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Parity-violating e scattering

Left-right polarization asymmetry in                  scattering!e p → e p

APV =
σL − σR

σL + σR
= −

�
GF Q2

4
√
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�
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X

Born (tree) level

measure interference between e.m. and weak currents
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Young, Roche, Carlini, Thomas 
PRL 97 (2006) 102002

strange form factors small 

Q2 = 0.1 GeV2

Gs
E = +0.0025± 0.0182

Gs
M = −0.011± 0.254

how important are higher order (e.g.      ) corrections?

Leinweber et al.,
PRL 94, 212001 (2005);
PRL 97, 022001 (2006)

γZ

Parity-violating e scattering
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Historical background:
proton            ratioGE/GM

II. OVERVIEW OF FORM FACTOR MEASUREMENTS

We begin with a brief description of the Rosenbluth sepa-

ration and recoil polarization techniques, focusing on the ex-

isting data and potential problems with the extraction tech-

niques.

A. Rosenbluth technique

The unpolarized differential cross section for elastic scat-

tering can be written in terms of the cross section for scat-

tering from a point charge and the electric and magnetic form

factors:

d!

d"
!!Mott!GEp

2 "#GMp

2

1"#
"2#GMp

2 tan2$%/2&" , $1&

where #!Q2/4Mp
2 , % is the electron scattering angle, Q2

!4EeEe!sin
2(%/2), and Ee and Ee! are the incoming and scat-

tered electron energies. One can then define a reduced cross

section,

!R'
d!

d"

($1"#&

!Mott
!#GMp

2 $Q2&"(GEp

2 $Q2&, $2&

where ( is the longitudinal polarization of the virtual photon
)(#1!1"2(1"#)tan2(%/2)* . At fixed Q2, i.e., fixed # , the
form factors are constant and !R depends only on ( . A
Rosenbluth, or longitudinal-transverse $LT&, separation in-
volves measuring cross sections at several different beam

energies while varying the scattering angle to keep Q2 fixed

while varying ( . GEp

2 can then be extracted from the slope of

the reduced cross section versus ( , and #GMp

2 from the in-

tercept. Note that because the GMp

2 term has a weighting of

#/( with respect to the GEp

2 term, the relative contribution of

the electric form factor is suppressed at high Q2, even for

(!1.
Because the electric form is extracted from the difference

of reduced cross section measurements at various ( values,
the uncertainty in the extracted value of GEp

2 (Q2) is roughly

the uncertainty in that difference, magnified by factors of

(+()#1 and (#GMp

2 /GEp

2 ). This enhancement of the experi-

mental uncertainties can become quite large when the range

of ( values covered is small or when # (!Q2/4Mp
2) is large.

This is especially important when one combines high-( data
from one experiment with low-( data from another to extract
the ( dependence of the cross section. In this case, an error in
the normalization between the datasets will lead to an error

in GEp

2 for all Q2 values where the data are combined. If

,pGEp
!GMp

, GEp
contributes at most 8.3% $4.3%& to the

total cross section at Q2!5(10) GeV2, so a normalization
difference of 1% between a high-( and low-( measurement
would change the ratio ,pGEp

/GMp
by 12% at Q2

!5 GeV2 and 23% at Q2!10 GeV2, more if +($1. There-
fore, it is vital that one properly accounts for the uncertainty

in the relative normalization of the data sets when extracting

the form factor ratios. The decreasing sensitivity to GEp
at

large Q2 values limits the range of applicability of Rosen-

bluth extractions; this was the original motivation for the

polarization transfer measurements, whose sensitivity does

not decrease as rapidly with Q2.

