Transverse densities from timelike form factors

C. Weiss (JLab), DLS2011 “Spin physics,” 14–Apr–11

- Transverse charge and current densities
 Partonic representation of form factors
 Spectral representation and filtering property $\sqrt{t} \sim 1/b$

- Nucleon transverse densities
 Chiral large–distance component $e^{-m_\pi b}$
 from χPT
 Strikman, CW, PRC82 (2010) 042201

 Spectral analysis: Zooming in on vector mesons ρ, ω
 Miller, Strikman, CW; in preparation

- Pion transverse charge density
 Timelike pion form factor from e^+e^- data

 Singular charge density at $b \to 0$:
 Pointlike $q\bar{q}$ configurations in pion
 Miller, Strikman, CW, PRD83 (2011) 013006

New insights in partonic structure!
Quantify pion cloud, vector meson dominance in QCD!
Study vector meson couplings in t–channel kinematics!
Transverse densities: Partonic representation

- Elastic form factors
 \[\langle N' | J_\mu | N \rangle \sim F_{1,2}(t) \]
 Transverse momentum transfer \(|t| = \Delta^2\)

- Transverse charge density \(\rho(b)\) \(\text{Soper 76, Miller 07}\)
 \[\rho(b) = \int \frac{d^2\Delta}{(2\pi)^2} e^{-i\Delta b} F_1(-\Delta^2) \quad \text{2D Fourier} \]
 Cumulative charge of constituents at distance \(b\) from transverse center-of-mass
 Reduction of GPD \(\rho(b) = \int dx \ f_{q-\bar{q}}(x, b)\)

- Densities from spacelike FF data
 Neutron positive at \(b \sim 0.5 - 1 \text{ fm}\)
 Contradicts naive picture of \(p(\text{center}) + \pi^- (\text{cloud})\) \(\text{Miller 07}\)

 Extension to \(N \rightarrow \Delta, \text{higher-spin} \text{ systems}\)
 Carlson, Vanderhaeghen 07; Lorce et al. 09+
Transverse densities: Dispersion representation

- Dispersion representation of form factor

\[
F(t) = \int_{-\infty}^{\infty} \frac{dt'}{2\pi^2} \frac{\text{Im} F(t')}{t' - t - i0} \frac{1}{\pi}
\]

Spectral function \(\text{Im} F(t')\) describes “process” current \(\rightarrow\) hadronic system \(\rightarrow\) \(N\bar{N}\)

Unphysical region: Spectral function from dispersion analysis, \(\chi\)PT near threshold, pQCD \(t \rightarrow \infty\)

- Transverse density

\[
\rho(b) = \int_{-\infty}^{\infty} \frac{dt}{2\pi^2} K_0(\sqrt{t}b) \text{Im} F(t)
\]

\(K_0 \sim e^{-b\sqrt{t}}\) exponential suppression of large \(t\)

Distance \(b\) selects masses \(\sqrt{t} \sim 1/b\): “Filter”

Cf. Borel transformation in QCD sum rules, Strikman, CW 10

Analyticity permits study of large-\(b\) asymptotics
Nucleon: Chiral component at large b

- Transverse density at $b \sim 1/M_\pi$ from chiral dynamics Strikman, CW 10

\[\text{Im} F_1(t) \text{ near threshold } t \rightarrow 4M_\pi^2 \]

Isovector two–pion exchange leading

Universal, calculable in χPT

Heavy–baryon expansion does not converge

Becher, Leutwyler 99; Kaiser 03

Equivalence of invariant and light–front formulations demonstrated

Δ intermediate states ensure proper N_c–scaling of isovector density

- Chiral component dominates only at distances $b > 2 \text{ fm}$

Large non–chiral density from ρ exchange

Contradicts traditional notion of “pion cloud” at distances $\sim 1 \text{ fm}$
Nucleon: Spectral analysis of transverse densities

- Analyze contribution of spectral mass regions to transverse densities
 Model-independent! Miller, Strikman, CW, in preparation

 Empirical spectral functions from FF fits
 Belushkin, Hammer, Meissner 07

 Connect partonic structure with hadronic exchange mechanisms

- Isovector charge density
 Near-threshold $\pi\pi$ relevant only at $b > 2\,\text{fm}$

 Intermediate $b = 0.5 - 1\,\text{fm}$ dominated by ρ, with $10 - 15\%$ correction from first ρ'
 Perfect “vector dominance,” fully quantitative!

- Isoscalar charge density
 No near-threshold strength, 3π very small

 ω dominates at $b \sim 2\,\text{fm}$

 Intermediate $b \sim 1\,\text{fm}$ mostly from ω, with 30% contribution from higher-mass states
 Physical origin uncertain: $\phi, K\bar{K}, \pi\rho$?
 Related to strangeness in nucleon from PVES at JLab
Pion: Transverse density from timelike data

- Spacelike FF poorly known at $|t| > 1 \text{ GeV}^2$

 Electroproduction on nucleon, model-dependent. JLab Hall C 6/12 GeV

- Timelike FF from e^+e^- annihilation

 $|F_\pi|^2$ from cross secn, phase from models/theory

 Resonance–based parametrization from fit to data

 Bruch, Khodjamirian, Kuhn 04. CLEO 05 results not included.

- Transverse density from dispersion integral

 Miller, Strikman, CW 10

 \[
 \rho_\pi(b) = \int_{4m_\pi^2}^{\infty} \frac{dt}{2\pi^2} K_0(\sqrt{tb}) \text{ Im } F_\pi(t)
 \]

 Fully calculable, precise, error estimates

 Singular charge density at center of pion
Pion: Partonic interpretation

- Singular charge density at center due to point-like configurations in pion wave functn

Confis of size $r \ll R_\pi$, mostly elementary $q\overline{q}$

Observable in other high–momentum transfer processes: $\gamma^*\gamma \rightarrow \pi^0$, $\pi + A \rightarrow 2$ jets, ...

Universal property

Large–size configurations with $x \rightarrow 1$
at scales $Q^2 > 1 \text{ GeV}^2$ cannot account for empirical charge density at $b \rightarrow 0$

Miller, Strikman, CW 10

Detailed modeling with light–cone wave functions Miller, Strikman; in progress

- 2D image of fast–moving pion

First accurate transverse image based on data!
Summary

- Transverse densities connect partonic structure with hadronic spectrum
 - Fully quantitative, consistent with QCD
 - New approach to duality

- Dispersion integral for $\rho(b)$ samples spectral function at energies $\sqrt{t} \sim 1/b$
 - Systematic study of exchange mechanisms
 - Mathematical properties: Asymptotic behavior, error analysis, . . .

- Nucleon charge density at intermediate distances $b = 0.5 - 1.5$ fm governed by vector mesons
 - Chiral component dominant only at $b > 2$ fm
 - Origin of isoscalar strength beyond ω still unclear

- Pion charge density from timelike form factor data
 - Precise 2D image with controlled accuracy
 - Singular charge density at center attributed to pointlike $q\bar{q}$ configurations