \text{from } \sigma(\text{pol}), \sigma(e^{\pm})
 \]
 \[
 \text{HERA } \quad |\text{DVCS}|^2 \quad \text{from } \sigma(\text{unpol})
 \]

- Reaction mechanism

 JLab Hall A cross sections show \(Q^2\) scaling, higher twist \(\sim M_V^2/Q^2\) → Munoz Camacho

 HERA: \(Q^2\)-scaling, \(t\)-slopes

- Theory analysis

 Leading-twist analysis developed at NLO
 Müller et al.

 Successful HERA phenomenology, \(R = \text{DVCS/DIS}\)

 Dispersion relations for hard exclusive amplitudes:
 Minimize model dependence
 Frankfurt et al. 97, Teryaev et al. 05+; Müller et al. 07; Diehl et al. 07

\[
\begin{align*}
\text{Re } \text{DVCS} &= \int \text{Im } \text{DVCS} \\
&= \text{Dispersion} \\
&\quad + \text{D-Term} \\
\text{Im } \text{DVCS} \sim \text{LT} \quad H(\xi, \xi; t) \quad \text{measurable!}
\end{align*}
\]
DVCS: Future facilities

- JLab 12 GeV: Valence quark GPDs through spin observables, $p/D \rightarrow$ Munoz Camacho
 - COMPASS: DVCS at $0.01 < x < 0.1$
 - Re DVCS from μ^{\pm} Projections Schoeffel 09
 - EIC: Great opportunities!
 - Need to quantify impact on GPD analysis
 - Simulations: Sandacz, Horn, Hyde

- Topics for discussion

 Reaction mechanism: What do we need in order to separate leading and higher twist?

 Dispersion analysis: Do we need more data at smaller x or better accuracy at larger x?

 Neutron DVCS: What can be done with forward tagging?
Meson production: Mechanism

- Requires $Q^2 > 10 \text{GeV}^2$ for pointlike process
 - HERA: t–slope independent of Q^2, universality
 - JLab 6 GeV: Mechanism not yet fully understood → Guidal

Meson selects definite charge/spin/flavor component of GPD

$J/\psi, \phi$ gluon
ρ^0 gluon + singlet q
ρ^+, K^* non-singlet q
π, K, η non-singlet Δq

Nucleon structure interest
- Transverse imaging of quarks and gluons
- Spin/flavor structure
Meson production: Quark imaging

\[e^+ p \rightarrow e'^+ \pi^0 n \]

- Do strange and non-strange sea quarks have the same transverse distribution?

\[\rightarrow \pi N \text{ or } K \Lambda \text{ components in nucleon?} \]
\[\rightarrow \text{QCD vacuum fluctuations?} \]

- EIC: Exclusive \(\pi \) and \(K \) production \(\rightarrow \) Horn

High luminosity for low rates, differential measurements in \(x, t, Q^2 \)

Kinematic reach in \(Q^2, x \)

Recoil detection for exclusivity, \(t \)-distributions

EIC simulation T. Horn et al. 09
Meson production: Gluon imaging

- Gluon imaging through exclusive J/ψ and ϕ ($Q^2 > 10 \text{ GeV}^2$)
 - Clean channels!
 - Transverse distribution directly from Δ_T-dependence

- Physical interest → Vogt, Strikman
 - Valence gluons – dynamical origin?
 - Chiral dynamics at $b \sim 1/M_\pi$
 - Diffusion in QCD radiation
 - Input for $pp@LHC$ MC, small-x physics

- Existing data and plans
 - Transverse area $x < 0.01$ HERA
 - Larger x poorly known FNAL 82, . . .
 - JLab 12 GeV: Exclusive ϕ, J/ψ near threshold → Chudakov
Meson production: Valence gluons

- EIC: Transverse imaging of valence gluons through exclusive $J/\psi, \phi$

- Needed for imaging
 - Full t–distribution → Fourier
 - Non-exponential? Power–like at $|t| > 1$ GeV2?

Electroproduction with $Q^2 > 10$ GeV2:
 - Test reaction mechanism, compare different channels, control systematics

- Experimental requirements
 - Recoil detection for exclusivity, t–measurements
 - Luminosity $\sim 10^{34}$ cm$^{-2}$s$^{-1}$ for $x > 0.1$, electroproduction, high–t

First gluonic images of nucleon at large x!
Meson production: Gluon vs. quark size

- Do singlet quarks and gluons have the same transverse distribution?
 - Hints from HERA: $\text{Area}(q + \bar{q}) > \text{Area}(g)$
 - Difference expected from chiral dynamics: Pion cloud by Strikman, CW 09
 - No difference assumed in present pp MC generators for LHC!

- EIC: Gluon size from J/ψ, singlet quark size from DVCS
 - x-dependence: Quark vs. gluon diffusion in wave function
 - Detailed analysis: LO \rightarrow NLO by Müller et al.

Detailed differential images of nucleon’s partonic structure

Sandacz, Hyde, CW
Meson production: N^* and meson structure

- **N^* resonance excitation through hard exclusive process**

 QCD factorization: Hard process as transition operator. Frankfurt, Strikman, Polyakov

 New quantum numbers!

- **New probes of meson structure**

 Meson size ↔ Q^2 dependence, flavor structure

 “Exotics” from QCD counting rules

- **Pion GPDs from “knockout” processes** → Girod

 Requires $x \ll M_\pi / M_N \sim 0.1$ for quasi-real pion

 Kinematics with $p_T(\pi) \gg p_T(N)$ suppresses production on nucleon. Strikman, CW 04
Exclusive processes with nuclei

- QCD factorization = Color Transparency
 Nuclei as filter for small–size configurations
 Explore longitudinal direction $R_A \leftrightarrow l_{\text{coh}}$

- Coherent processes: Nuclear GPDs
 Fundamental quark/gluon distributions in nucleus, matter vs. charge radii \rightarrow Liuti
 Shadowing as function of impact parameter \rightarrow Guzey
 Requires detection at very low $t \sim (\text{few fm})^{-2}$
 Intrinsic k_T from beam optics
 Veto nuclear breakup, excitations

- Quasi–elastic processes: Neutron structure
 Neutron GPDs, medium modifications
 Requirements similar as for spectator tagging in inclusive DIS \rightarrow Keppel, Hyde
Summary

• High-luminosity EIC offers many exciting opportunities to explore QCD structure of nucleon and nuclei with exclusive processes

 • DVCS over wide kinematic range
 • Valence/sea quark imaging with meson production
 • Gluon imaging with J/ψ and ϕ
 • Fundamental quark/gluon distributions in nuclei from coherent scattering

• Many processes require/favor lower energy, more symmetric collider $s \sim 1000 \text{ GeV}^2$ Cf. detailed process simulations

• “Next step” for nuclear physics after JLab 12 GeV