B. Recoil polarization technique

In polarized elastic electron-proton scattering, p(e! ,e!p! ),
the longitudinal (Pl) and transverse (Pt) components of the

recoil polarization are sensitive to different combinations of

the electric and magnetic elastic form factors. The ratio of

the form factors, GEp
/GMp

, can be directly related to the

components of the recoil polarization )10–13*:

GEp

GMp

!#
Pt

Pl

$Ee"Ee!&tan$%/2&
2Mp

, $3&

where Pl and Pt are the longitudinal and transverse compo-

nents of the final proton polarization. Because GEp
/GMp

is

proportional to the ratio of polarization components, the

measurement does not require an accurate knowledge of the

beam polarization or analyzing power of the recoil polarim-

eter. Calculations of radiative corrections indicate that the

effects on the recoil polarizations are small and at least par-

tially cancel in the ratio of the two-polarization component

)14*.
Figure 2 shows the measured values of ,pGEp

/GMp
from

the MIT-Bates )4,5* and JLab )6–8* experiments, both coin-
cidence and single-arm measurements, along with the linear

fit of Ref. )8* to the data from Refs. )6,8*:

,pGEp
/GMp

!1#0.13$Q2#0.04&, $4&

with Q2 in GeV2. Comparing the data to the fit, the total -2

is 34.9 for 28 points, including statistical errors only. Assum-

ing that the systematic uncertainties for each experiment are

fully correlated, we can vary the systematic offset for each

data set and the total -2 decreases to 33.6. If we allow the

systematic offset to vary for each dataset and refit the Q2

dependence to all four datasets using the same two-parameter

fit as above, i.e.,

FIG. 1. $Color online& Ratio of electric to magnetic form factor

as extracted by Rosenbluth measurements $hollow squares& and
from the JLab measurements of recoil polarization $solid circles&.
The dashed line is the fit to the polarization transfer data.

J. ARRINGTON PHYSICAL REVIEW C 68, 034325 $2003&

034325-2

Polarization Transfer

σR = G2

M (Q2) +
ε

τ
G2

E(Q2)

PT method
GE

GM

= −

√

τ(1 + ε)

2ε

PT

PL

from slope in    plotGE ε

suppressed at large Q2

P    recoil proton 
polarization in

T,L
�e p→ e �p

LT method 

Rosenbluth (Longitudinal-Transverse)
Separation
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Two-photon exchange corrections

direct computation of interference between    and
exchange diagrams, including effects of hadron structure

X

MγγM0

δ(2γ) =
2Re

�
M†

0 Mγγ

�

|M0|2

D(l) = (l2 − λ2)((l − q)2 − λ2)((k − l)2 −m2
e)((p+ l)2 −M2)

N(l) = ū(k�)γµ(/k − /l +me)γνu(k) ū(p
�)Γµ(q − l)(/p+ /l +M)Γν(l)u(p)

= infrared regulatorλ(→ 0)

Mγγ = e4
�

d4l

(2π)4
N(l)

D(l)
+ crossed box

Blunden, WM, Tjon
PRL 91 (2003) 142304

γ γγ
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Two-photon exchange corrections

D(l) = (l2 − λ2)((l − q)2 − λ2)((k − l)2 −m2
e)((p+ l)2 −M2)

N(l) = ū(k�)γµ(/k − /l +me)γνu(k) ū(p
�)Γµ(q − l)(/p+ /l +M)Γν(l)u(p)

= infrared regulatorλ(→ 0)

“exact” evaluation of integrals including form factors
 (Veltman-Passarino functions)

Mo, Tsai (1969)

cf. soft photon approximation (used in most data analyses!)
which assumes pole dominance of TPE amplitude
& neglects nucleon structure N(l) ≈ N(0)

Mγγ = e4
�

d4l

(2π)4
N(l)

D(l)
+ crossed box
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Blunden, WM, Tjon
PRL 91 (2003) 142304;
PRC 72 (2005) 034612

δ
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FIG. 2: Difference between the full two-photon exchange correction to the elastic cross section

(using the realistic form factors in Eq. (26)) and the commonly used expression (23) from Mo &

Tsai [13] for Q2 = 1–6 GeV2. The numbers labeling the curves denote the respective Q2 values in

GeV2.

