N* Resonances and Duality in Deep-Inelastic Scattering

Wally Melnitchouk

Jefferson Lab
Duality hypothesis: complementarity between *quark* and *hadron* descriptions of observables

\[\sum_{\text{hadrons}} = \sum_{\text{quarks}} \]

→ can use either set of *complete* basis states to describe physical phenomena
In practice, at finite energy typically have access only to **limited** set of basis states.
In practice, at finite energy typically have access only to limited set of basis states.

Question is not why duality exists, but how it arises where it exists, and how we can make use of it.
Duality in hadron-hadron scattering

\[p_{\text{Lab}} \Delta \sigma \quad (\text{mb GeV}) \]

\[\begin{array}{c}
\sum_j \sigma^\pi^+ p - \sigma^\pi^- p \\
R(s) = \sum_j \alpha_j(t)
\end{array} \]

Igi (1962)
Dolen, Horn, Schmidt (1968)

“s-t channel duality”
Duality in electron-nucleon scattering

“Bloom-Gilman duality”

\[\frac{2M}{Q^2} \int_0^{\nu_m} d\nu \, \nu W_2(\nu, Q^2) = \int_{\omega'_m}^{\omega'_1} d\omega' \, \nu W_2(\omega') \]

“hadrons”

“quarks”

finite-energy sum rules

Bloom, Gilman
PRL 85, 1185 (1970)

\[\omega' = \frac{1}{x} + \frac{M^2}{Q^2} \]
Duality in electron-nucleon scattering

average over
(strongly Q^2 dependent)
resonances
$\approx Q^2$ independent
scaling function

“Nachtmann” scaling variable

$$\xi = \frac{2x}{1 + \sqrt{1 + 4M^2x^2/Q^2}}$$

Niculescu et al., PRL 85, 1182 (2000)
Duality in electron-nucleon scattering

→ also exists locally in individual resonance regions
Duality in electron-nucleon scattering

- **In deep-inelastic region** \((W \gtrsim 2 \text{ GeV}, \, Q^2 \gtrsim 1 \text{ GeV}^2)\)
 structure function given by parton distributions
 \[
 F_2(x, Q^2) = x \sum_q e_q^2 q(x, Q^2)
 \]

- **In resonance region** \((W \lesssim 2 \text{ GeV}), \text{ or at low } Q^2 (Q^2 \lesssim 1 \text{ GeV}^2)\)
 can no longer resolve individual quark structure

- Resonance and DIS regions intimately connected
 \[\rightarrow\] resonances an *integral* part of scaling structure function
 e.g. in large-\(N_c\) limit, spectrum of zero-width resonances is “maximally dual” to quark-level (smooth) structure function
How to build up a scaling structure function from γ^*NN^* transitions?

Earliest attempts predate QCD

- e.g. harmonic oscillator spectrum $M_n^2 = (n + 1)\Lambda^2$
 including states with spin $= 1/2, \ldots, n+1/2$
 (n even: $I = 1/2$, n odd: $I = 3/2$)

 $M_n^2 = (n + 1)\Lambda^2$

- at large Q^2 magnetic coupling dominates

 $G_n(Q^2) = \frac{\mu_n}{(1 + Q^2 r^2/M_n^2)^2}$

 $r^2 \approx 1.41$

- in Bjorken limit, $\sum_n \rightarrow \int dz$, $z \equiv M_n^2/Q^2$

 $F_2 \sim (\omega' - 1)^{1/2}(\mu_{1/2}^2 + \mu_{3/2}^2) \int_0^\infty dz \frac{z^{3/2}(1 + r^2/z)^{-4}}{z + 1 - \omega' + \Gamma_0^2 z^2}$

- scaling function of $\omega' = \omega + M^2/Q^2$ ($\omega = 1/x$)
How to build up a scaling structure function from γ^*NN^* transitions?

