Partonic structure meets meson exchange: Exploring duality with transverse densities

C. Weiss (JLab), Bonn U. HISKP Colloquium, 04–Jul–13

Express pion cloud, vector mesondominance in QCD!

Explore parton–hadron duality in^t–channel kinematics!

Understand spatial structure of nucleon as relativistic system!

• Nucleon structure in QCDWhy parton picture

Transverse densities from elastic FFs

• Spectral analysis of transverse densities

Dispersion representation of densities Strikman, CW, PRC82 (2010) ⁰⁴²²⁰¹

Large distances $b\sim 2\,{\rm fm}$: Chiral dynamics

Intermediate $b\sim1\,{\rm fm}$: Vector mesons Miller, Strikman, CW, PRC84 (2011) ⁰⁴⁵²⁰⁵

Partonic interpretation

• Pion transverse charge density

Timelike FF from e^+e^- data:
Deintlike s∏ senfimuntions Pointlike $q\bar{q}$ configurations Miller, Strikman, CW, PRD83 (2011) ⁰¹³⁰⁰⁶

• Outlook: GPDs, new data

Nucleon structure: Parton picture

Strong non-perturbative ^gluon fields Size $\ll 1$ fm. Lattice simulations, analytic models

 $\bar{q}q$ pair condensate, π as collective excitation
Chiral symmetry breaking: Order parameter, Goldstone boson Chiral symmetry breaking; Order parameter, Goldstone boson

• Slow–moving nucleon $P\sim\mu_{\rm vac}$ $\langle N|\hat{O}|N\rangle$ from correlation functions

> No concept of particle content! Cannot separate "constituents" from vacuum fluctuations

 $\bullet\,$ Fast–moving nucleon $P\gg\mu_{\rm vac}$

 Closed system: Wave function, Gribov, Feynman variable particle number, $\,x_i,\,\bm{k}_{Ti}\,$

Longitudinal momentum densities: PDFs Transverse spatial distributions: Form factors, GPDs 2nd quantized operator definitions: Renormalization, scale dependence

Expresses low–energy dynamics! "Point of view"

High–energy processes take snapshot

Nucleon structure: Transverse densities

• Current matrix element parametrized by invariant form factors

 $\langle N'|J_\mu|N\rangle ~~\rightarrow~~F_1(t),\,F_2(t)~~~~$ Dirac, Pauli

• Transverse densities $t=-\boldsymbol{\Delta}_T^2$ Soper 76, Miller 07 $F_{1,2}(t)\;=\;\int$ $\,d$ $d^2b e^i$ $i\boldsymbol{\Delta}$ T $\stackrel{\text{\scriptsize{b}}}{\rho_{1,2}(b)}$ 2D Fourier

Transverse density of charge and magnetization b displacement from transverse C.M.

• Proper densities for relativistic systems

Overlap of wave functions with same particle nr Breit frame distributions are not densities

Spatial representation of relativistic system

• Reduction of quark distributions GPDs

Relate elastic FFs to QCD quark/gluon structure

Nucleon structure: Empirical densities

• Empirical transverse densities from spacelike form factor data

Experimental and incompleteness errors estimated Venkat, Arrington, Miller, Zhan ¹⁰

Recent low– and high– $|t|$ data incorporated MAMI: Vanderhaeghen, Walcher 10. JLab Hall ^A Riordan et al.

Many interesting questions: Neutron, flavor structure, charge vs. magnetization

• Meson exchange picture

Current couples to nucleon via hadronic exchange mechanismRelativity, causality: Analyticity, crossing invariance

Sucessful phenomenology: Vector dominance $Cf. \; NN$ interaction parametrization Bonn potential

Relate to parton picture — quantitatively!

VMD expressed in QCD D.o.F New insight into partonic structure Parton–hadron duality in t –channel

Spectral analysis: Dispersion representation

• Dispersion representation of form factor

$$
F_1(t)\ =\ \int\limits_{4\mathrm{m}_\pi^2}^\infty\frac{dt^\prime}{t^\prime-t-i0}\frac{\mathrm{Im}\,F_1(t^\prime)}{\pi}
$$

Spectral function $\operatorname{Im} F_1(t')$ describes "process" current \rightarrow hadronic states $\rightarrow N\bar{N}$

 $\text{Im} F_1(t')$ from form factor fits and theory: $\chi \mathsf{PT}$ near threshold, dispersion rels, pQCD $t \to \infty$

$$
\rho(b)\ =\ \int\limits_{4m_\pi^2}^\infty \frac{dt}{2\pi^2}\ K_0(\sqrt{t}b)\ \mathrm{Im}\ F_1(t)
$$

