Partonic structure meets meson exchange: Exploring duality with transverse densities

C. Weiss (JLab), Bonn U. HISKP Colloquium, 04–Jul–13

- Nucleon structure in QCD
 - Why parton picture
 - Transverse densities from elastic FFs

- Spectral analysis of transverse densities
 - Dispersion representation of densities
 Strikman, CW, PRC82 (2010) 042201
 - Large distances \(b \sim 2 \text{ fm} \): Chiral dynamics
 - Intermediate \(b \sim 1 \text{ fm} \): Vector mesons
 Miller, Strikman, CW, PRC84 (2011) 045205
 - Partonic interpretation

- Pion transverse charge density
 - Timelike FF from \(e^+e^- \) data:
 Pointlike \(q\bar{q} \) configurations
 Miller, Strikman, CW, PRD83 (2011) 013006

- Outlook: GPDs, new data

Express pion cloud, vector meson dominance in QCD!

Explore parton–hadron duality in \(t \)–channel kinematics!

Understand spatial structure of nucleon as relativistic system!
Nucleon structure: Parton picture

- QCD vacuum not empty
 - Strong non-perturbative gluon fields
 - Size $\ll 1$ fm. Lattice simulations, analytic models
 - $\bar{q}q$ pair condensate, π as collective excitation
 - Chiral symmetry breaking; Order parameter, Goldstone boson

- Slow–moving nucleon $P \sim \mu_{\text{vac}}$
 - $\langle N | \hat{O} | N \rangle$ from correlation functions
 - No concept of particle content!
 - Cannot separate “constituents” from vacuum fluctuations

- Fast–moving nucleon $P \gg \mu_{\text{vac}}$
 - Closed system: Wave function, x_i, k_{T_i}
 - Longitudinal momentum densities: PDFs
 - Transverse spatial distributions: Form factors, GPDs
 - 2nd quantized operator definitions: Renormalization, scale dependence
 - Expresses low–energy dynamics!
 - “Point of view”
 - High–energy processes take snapshot
Nucleon structure: Transverse densities

- Current matrix element parametrized by invariant form factors
 \[\langle N' | J_\mu | N \rangle \rightarrow F_1(t), F_2(t) \]
 Dirac, Pauli

- Transverse densities \(t = -\Delta_T^2 \)
 Soper 76, Miller 07
 \[F_{1,2}(t) = \int d^2b \, e^{i\Delta_T b} \rho_{1,2}(b) \]
 2D Fourier

 Transverse density of charge and magnetization \(b \) displacement from transverse C.M.

- Proper densities for relativistic systems
 Overlap of wave functions with same particle nr
 Breit frame distributions are not densities

 Spatial representation of relativistic system

- Reduction of quark distributions \(\text{GPDs} \)
 \[\rho_1(b) = \sum_q e_q \int_0^1 dx \left[q(x, b) - \bar{q}(x, b) \right] \]

 Relate elastic FFs to QCD quark/gluon structure
Nucleon structure: Empirical densities

- Empirical transverse densities from spacelike form factor data
 - Experimental and incompleteness errors estimated (Venkat, Arrington, Miller, Zhan 10)
 - Recent low– and high–$|t|$ data incorporated (MAMI: Vanderhaeghen, Walcher 10. JLab Hall A Riordan et al.)
 - Many interesting questions: Neutron, flavor structure, charge vs. magnetization

- Meson exchange picture
 - Current couples to nucleon via hadronic exchange mechanism
 - Relativity, causality: Analyticity, crossing invariance
 - Successful phenomenology: Vector dominance
 - Cf. $N\cdot N$ interaction parametrization Bonn potential
 - Relate to parton picture — quantitatively!
 - VMD expressed in QCD D.o.F
 - New insight into partonic structure
 - Parton–hadron duality in t–channel
Spectral analysis: Dispersion representation

- Dispersion representation of form factor

\[
F_1(t) = \int_0^{-}\frac{dt'}{4m^2_\pi} \frac{\Im F_1(t')}{t' - t - i0} \frac{\pi}{\pi}
\]

Spectral function \(\Im F_1(t') \) describes “process”
current \(\rightarrow \) hadronic states \(\rightarrow N\bar{N} \)

\(\Im F_1(t') \) from form factor fits and theory:
\(\chiPT \) near threshold, dispersion rels, pQCD \(t \to \infty \)

- Transverse density

\[
\rho(b) = \int_0^{-}\frac{dt}{4m^2_\pi} K_0(\sqrt{tb}) \Im F_1(t)
\]