26

Q2

few % magnitude, non-linear in   ,  positive slopeε

does not depend strongly on vertex form factors

Two-photon exchange corrections

difference between “exact” and Mo-Tsai calculations of TPE

N intermediate
states
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Rosenbluth separation

polarization transfer

with TPE correction

significant effect

Two-photon exchange corrections

resolves discrepancy
(within errors)

Arrington, WM, Tjon, PRC 76 (2007) 035205

+ higher-mass intermediate states
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Two-boson exchange corrections

X

X

  Born asymmetry

APV = (1 + δ)A0
PV ≡

�
1 + δZ(γγ) + δγ(Zγ)

1 + δγ(γγ)

�
A0

PV

δZ(γγ) =
2�e(M∗

ZMγγ)
2�e(M∗

ZMγ)

δγ(Zγ) =
2�e(M∗

γMγZ +M∗
γMZγ)

2�e(M∗
ZMγ)

δγ(γγ) =
2�e(M∗

γMγγ)
|Mγ |2

δ ≈ δZ(γγ) + δγ(Zγ) − δγ(γγ)
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Two-boson exchange corrections

cancellation between           and          corrections,
especially at low Q

Z(γγ) γ(γγ)
2

γ(Zγ)dominated by           contribution

nucleon intermediate states

Tjon, WM, PRL 100 (2008) 082003
Tjon, Blunden, WM, PRC 79 (2009) 055201
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    contribution small, except at very forward angles∆
(numerators have higher powers of loop momenta)

calculation less reliable for ∆ ε→ 1
(grows faster with s than nucleon)

Two-boson exchange corrections

    intermediate states∆

Tjon, WM, PRL 100 (2008) 082003
Tjon, Blunden, WM, PRC 79 (2009) 055201
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Effect on strange form factors

include TBE corrections in global analysis

at Q2 = 0.1 GeV2

e.g. Young et al. (preliminary)

Gs
E = +0.0025± 0.0182

Gs
M = −0.011± 0.254

Gs
E = +0.0023± 0.0182

Gs
M = −0.020± 0.254

small (absolute) shift in strange form factors from TBE
(large relative shift to      ), well within experimental errorsGs

M

global reanalysis (incl. TBE) in progress Young et al. (2011)
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Left-right polarization asymmetry in                  scattering!e p → e p

APV =
σL − σR

σL + σR
= −

�
GF Q2

4
√

2α

�
(AV + AA + As)

in forward limit measures weak charge of proton          

APV → GF Qp
W

4
√

2πα
t

k

p
qγ∗ Z

k’    k≈

p’    p≈

t = (k − k�)2 → 0
forward limit

s = (k + p)2

= M(M + 2E)

Qp
W

Proton weak charge
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Proton weak charge

Qp
W = 1− 4 sin2 θW

At tree level        gives weak mixing angle Qp
W

current best values

Qp
W small number - sensitive to higher-order corrections

scale dependence from
radiative effects

QWEAK: precision test of Standard Model

Wµ
± =

1√
2

(Aµ
1 ± iAµ

2 )

Zµ = cos θW Aµ
3 + sin θW Bµ

Aµ = − sin θW Aµ
3 + cos θW Bµ

MW

MZ
= cos θW

g = − e

sin θW

g� = − e

cos θW

PDGsin θW (M2
Z) = 0.23113± 0.00015

Weak mixing angle: central role in SM

sin2 θW (0) = 0.23807± 0.00017 Erler et al. ‘04

remai various unc rta ties with regard to t t eoretic
l ( h f b k

h

0.001 0.01 0.1 1 10 100 1000

Q [GeV]

0.225

0.23

0.235

0.24

0.245

0.25

si
n2 θ W

APV

QW(p)
eD-DIS

Q
W

(e) ν-DIS
AFB

Z-pole

current
future
SM

Weak Mixing Angle
Scale dependence in MS scheme including higher orders

1 Ca u ate u

QWEAK experiment: 4% determination of weak charge of the proton (2% exp. + 2% theory) - 
0.3% determination of the weak angle

Weak charge of the proton in SM

Deviation from SM value: New Physics at low energies 
Agreement with SM value: constraints on NP

Qp
W (0) = 1− 4 sin2 θW ≈ 0.075

Friday, January 15, 2010

sin2 θW (M2
Z) = 0.23116(16)

sin2 θW (0) = 0.23867(13)
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two-boson
exchange

X

X
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Fig. 2. γ − Z mixing diagrams and W -loop contribution to the anapole moment.