 $K_0\sim e^{-b\sqrt{t}}$ exponential suppression of large t

Distanceb selects masses \sqrt{t} ∼ $\sim 1/b$: "Filter"
Strikman, CW 10 Cf. Borel transformation in QCD sum rules. Strikman, CW ¹⁰

Peripheral $\rho(b) \longleftrightarrow$ Low–mass hadronic states

Isovector:Isoscalar:

 $\pi\pi, \rho, \rho', \ldots$ $\omega, \phi, K\bar{K}, \ldots$

Spectral analysis: Isovector charge density

•Isovector spectral function

> Near–threshold $\pi\pi$ from chiral dynamics
Universal, model–independent. Subthreshold singularity from χ EFT: Becher, Leutwyler 99; Kubis, Meissner 00; Kaiser 03 N pole.

 ρ region from dispersion analysis πN and $\pi\pi$ phase shifts. Höhler 76; Belushkin et al. 05

High–mass continuum from form factor fits Belushkin, Hammer, Meissner 07. Update Lorenz et al. ¹²

• Spectral analysis of isovector density

Near–threshold $\pi\pi$ relevant only at $b > 2\,{\rm fm}$ Surprisingly large distances! Peripheral density from χ EFT. Strikman, CW 10; Granados, CW 13

Intermediate $b = 0.5 - 1.5$ fm dominated by ρ ,
only $\sim 10\%$ correction from higher states only $\sim 10\%$ correction from higher states "Vector dominance" quantified in partonic picture "Vector dominance" quantified in partonic picture

Higher–mass states relevant only at $b < 0.3$ fm Average out at larger distances

Spectral analysis: Isovector charge density

Radial charge density $2\pi b\rho$ $\,V\,$ $\int_{1}^{V}(b)$ Area under curve ^gives total charge

Isovector transverse charge density
at $b \sim 1 \text{ fm}$ is dual to ρ meson ∼at $b \sim 1 \text{ fm}$ is dual to ρ meson
exchange with 90% accuracy!

Spectral analysis: Isoscalar charge density

•Isoscalar spectral function

> ω exhausts strength below $1\,\text{GeV}^2$ Non-resonant 3π negligible

Large negative strength above $1\,{\rm GeV}^2$, dynamical origin unclear ϕNN coupling $\leftrightarrow s\bar{s}$ content of nucleon

High–mass continuum from form factor fits Belushkin, Hammer, Meissner ⁰⁷

• Spectral analysis of isoscalar density Miller, Strikman, CW ¹¹

> ω dominates at $b > 1.5\,{\rm fm}$
Fit uncertainty in ωNN counling $+15^o$ Fit uncertainty in ωNN coupling $\pm 15\%$

Large cancellations between ω and
higher-mass states at $b=0.5$ higher–mass states at $b = 0.5-1\,{\rm fm}$

• Impact of future form factor data

Sensitivity to ωNN coupling broadly
distributed at spacelike $|t| \leq 1 \ {\rm GeV}^2$ distributed at spacelike $|t| \lesssim 1 \, \text{GeV}^2$ Does not require measurements at extemely small $\left|t\right|$

Spectral analysis: Neutron charge density

• Spectral analysis of neutron density

 $\omega-\rho$ alone gives large positive density!

Substantially reduced by higher–mass states in isoscalar spectral function

Neutron form factor measurements can helpto determine isoscalar spectral function $\rightarrow \phi NN$ coupling, $s\bar{s}$ in nucleon

Parton interpretation: Quark densities

• Transverse densities of u and d quarks Constructed from FF fits. Small b from JLab Hall A Cates et al. 11

$$
\rho_u(b) = \int_0^1 dx \, [u(x, b) - \bar{u}(x, b)] \text{ etc.}
$$

 \bullet Ratio ρ_d/ρ_u $_{u}$ for interpretation

> Large
D b: ρ_d/ρ $_u \rightarrow -1$ configs in Peripheral πN configs in nucleon WF
Equivalence of invariant and light–cone χ PT: Strikmaı Equivalence of invariant and light–cone χ PT: Strikman, CW 10 Same configs govern chiral contributions to PDFs: Strikman, CW ⁰⁹ Many interesting theoretical issues!

> Intermediate $b \sim 0.3-1$ fm: $\rho_d/\rho_u \sim 1/2$ Mean-field motion of valence quarks $\operatorname{\sf Cf.}$ Quark model, large $\!-\!N_C$ QCD

Small $b<$ Extreme \it{x} 0.3 fm: ρ_d/ρ $\boldsymbol{\mathit{u}}$ $<$ 1 $\frac{1}{2}$ 2Extreme $x \to 1$ configs where $u \gg d$ PDF fits, pQCD counting

• Model–independent insights into partonic structure!