\(K_0 \sim e^{-b\sqrt{t}} \) exponential suppression of large \(t \)

Distance \(b \) selects masses \(\sqrt{t} \sim 1/b \): “Filter”
Cf. Borel transformation in QCD sum rules. Strikman, CW 10

Peripheral \(\rho(b) \) \(\longleftrightarrow \) Low–mass hadronic states

- M

\[
M = \frac{2}{\pi} \rho
\]

\[t = \sqrt{4M^2 - m^2} \]

- \(\pi \pi, \rho, \rho', \ldots \) Isovector
- \(\omega, \phi, K\bar{K}, \ldots \) Isoscalar

Im \(F_1(t) \) =

\(N \)

\(\bar{N} \)

hadronic states

\(b \)

selects masses \(\sqrt{t} \sim 1/b \): “Filter”

Peripheral \(\rho(b) \) \(\longleftrightarrow \) Low–mass hadronic states
Spectral analysis: Isovector charge density

- Isovector spectral function

Near-threshold $\pi\pi$ from chiral dynamics
Universal, model-independent. Subthreshold singularity from N pole. χEFT: Becher, Leutwyler 99; Kubis, Meissner 00; Kaiser 03

ρ region from dispersion analysis
πN and $\pi\pi$ phase shifts. Höhler 76; Belushkin et al. 05

High-mass continuum from form factor fits
Belushkin, Hammer, Meissner 07. Update Lorenz et al. 12

- Spectral analysis of isovector density

Near-threshold $\pi\pi$ relevant only at $b > 2$ fm
Surprisingly large distances!
Peripheral density from χEFT. Strikman, CW 10; Granados, CW 13

Intermediate $b = 0.5 - 1.5$ fm dominated by ρ, only $\sim 10\%$ correction from higher states
"Vector dominance" quantified in partonic picture

Higher-mass states relevant only at $b < 0.3$ fm
Average out at larger distances
Spectral analysis: Isovector charge density

Radial charge density $2\pi b \rho^V(b)$
Area under curve gives total charge

Isovector transverse charge density at $b \sim 1$ fm is dual to ρ meson exchange with 90% accuracy!
Spectral analysis: Isoscalar charge density

- **Isoscalar spectral function**

 ω exhausts strength below 1 GeV2
 Non-resonant 3π negligible

 Large negative strength above 1 GeV2,
 dynamical origin unclear
 ϕNN coupling $\leftrightarrow s\bar{s}$ content of nucleon

 High–mass continuum from form factor fits
 Belushkin, Hammer, Meissner 07

- **Spectral analysis of isoscalar density**
 Miller, Strikman, CW 11

 ω dominates at $b > 1.5$ fm
 Fit uncertainty in ωNN coupling $\pm 15\%$

 Large cancellations between ω and higher–mass states at $b = 0.5 - 1$ fm

- **Impact of future form factor data**

 Sensitivity to ωNN coupling broadly distributed at spacelike $|t| \lesssim 1$ GeV2
 Does not require measurements at extremely small $|t|$
• Spectral analysis of neutron density

\[\omega - \rho \] alone gives large positive density!

Substantially reduced by higher–mass states in isoscalar spectral function

Neutron form factor measurements can help to determine isoscalar spectral function

\[\rightarrow \phi NN \] coupling, \(s\bar{s} \) in nucleon
Parton interpretation: Quark densities

- Transverse densities of u and d quarks
 Constructed from FF fits. Small b from JLab Hall A Cates et al. 11
 \[\rho_u(b) = \int_0^1 dx \left[u(x, b) - \bar{u}(x, b) \right] \text{ etc.} \]

- Ratio ρ_d/ρ_u for interpretation
 Large b: $\rho_d/\rho_u \to -1$
 Peripheral πN configs in nucleon WF
 Equivalence of invariant and light-cone χPT: Strikman, CW 10
 Same configs govern chiral contributions to PDFs: Strikman, CW 09
 Many interesting theoretical issues!