Earliest attempts predate QCD

- e.g. harmonic oscillator spectrum \(M_n^2 = (n + 1)\Lambda^2 \)
 including states with spin = 1/2, ..., \(n+1/2 \)
 (\(n \) even: \(I = 1/2 \), \(n \) odd: \(I = 3/2 \))

- in \(\Gamma_n \to 0 \) limit
 \[F_2 \sim (\mu_{1/2}^2 + \mu_{3/2}^2) \frac{(\omega' - 1)^3}{(\omega' - 1 + r^2)^4} \]

 cf. Drell-Yan-West relation
 \[G(Q^2) \sim \left(\frac{1}{Q^2} \right)^m \iff F_2(x) \sim (1 - x)^{2m-1} \]

- similar behavior found in many models

 - Einhorn, PRD 14, 3451 (1976) ('t Hooft model)
 - Greenberg, PRD 47, 331 (1993) (NR scalar quarks in HO potential)
 - Pace, Salme, Lev, PRC 57, 2655 (1995) (relativistic HO with spin)
 - Isgur et al., PRD 64, 054005 (2001) (transition to scaling)
How to build up a scaling structure function from γ^*NN^* transitions?

More recent phenomenological analyses at finite Q^2

- additional constraints from threshold behavior at $q \to 0$
- and asymptotic behavior at $Q^2 \to \infty$

Davidovsky, Struminsky,

\[
\left(1 + \frac{\nu^2}{Q^2}\right) F_2^R = M\nu \left[|G_+^R|^2 + 2|G_0^R|^2 + |G_-^R|^2 \right] \delta(W^2 - M_R^2)
\]

- 21 isospin-1/2 & 3/2 resonances (with mass < 2 GeV)

\[
|G_+^R(Q^2)|^2 = |G_+^R(0)|^2 \left(\frac{|\vec{q}|}{|\vec{q}|_0} \frac{\Lambda'^2}{Q^2 + \Lambda'^2} \right)^{\gamma_1} \left(\frac{\Lambda^2}{Q^2 + \Lambda^2} \right)^{m_+} \quad m_{+,0,-} = 3, 4, 5
\]

\[
|G_0^R(Q^2)|^2 = C^2 \left(\frac{Q^2}{Q^2 + \Lambda''^2} \right)^{2a} \frac{q_0^2}{|\vec{q}|^2} \left(\frac{|\vec{q}|}{|\vec{q}|_0} \frac{\Lambda'^2}{Q^2 + \Lambda'^2} \right)^{\gamma_2} \left(\frac{\Lambda^2}{Q^2 + \Lambda^2} \right)^{m_0}
\]

- in $x \to 1$ limit,

\[
F_2(x) \sim (1 - x)^{m_+}
\]
How to build up a scaling structure function from $\gamma^* NN^*$ transitions?

More recent phenomenological analyses at finite Q^2

Valence-like structure of dual function suggests “two-component duality”:

- **Valence** (Reggeon exchange) dual to **resonances** $F_2^{(\text{val})} \sim x^{0.5}$
- **Sea** (Pomeron exchange) dual to **background** $F_2^{(\text{sea})} \sim x^{-0.08}$

Duality and QCD

Operator product expansion

expand moments of structure functions
in powers of $1/Q^2$

$$M_n(Q^2) = \int_0^1 dx \, x^{n-2} \, F_2(x, Q^2)$$

$$= A_n^{(2)} + \frac{A_n^{(4)}}{Q^2} + \frac{A_n^{(6)}}{Q^4} + \cdots$$

matrix elements of operators with specific “twist” τ

$\tau = \text{dimension} - \text{spin}$

$x \to 1 \iff W \to M$

$\tau = 2$

$\tau > 2$
Duality and QCD

Operator product expansion

\[M_n(Q^2) = \int_0^1 dx \ x^{n-2} \ F_2(x, Q^2) \]

\[= A_n^{(2)} + \frac{A_n^{(4)}}{Q^2} + \frac{A_n^{(6)}}{Q^4} + \cdots \]

de Rujula, Georgi, Politzer
Ann. Phys. 103, 315 (1975)

If moment \(\approx \) independent of \(Q^2 \)

\[\text{“higher twist” terms } A_n^{(\tau > 2)} \text{ small} \]

Duality \(\longleftrightarrow \) suppression of higher twists
Truncated moments of F_2^p in resonance region

higher twists < 10–15% for $Q^2 > 1$ GeV2

Malace et al., PRC 80, 035207 (2009)
[JLab Hall C]
On average, nonperturbative interactions between quarks and gluons not dominant (at these scales)
→ nontrivial interference between resonances

Total “higher twist” is small at scales $Q^2 \sim \mathcal{O}(1 \text{ GeV}^2)$

Can we understand this dynamically, at quark level?
→ is duality an accident?