Parton interpretation: Duality

• Parton–hadron duality explored locally intransverse space

> Model–independent,quantitative statements

Benchmarks for dynamical model calculations

Disks indicate "region of dominance" of the various configurations/exchanges

Parton interpretation: Much more information

• Pauli FF

Transverse distribution of spin–dependent current

 $\rho_2(b)=\sum_q e_q \int_0^1 dx$ [e $q(x, b) - e_{\bar q}(x, b)$] nucleon helicity–flip GPD

• Axial and pseudoscalar FFs

Transverse distribution of axial and pseudoscalar charge

 $\rho_A(b) = \sum_q \int_0^1 dx ~[\Delta q(x,b) + \Delta \bar{q}(x,b)]$ spin–dependent parton densities

- $-$ Pseudoscalar FF has π pole: Longest–range component of nucleon structure
- Energy–momentum tensor FFs

Transverse distribution of momentum and matter Second moments of GPDS $\int_0^1 dx\; x\; [q(x,b) + \bar q(x,b)]$ etc. C –even exchange: σ

 \bullet x –dependent form factors: GPDs

Unify concepts of parton density and elastic FFs

Probed in high– Q 2 , low–t exclusive processes: Deeply virtual Compton scattering N $\dot{N}(e,e')$ lanned with $(\gamma)N'$, meson production $\,N$ $N(e,e^\prime M)N^\prime$ is challenging! HERMES, COMPASS, JLab. Extensive program planned with JLab ¹² GeV and future EIC. Analysis challenging!

Pion: Transverse density from timelike data

- Spacelike FF poorly known at $|t| > 1 \text{ GeV}^2$
Electroproduction on nucleon, model-dependent. If ab Half C 6/12 GeV Electroproduction on nucleon, model-dependent. JLab Hall ^C 6/12 GeV
- Timelike FF from e^+e^- annihilation

 $|F_\pi|^2$ from cross secn, phase from models/theory

Resonance–based parametrization from fit to data Bruch, Khodjamirian, Kuhn 04. CLEO ⁰⁵ results not included.

• Transverse density from dispersion integral Miller, Strikman, CW ¹⁰

$$
\rho_\pi(b)\ =\ \int\limits_{4m_\pi^2}^\infty \frac{dt}{2\pi^2}\ K_0(\sqrt{t}b)\ \mathrm{Im}\ F_\pi(t)
$$

Fully calculable, precise, error estimates Singular charge density at center of pion

Pion: Parton interpretation

• Singular charge density at center due to point-like configurations in pion wave functr

Configs of size $r\ll R_\pi$, mostly elementary $q\bar{q}$

Observable in other high–momentum transfer processes: γ^* Universal property ${}^*\gamma \rightarrow \pi^0$, $\pi + A \rightarrow 2$ jets, ...

Large–size configurations with $x \$ \rightarrow 1at scales $Q^2 > 1 \text{ GeV}^2$ cannot account for empirical charge density at $b \to 0$ Miller, Strikman, CW ¹⁰

Detailed modeling with light–cone wave functions in progress

• 2D image of fast–moving pion

First accurate transverse image based on data!

Summary: Theory

• Transverse densities connect partonic structure with hadronic spectrum

Fully quantitative, consistent with QCDNew approach to quark–hadron duality in t –channel

- \bullet $\bullet\,$ Dispersion integral for $\rho(b)$ samples spectral function at masses $\sqrt{t}\sim 1/b$ Systematic study of exchange mechanisms Mathematical properties: Asymptotic behavior, error analysis, ...
- Nucleon charge density at intermediate distances $b = 0.5 1.5$ fm
governed by vector mesons governed by vector mesons

Chiral component relevant only at $b > 2$ fm

Origin of isoscalar strength beyond ω still unclear

• Pion charge density from timelike form factor data

Precise 2D image with controlled accuracy Singular charge density at center attributed to pointlike $q\bar{q}$ configurations

Summary: Experiment

• Can the chiral component be studied experimentally?

 Effect on low $\!-\!Q^2$ form factors? Lorenz et al. 12 $\mathsf{CLASS}/\mathsf{PRIMEX}$ 12 GeV measurement at $10^{-4} \! - \! 10^{-2}\, \mathrm{GeV}^2$ PR12-11-106 Gasparian et al. Test fundamental χ PT predictions! Affects extrapolation to $Q^2 \rightarrow 0$

•• Dispersion fits to form factors provide much more information than Q^2 –dependent parametrizations

Should be updated with expected JLab ¹² GeV data!

Analyticity essential for studying nucleon's periphery

• Neutron form factor data crucial for determining isoscalar spectral functionImpact on $s\bar{s}$ content of nucleon