Intermediate $b \sim 0.3 - 1$ fm: $\rho_d/\rho_u \sim 1/2$
Mean-field motion of valence quarks
Cf. Quark model, large-N_c QCD

Small $b < 0.3$ fm: $\rho_d/\rho_u < 1/2$
Extreme $x \to 1$ configs where $u \gg d$
PDF fits, pQCD counting

- Model-independent insights into partonic structure!
Parton interpretation: Duality

Partonic structure

Isovector
- Peripheral πN
- Mean-field
- Mean-field + large-x

Hadronic exchange
- Near-threshold $\pi\pi$
- ρ
- $\rho + \text{high-mass}$

Disks indicate “region of dominance” of the various configurations/exchanges

- Parton–hadron duality explored locally in transverse space
- Model-independent, quantitative statements
- Benchmarks for dynamical model calculations
Parton interpretation: Much more information

- Pauli FF

 Transverse distribution of spin–dependent current
 \[\rho_2(b) = \sum_q e_q \int_0^1 dx \left[e_q(x, b) - e_{\bar{q}}(x, b) \right] \]

 nucleon helicity–flip GPD

- Axial and pseudoscalar FFs

 Transverse distribution of axial and pseudoscalar charge
 \[\rho_A(b) = \sum_q \int_0^1 dx \left[\Delta q(x, b) + \Delta \bar{q}(x, b) \right] \]

 spin–dependent parton densities

 - Pseudoscalar FF has \(\pi \) pole: Longest–range component of nucleon structure

- Energy–momentum tensor FFs

 Transverse distribution of momentum and matter

 Second moments of GPDS \[\int_0^1 dx \, x \left[q(x, b) + \bar{q}(x, b) \right] \] etc.

 \(C \)–even exchange: \(\sigma \)

- \(x \)–dependent form factors: GPDs

 Unify concepts of parton density and elastic FFs

 Probed in high–\(Q^2 \), low–\(t \) exclusive processes:
 Deeply virtual Compton scattering \(N(e, e'\gamma)N' \), meson production \(N(e, e'M)N' \)

 HERMES, COMPASS, JLab. Extensive program planned with JLab 12 GeV and future EIC. Analysis challenging!
Pion: Transverse density from timelike data

- **Spacelike FF poorly known at** $|t| > 1 \text{GeV}^2$

 Electroproduction on nucleon, model-dependent. JLab Hall C 6/12 GeV

- **Timelike FF from** e^+e^- annihilation

 $|F_\pi|^2$ from cross secn, phase from models/theory

 Resonance–based parametrization from fit to data

 Bruch, Khodjamirian, Kuhn 04. CLEO 05 results not included.

- **Transverse density from dispersion integral**

 Miller, Strikman, CW 10

 \[
 \rho_\pi(b) = \int_0^{\infty} \frac{dt}{2\pi^2} K_0(\sqrt{tb}) \text{Im } F_\pi(t)
 \]

 Fully calculable, precise, error estimates

 Singular charge density at center of pion
Pion: Parton interpretation

- Singular charge density at center due to point-like configurations in pion wave function.

 Configs of size $r \ll R_\pi$, mostly elementary $q\bar{q}$

Observable in other high-momentum transfer processes: $\gamma^* \gamma \rightarrow \pi^0$, $\pi + A \rightarrow 2$ jets, . . .

Universal property

Large-size configurations with $x \rightarrow 1$ at scales $Q^2 > 1 \text{ GeV}^2$ cannot account for empirical charge density at $b \rightarrow 0$

Miller, Strikman, CW 10

Detailed modeling with light-cone wave functions in progress

- 2D image of fast-moving pion

First accurate transverse image based on data!
Summary: Theory

• Transverse densities connect partonic structure with hadronic spectrum
 Fully quantitative, consistent with QCD
 New approach to quark–hadron duality in t–channel

• Dispersion integral for $\rho(b)$ samples spectral function at masses $\sqrt{t} \sim 1/b$
 Systematic study of exchange mechanisms
 Mathematical properties: Asymptotic behavior, error analysis, . . .

• Nucleon charge density at intermediate distances $b = 0.5 - 1.5$ fm
 governed by vector mesons
 Chiral component relevant only at $b > 2$ fm
 Origin of isoscalar strength beyond ω still unclear

• Pion charge density from timelike form factor data
 Precise 2D image with controlled accuracy
 Singular charge density at center attributed to pointlike $q\bar{q}$ configurations
Summary: Experiment

- Can the chiral component be studied experimentally?

 Effect on low-\(Q^2\) form factors? Lorenz et al. 12

 CLAS/PRIMEX 12 GeV measurement at \(10^{-4} - 10^{-2}\) GeV\(^2\) PR12-11-106 Gasparian et al.

 Test fundamental \(\chi\)PT predictions!

 Affects extrapolation to \(Q^2 \rightarrow 0\)

- Dispersion fits to form factors provide much more information than \(Q^2\)-dependent parametrizations

 Should be updated with expected JLab 12 GeV data!

 Analyticity essential for studying nucleon's periphery

- Neutron form factor data crucial for determining isoscalar spectral function

 Impact on \(s\bar{s}\) content of nucleon