Because of the (1 − 4 sin2 θW ) dependence of ALR(e−e−), even with relatively
modest angular coverage limited to 0.1 ≤ y ≤ 0.9, Møller scattering can be used to
measure sin2 θW rather precisely, to about ±0.0003 at

√
s ≈ 1 TeV. Although not

likely to compete with future potential very high statistics Z pole measurements, it
will be competitive with present day measurements. In addition, Møller scattering
can be used as a powerful probe for “new physics” effects. Indeed, for electron
composite effects parametrized by the four fermion interaction11 2π

Λ2 eLγµeLeLγµeL

one finds ∆ALR ≈ sy(1 − y)c2
W /αΛ2 for e−e− Møller scattering. It can, therefore,

be more sensitive than e+e− → e+e− (about 50% better) and could probe Λ ∼
150 TeV.

If one is interested in an even more precise determination of sin2 θW via Møller
scattering, extremely forward events must be detected. For example, assuming
detector acceptance down to about 5◦ (y = 0.0019), Cuypers and Gambino6 have
shown that ∆ sin2 θW ≈ ±0.0001 may be possible at a

√
s = 2 TeV e−e− collider

with P1 = P2 = 90%.

4. Radiative Corrections and sin2 θW (Q2)

The tree level ALR for both E158 and future e−e− collider studies are propor-
tional to 1 − 4 sin2 θW and hence suppressed because sin2 θW ' 0.23. Since some
electroweak radiative corrections are not suppressed by 1 − 4 sin2 θW , they can be
potentially very large. A complete calculation has been carried out12 for small s as
appropriate to E158. There it was shown that such effects reduce ALR by 40% and
must be included in any detailed study. Here, we comment on the primary sources
of those large corrections and show how much of the effect can be incorporated into
a running sin2 θW (Q2). We also discuss how those large effects carry over to collider
energies. For a complete study of radiative corrections to Møller scattering at high
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be more sensitive than e+e− → e+e− (about 50% better) and could probe Λ ∼
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scattering, extremely forward events must be detected. For example, assuming
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Corrections to proton weak charge

vacuum 
polarization

�

two-photon exchange
vanishes at t = 0

+ ...
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WW  and ZZ box diagrams dominated by short distances, 
evaluated perturbatively  (WW box gives ~ 25% correction!)

box diagrams

O γZ = O
A
γZ + O

V
γZ

      box diagram sensitive to long distance physics,
has two contributions
γZ

vector e - axial h axial e - vector h
(vanishes at E=0)(finite at E=0)

= 0.0713± 0.0008

including higher order radiative corrections      

Q
p
W = (1 + ∆ρ + ∆e)(1− 4 sin2

θW (0) + ∆�
e)

+ O WW + O ZZ + O γZ

Erler et al., PRD 72 (2005) 073003

Corrections to proton weak charge
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low-energy part approximated by Born 
contribution (elastic intermediate state)

high-energy part (above scale          GeV)
computed in terms of scattering from
free quarks

Λ ∼ 1

Marciano, Sirlin, PRD 29 (1984) 75; Erler et al., PRD 68 (2003) 016006

O
A
γZ =

5α

2π
(1− 4 sin2 θW )

�
ln

M2
Z

Λ2
+ CγZ(Λ)

�

computed by Marciano & Sirlin (1980s) as sum of two parts:

axial h correction         dominant      correction in
atomic parity violation at very low (zero) energy

O
A
γZ γZ

Axial h correction

q q
q q
q q

≈ 0.0052(5) ≈short-distance long-distance     3/2    1±
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Axial h correction

axial h correction         dominant      correction in
atomic parity violation at very low (zero) energy

O
A
γZ γZ

k

p
qγ∗ Z

k’    k≈

p’    p≈

repeat calculation using forward dispersion relations
with realistic (structure function) input

�e OA
γZ(E) = 2

π

�∞
0 dE� E�

E�2−E2 �m OA
γZ(E

�)

axial h contribution antisymmetric under E       -E  :’ ’

negative energy part corresponds to crossed box
(crossing symmetry           )s → u
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Axial h correction

imaginary part given by interference        structure functionF γZ
3

with

Im A
γZ(E) =

1

(2ME)2

� s

M2

dW 2

� Q2
max

0
dQ2 ve(Q2)α(Q2)

1 +Q2/M2
Z

×
�

2ME

W 2 −M2 +Q2
− 1

2

�
F γZ
3

ve(Q
2) = 1− 4κ(Q2) sin2 θW (Q2)

γZ     interference
structure function

scale dependence of          given by
vacuum polarization corrections,  e.g.

ve,α

Z

!
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Z

!
W W

Z

!
W

W W
!

