Delineating gluon PDFs and the strong coupling

Pedro Jimenez-Delgado
Introduction: non-singlet sector

\[u \text{-valence rather well determined} \]

larger differences for \(d \)-valence, but also quite stable

much smaller but can be determined using Drell-Yan \(\sigma^{pd}/\sigma^{pp} \) ratios

far less relevant except for \(\nu, \bar{\nu} \) differences in dimuon production
Introduction: singlet sector

sea distributions at small x determined by the gluon via RGE evolution

d$/u$ ratio at large x sensitive to nuclear corrections and parametrizations

strange-quark well determined from dimuon (now also LHC) data

largest and most relevant differences in the gluons (and α_s values)
Status of gluon distributions

Large differences at small and large x, and in $\alpha_s(M_Z^2)$ values
Propagation to Higgs cross-section

[Anastasiou et al. 2012]
Constraints on the gluon and data selection

Gluon only enters directly (at LO) in:
- F_L (both small and large x)
- HQ electroproduction (small x)
- jet production (medium to large x)

But constrained via scaling violations in the small x region

Momentum sum rule correlates small and large x

DIS data often excluded from fits:
\[Q^2 \gtrsim 4 \text{ GeV}^2, \ W^2 \gtrsim 10 \text{ GeV}^2 \]

Moderate cuts lead to larger α_s, thus softer small-x gluons

Jet data also moderately increase α_s; should not be used beyond NLO

(NNLO corrections are large)
Data selection: 4475 data points

- Switched to HERA combined neutral-current DIS σ_{n}, σ_{c}
 and included charged-current

- F_{2} replaced for cross-section for SLAC, BCDMS and NMC [ABM 2010]

- From 30 points on p/n ratios to an equal-footing treatment of fixed-target data

- Dimuon data included in nominal fits

- HERMES data included (p and d)

- JLab proton and deuteron data included (need lower W cuts)

 $$Q^{2} \geq 2\text{GeV}^2, W^{2} \geq 3.5\text{GeV}^2$$

- Inclusion of Rosenbluth separated (F_{2}, F_{L}) data from H1, and from
 BCDMS, SLAC, EMC and JLab

[Monaghan et al. 2012]
Calculations

- Experimental correlations properly treated (also multiplicative errors)
- Switched to \(\overline{\text{MS}} \) scheme for heavy quark masses [ABM 2010]
- NNLO_{app} for heavy quark structure functions [ABM 2010]
- Target mass corrections used also for \(F_L \) (in addition to \(F_2 \))
- Nuclear corrections for deuteron data [CJ 2012]
- Determination of higher-twist contributions to structure functions

\[
T_2 F_{2,L}^{p,n}(x, Q^2) + \frac{T_4 F_{2,L}^{p,n}(x)}{Q^2}
\]
The role of the input scale

Any dependence is due to shortcomings of the estimation: *procedural bias*

Extended parametrization: $1 + 27 + 16 = 44$ parameters
Interim results
Interim gluons

Dynamical $\alpha_s(M_Z^2) = 0.1126 \pm 0.0005$

Standard $\alpha_s(M_Z^2) = 0.1147 \pm 0.0007$

JR gluons at large x are rather stable: not very sensitive to the inclusion of Jet data and describe well the Rosenbluth separated F_L data

Comment: ABM result not due to FFNS!!
The strong coupling and the input scale

Central values in good agreement with JR09 (dynamical and standard)

Jets change a bit central values but not dramatically

Uncertainties: $\Delta_{\text{exp}} \simeq 0.0006$, $\Delta_{\text{bias}} \simeq \Delta_{\text{exp}}$, $\Delta_{\text{theo}} \simeq ??$
Origin of our strong coupling values
Origin of our strong coupling values

Fit finds a *compromise*: intermediate central value with reduced uncertainties
(artificially? tolerance parameter $\Delta \chi^2 = 1$?)
Summary and prospects

- Accurate proton PDFs crucial for precise predictions at LHC

- An upgrade of the JR unpolarized distributions with many improvements is currently in preparation: trying to get the most from all pre-LHC data

- Preliminary results mostly consistent with JR09

- Gluon PDFs and $\alpha_s(M_Z^2)$ determination stable

- Errors somewhat small for $\Delta \chi^2 = 1$; due to tensions between data sets?

- Inclusion of LHC data foreseen for next year

Thank you for your attention!!