Can we use resonance region data to learn about leading twist structure functions (and vice versa)?
→ expanded data set has potentially significant implications for global quark distribution studies
Consider simple quark model with spin-flavor symmetric wave function

low energy

\[d\sigma \sim \left(\sum_i e_i \right)^2 \]

high energy

\[d\sigma \sim \sum_i e_i^2 \]

For duality to work, these must be equal

\[\text{how can } \textit{square of a sum} \text{ become } \textit{sum of squares?} \]
Dynamical cancellations

- For toy model of two quarks bound in a harmonic oscillator potential, structure function given by
 \[F(\nu, q^2) \sim \sum_n |G_{0,n}(q^2)|^2 \delta(E_n - E_0 - \nu) \]

- Charge operator \(\sum_i e_i \exp(iq \cdot r_i) \) excites even partial waves with strength \(\propto (e_1 + e_2)^2 \)
 odd partial waves with strength \(\propto (e_1 - e_2)^2 \)

- Resulting structure function
 \[F(\nu, q^2) \sim \sum_n \{(e_1 + e_2)^2 G_{0,2n}^2 + (e_1 - e_2)^2 G_{0,2n+1}^2\} \]

- If states degenerate, cross terms \(\sim e_1 e_2 \) cancel when averaged over nearby even and odd parity states

Close, Isgur, PLB 509, 81 (2001)
Dynamical cancellations

- duality is realized by summing over at least one complete set of even and odd parity resonances

Close, Isgur, PLB 509, 81 (2001)

- in NR Quark Model, even & odd parity states generalize to 56 (L=0) and 70 (L=1) multiplets of spin-flavor SU(6)

<table>
<thead>
<tr>
<th>representation</th>
<th>$^28[56^+]$</th>
<th>$^410[56^+]$</th>
<th>$^28[70^-]$</th>
<th>$^48[70^-]$</th>
<th>$^210[70^-]$</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_1^p</td>
<td>$9 \rho^2$</td>
<td>$8 \lambda^2$</td>
<td>$9 \rho^2$</td>
<td>0</td>
<td>λ^2</td>
<td>$18 \rho^2 + 9 \lambda^2$</td>
</tr>
<tr>
<td>F_1^n</td>
<td>$(3 \rho + \lambda)^2/4$</td>
<td>$8 \lambda^2$</td>
<td>$(3 \rho - \lambda)^2/4$</td>
<td>$4 \lambda^2$</td>
<td>λ^2</td>
<td>$(9 \rho^2 + 27 \lambda^2)/2$</td>
</tr>
</tbody>
</table>

$\lambda \ (\rho) =$ (anti) symmetric component of ground state wave function

PRC 79, 055202 (2009)
Accidental cancellations of charges?

cat’s ears diagram \((4\text{-fermion higher twist} \sim 1/Q^2)\)

\[
\propto \sum_{i \neq j} e_i e_j \sim \left(\sum_i e_i \right)^2 - \sum_i e_i^2
\]

\[\text{coherent} \quad \text{incoherent}\]

proton

\[\text{HT} \sim 1 - \left(2 \times \frac{4}{9} + \frac{1}{9} \right) = 0 !\]

neutron

\[\text{HT} \sim 0 - \left(\frac{4}{9} + 2 \times \frac{1}{9} \right) \neq 0\]

\(S. \ Brodsky \ (2000)\)

→ **duality in proton a coincidence!**

→ **should not** hold for neutron !!
Neutron: the smoking gun

- Duality in *neutron* more difficult to test because of absence of free neutron targets

- New extraction method (using iterative procedure for solving integral convolution equations) has allowed first determination of F^{n}_{2} in resonance region & test of neutron duality

Malace, Kahn, WM, Keppel
Neutron: the smoking gun

→ “theory”: fit to $W > 2$ GeV data

 Alekhin et al., 0908.2762 [hep-ph]

→ locally, violations of duality in resonance regions < 15–20% (largest in Δ region)

→ globally, violations < 10%

Malace, Kahn, WM, Keppel
PRL 104, 102001 (2010)

duality is **not accidental**, but a general feature of resonance–scaling transition!
Neutron: the smoking gun

→ “theory”: fit to $W > 2$ GeV data
 Alekhin et al., 0908.2762 [hep-ph]

→ *locally*, violations of duality in resonance regions < 15–20% (largest in Δ region)

→ *globally*, violations $< 10\%$

*Malace, Kahn, WM, Keppel
PRL 104, 102001 (2010)*

→ analysis using recent (model-independent) BoNuS data in progress
Neutron: the smoking gun