"e

Fig. 2. γ − Z mixing diagrams and W -loop contribution to the anapole moment.

Because of the (1 − 4 sin2 θW ) dependence of ALR(e−e−), even with relatively
modest angular coverage limited to 0.1 ≤ y ≤ 0.9, Møller scattering can be used to
measure sin2 θW rather precisely, to about ±0.0003 at

√
s ≈ 1 TeV. Although not

likely to compete with future potential very high statistics Z pole measurements, it
will be competitive with present day measurements. In addition, Møller scattering
can be used as a powerful probe for “new physics” effects. Indeed, for electron
composite effects parametrized by the four fermion interaction11 2π

Λ2 eLγµeLeLγµeL

one finds ∆ALR ≈ sy(1 − y)c2
W /αΛ2 for e−e− Møller scattering. It can, therefore,

be more sensitive than e+e− → e+e− (about 50% better) and could probe Λ ∼
150 TeV.

If one is interested in an even more precise determination of sin2 θW via Møller
scattering, extremely forward events must be detected. For example, assuming
detector acceptance down to about 5◦ (y = 0.0019), Cuypers and Gambino6 have
shown that ∆ sin2 θW ≈ ±0.0001 may be possible at a

√
s = 2 TeV e−e− collider

with P1 = P2 = 90%.

4. Radiative Corrections and sin2 θW (Q2)

The tree level ALR for both E158 and future e−e− collider studies are propor-
tional to 1 − 4 sin2 θW and hence suppressed because sin2 θW ' 0.23. Since some
electroweak radiative corrections are not suppressed by 1 − 4 sin2 θW , they can be
potentially very large. A complete calculation has been carried out12 for small s as
appropriate to E158. There it was shown that such effects reduce ALR by 40% and
must be included in any detailed study. Here, we comment on the primary sources
of those large corrections and show how much of the effect can be incorporated into
a running sin2 θW (Q2). We also discuss how those large effects carry over to collider
energies. For a complete study of radiative corrections to Møller scattering at high
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Because of the (1 − 4 sin2 θW ) dependence of ALR(e−e−), even with relatively
modest angular coverage limited to 0.1 ≤ y ≤ 0.9, Møller scattering can be used to
measure sin2 θW rather precisely, to about ±0.0003 at

√
s ≈ 1 TeV. Although not

likely to compete with future potential very high statistics Z pole measurements, it
will be competitive with present day measurements. In addition, Møller scattering
can be used as a powerful probe for “new physics” effects. Indeed, for electron
composite effects parametrized by the four fermion interaction11 2π

Λ2 eLγµeLeLγµeL

one finds ∆ALR ≈ sy(1 − y)c2
W /αΛ2 for e−e− Møller scattering. It can, therefore,

be more sensitive than e+e− → e+e− (about 50% better) and could probe Λ ∼
150 TeV.

If one is interested in an even more precise determination of sin2 θW via Møller
scattering, extremely forward events must be detected. For example, assuming
detector acceptance down to about 5◦ (y = 0.0019), Cuypers and Gambino6 have
shown that ∆ sin2 θW ≈ ±0.0001 may be possible at a

√
s = 2 TeV e−e− collider

with P1 = P2 = 90%.