“theory”: fit to $W > 2$ GeV data
Malace et al., 0908.2762 [hep-ph]

locally, violations of duality in resonance regions < 15–20%
(largest in Δ region)

globally, violations < 10%

use resonance region data to learn about leading twist structure functions?
CTEQ-JLab (CJ) global PDF analysis *

- New global NLO analysis of expanded set of p and d data (DIS, pp, pd) including large-x, low-Q^2 region

- Systematically study effects of Q^2 & W cuts
 - down to $Q \sim m_c$ and $W \sim 1.7$ GeV

| cut0: $Q^2 > 4$ GeV2, $W^2 > 12.25$ GeV2 |
| cut1: $Q^2 > 3$ GeV2, $W^2 > 8$ GeV2 |
| cut2: $Q^2 > 2$ GeV2, $W^2 > 4$ GeV2 |
| cut3: $Q^2 > m_c^2$, $W^2 > 3$ GeV2 |

Owens, Accardi WM
arXiv:1212.1702 (PRD, in print)

CJ collaboration: http://www.jlab.org/CJ
Larger database with weaker cuts leads to significantly reduced errors, especially at large x

→ up to 40–60% error reduction when cuts extended into resonance region

Accardi et al.
PRD 81, 034016 (2010)
Vital for large-x analysis, which currently suffers from large uncertainties (mostly due to nuclear corrections)

uncertainty in d feeds into larger uncertainty in g at high x (important for LHC physics!)

Accardi et al., PRD 84, 014008 (2011)
Large Hadron Collider (CERN)

pp collisions at $\sqrt{s} = 7$ TeV
Observation of new physics signals requires accurate
determination of QCD backgrounds — depend on PDFs!
(since $x_{1,2} \sim M_{Z',W'}$, large-x uncertainties scale with mass!)

- for W' production

-dominated by $d \ast \bar{u}$

-dominated by $d \ast u + u \ast d$

> 100% uncertainties at large y!

Brady et al., JHEP 1206, 019 (2012)
Duality in (semi-inclusive) meson production

- Extend duality to less inclusive processes, such as meson electroproduction

\[\sum_{N_1^*, N_2^*} \gamma^* N \rightarrow N_1^* \rightarrow N_1^* N_2^* \rightarrow N_2^* M = \sum_{q, X} q N \rightarrow q X \rightarrow X M \]

\(s \)-channel resonance excitation and decay

parton level scattering and fragmentation

\[
\sum_{N_2^*} \left| \sum_{N_1^*} F_{\gamma N \rightarrow N_1^*} (Q^2, M_1^*) \mathcal{D}_{N_1^* \rightarrow N_2^* M} (M_1^*, M_2^*) \right|^2 = \sum_q e_q^2 q(x, Q^2) D_q^M (z, Q^2)
\]
Duality in exclusive reactions

Exclusive–inclusive correspondence principle:

- continuity of dynamics from one (known) region to another (poorly known)

\[
\int_{p_{\text{max}} - M_X^2/4p_{\text{max}}}^{p_{\text{max}}} dp \left. E \frac{d^3 \sigma}{dp^3} \right|_{\text{incl}} \sim \sum_{\text{res}} \left. E \frac{d\sigma}{dp_T^2} \right|_{\text{excl}}
\]

\[
\gamma^* N \rightarrow M \ X \quad \gamma^* N \rightarrow M \ N^*
\]

- resonance contribution to \(d\sigma \) should be comparable to the continuum contribution extrapolated from high energy

\[
\frac{E \ d^3 \sigma}{\sigma \ d p^3} \equiv f(x, p_T^2, sQ^2) \quad \rightarrow \quad f(x, p_T^2, sQ^2) \xrightarrow{s \rightarrow \infty} f(x, p_T^2)
\]

Bjorken, Kogut, PRD 8, 1341 (1973)
Conclusion

- **Confirmation of duality** (experimentally & theoretically) suggests an origin in dynamical cancelations between resonances
 - explore more realistic descriptions based on phenomenological $\gamma^* NN^*$ form factors
 - incorporate *nonresonant* background in same framework

- **Practical application of duality**
 - use resonance region data to constrain PDFs at high x
 (better knowledge of resonances could be relevant for LHC !)

- **Extend quark-hadron duality concept to electroproduction**
 - application to semi-inclusive DIS, DVCS / GPDs, ...
Gracias!