4. Radiative Corrections and sin2 θW (Q2)

The tree level ALR for both E158 and future e−e− collider studies are propor-
tional to 1 − 4 sin2 θW and hence suppressed because sin2 θW ' 0.23. Since some
electroweak radiative corrections are not suppressed by 1 − 4 sin2 θW , they can be
potentially very large. A complete calculation has been carried out12 for small s as
appropriate to E158. There it was shown that such effects reduce ALR by 40% and
must be included in any detailed study. Here, we comment on the primary sources
of those large corrections and show how much of the effect can be incorporated into
a running sin2 θW (Q2). We also discuss how those large effects carry over to collider
energies. For a complete study of radiative corrections to Møller scattering at high

α

α(Q2)
= 1−∆αlep(Q

2)−∆α(5)
had(Q

2)

α−1(M2
Z) = 128.94

... similarly for weak charges 
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Axial h correction
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(E

) 
  
(x

 1
0

-4
)

elastic
resonance

elastic part

resonance part from parametrization of    scattering data
(includes lowest four spin-1/2 and 3/2 states)

ν
Lalakulich, Paschos (2006)

F γZ(el)
3 = −Q2 Gp

M (Q2)GZ
A(Q

2) δ(W 2 −M2)

Blunden, WM, Thomas
PRL 107, 081801 (2011)

21



DIS part dominated by leading twist PDFs at high W (small x)

Axial h correction

F γZ(DIS)
3 =

�

q

2eq g
q
A

�
q(x,Q2)− q̄(x,Q2)

�
e.g. at LO,

switching order of integration (energy integral analytic!),
expand integrand in         in DIS region (                    )Q2 � 1 GeV21/Q2

Re A(DIS)
γZ (E) =

3

2π

� ∞

Q2
0

dQ2 ve(Q2)α(Q2)

1 +Q2/M2
Z

×
�
MγZ(1)

3 − 2M2

9Q4 (5E2 − 3Q2)MγZ(3)
3

�

with moments MγZ(n)
3 (Q2) =

1�

0
dx xn−1F γZ

3 (x,Q2)
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Axial h correction

structure function moments

MγZ(1)
3 (Q2) = 5

3

�
1− αs(Q

2)
π

�

analog of Gross-Llewellyn Smith sum ruleγZ

n = 1

n = 3

related to x  -weighted moment of valence quarks

Re A(DIS)
γZ ≈ (1− 4ŝ2) 5α2π

∞�

Q2
0

dQ2

Q2(1+Q2/M2
Z)

�
1− αs(Q

2)
π

�

precisely result from Marciano & Sirlin!
(works because result depends on lowest moment of
 valence PDF, with model-independent normalization!)

2

MγZ(3)
3 (Q2) = 1

3

�
2�x2�u + �x2�d

� �
1 + 5αs(Q

2)
12π

�
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Axial h correction

“DIS” region at                     does not afford PDF description

in absence of data, consider models with general constraints

Q2 < 1 GeV2

should not diverge in limitF γZ
3 (xmax, Q2) Q2 → 0

F γZ
3 (x,Q2) Q2 = 1GeV2should match PDF description at

F γZ
3 (x,Q2) =

�
1 + Λ2/Q2

0

1 + Λ2/Q2

�
F γZ

3 (x,Q2
0)Model 1

Model 2

F γZ
3 ∼ (Q2)0.3 as Q2 → 0

F γZ
3 finite as Q2 → 0

F γZ
3 frozen at Q2 = 1 value for all W 2
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2
>1, n ≥ 3)

Axial h correction

Blunden, WM, Thomas
PRL 107, 081801 (2011)

dominated by n = 1 DIS moment: 
(weak E dependence)

32.8× 10−4
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Axial h correction

correction at E = 0

correction at E = 1.165 GeV (Qweak)

cf.  MS value:  0.0052(5)  (~1% shift in       )Qp
W

elastic resonance DIS

�e�A
γZ = 0.00064 + 0.00023 + 0.00350 → 0.0044(4)

�e�A
γZ = 0.00005 + 0.00011 + 0.00352 = 0.0037(4)

shifts        from  0.0713(8)        0.0705(8)Qp
W
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Vector h correction

forward dispersion relation

integration over E < 0 corresponds to crossed-box, 
vector h contribution symmetric under E       -E

’
’ ’

vector h correction         vanishes at E = 0, but experiment
has E ~ 1 GeV - what is energy dependence?                 

O
V
γZ

�e OV
γZ(E) = 2E

π

�∞
0 dE� 1

E�2−E2 �m OV
γZ(E

�)

imaginary part given by

�mO V
γZ(E) =

α

(s−M2)2

� s

W 2
π

dW 2

� Q2
max

0

dQ2

1 + Q2/M2
Z

×
�

F γZ
1 + F γZ

2

s (Q2
max −Q2)

Q2(W 2 −M2 + Q2)

�

Gorchtein, Horowitz, PRL 102 (2009) 091806
(note: factor 2 missing in original formula)
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parton model for DIS region F γZ
2 = 2x

�

q

eq gq
V (q + q̄) = 2xF γZ

1

good approximation at low xF γZ
2 ≈ F γ

2

provides upper limit at large x (F γZ
2 � F γ

2 )

Vector h correction

structure functionsF γZ
1,2

in resonance region use phenomenological input for F , 
empirical (SLAC) fit for R

2

for transitions to I = 3/2 states (e.g.    ),  CVC
and isospin symmetry give  

∆
F γZ
i = (1 +Qp

W )F γ
i

for transitions to I = 1/2 states,  SU(6) wave functions
predict Z &    transition couplings equal to a few %γ
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low W high W

GVMD model
(used as input by  
 Gorchtein & Horowitz)

Vector h correction

compare structure function input with data

29



total         correctionO
V
γZ

Qweak
E=1.165 GeV

resonance

high W or                of uncorrected Qp
W6.6+1.5

−0.6 %

Vector h correction

Sibirtsev, Blunden, WM, Thomas
PRD 82 (2010) 013011

�e�V
γZ = 0.0047+0.0011

−0.0004
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total         correctionO
V
γZ

�e O V
γZ = 0.0047+0.0011

−0.0004

Other vector h calculations

Rislow, Carlson, PRD 83, 113007 (2011)

0.0057± 0.0009

compatible with SBMT
within errors
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total         correctionO
V
γZ

�e O V
γZ = 0.0047+0.0011

−0.0004

Gorchtein, Horowitz, Ramsey-Musolf
 PRC 84, 015502 (2011)

central value consistent
with SBMT and RC, but
error 2 x as large

Other vector h calculations

0.0054± 0.0020
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total         correctionO
V
γZ

�e O V
γZ = 0.0047+0.0011

−0.0004

Gorchtein, Horowitz, Ramsey-Musolf
 PRC 84, 015502 (2011)

central value consistent
with SBMT and RC, but
error 2 x as large

Other vector h calculations

0.0054± 0.0020

consistent estimate of
uncertainty needed

data on        at low W and      vital !F γZ
1,2 Q2
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Combined vector and axial h correction

Qp
W = 0.0713 → 0.0705 (at E=0)

At E=1.165 GeV,
E-dependent 
correction is 

+0.0040

0 1 2 3

E (GeV)

0.2

0.4

0.6

0.8

1.0

1.2

R
e 

  
γZ

(E
) 

 (
x
 1

0
-2
)

MS

V+A

A

+0.0047

-0.0007

Blunden, WM, Thomas, PRL 107, 081801 (2011)
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t dependence

Extrapolation from t = -0.03 GeV   to t = 02

phenomenological ansatz

�γZ(E, t) = �γZ(0, 0)
e−B|t|/2

Fγp
1 (t)

Gorchtein, Horowitz, PRL 102 (2009) 091806

B = (7± 1)GeV−2with                            from forward Compton scattering

~ 2% reduction of  �γZ

more work needed for 
quantitative extrapolation
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*

* 4% measurement of Qp
W

Bentz et al., PLB 693 (2010) 462

shift in central value w/out correction

significant shift in central value, errors within 
projected experimental uncertainty ∆Qp

W = ±0.003

Combined vector and axial h correction

∆ sin2 θW ≈ 0.0013
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Summary

Dramatic effect of           corrections at forward angles
on proton weak charge,          ~ 6%,  cf. PDG

γ(Zγ)
∆Qp

W

better constraints from direct measurement of           
(e.g. in PVDIS at JLab)

would significantly shift extracted weak angle

New formulation in terms of moments of structure functions
places on firm footing earlier derivation of 
Marciano/Sirlin in “free quark model”
may affect atomic PV calculations (e.g. Cs, Fr)

Two-boson exchange corrections likely play minor role in
strange form factor extraction

cf. significant role of TPE in Rosenbluth extraction of Gp
E

F γZ
1,2,3
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The End
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