Partonic structure meets meson exchange: Exploring duality with transverse densities

C. Weiss (JLab), Bonn U. HISKP Colloquium, 04–Jul–13

Express pion cloud, vector meson dominance in QCD!

Explore parton-hadron duality in t-channel kinematics!

Understand spatial structure of nucleon as relativistic system!

- Nucleon structure in QCD
 - Why parton picture

Transverse densities from elastic FFs

• Spectral analysis of transverse densities

Dispersion representation of densities Strikman, CW, PRC82 (2010) 042201

Large distances $b \sim 2 \, {\rm fm}$: Chiral dynamics

Intermediate $b\sim 1~{\rm fm}:$ Vector mesons Miller, Strikman, CW, PRC84 (2011) 045205

Partonic interpretation

• Pion transverse charge density

Timelike FF from e^+e^- data: Pointlike $q\bar{q}$ configurations Miller, Strikman, CW, PRD83 (2011) 013006

• Outlook: GPDs, new data

Nucleon structure: Parton picture

Strong non-perturbative gluon fields Size $\ll 1 \, {\rm fm}$. Lattice simulations, analytic models

 $\bar{q}q$ pair condensate, π as collective excitation $_{\rm Chiral \ symmetry \ breaking; \ Order \ parameter, \ Goldstone \ boson}$

• Slow-moving nucleon $P \sim \mu_{\rm vac}$ $\langle N | \hat{O} | N \rangle$ from correlation functions

> No concept of particle content! Cannot separate "constituents" from vacuum fluctuations

• Fast-moving nucleon $P \gg \mu_{\rm vac}$

Closed system: Wave function, Gribov, Feynman variable particle number, $x_i, \ \boldsymbol{k}_{Ti}$

Longitudinal momentum densities: PDFs Transverse spatial distributions: Form factors, GPDs 2nd quantized operator definitions: Renormalization, scale dependence

Expresses low-energy dynamics! "Point of view"

High-energy processes take snapshot

Nucleon structure: Transverse densities

• Current matrix element parametrized by invariant form factors

 $\langle N'|J_{\mu}|N
angle \ o \ F_1(t), F_2(t)$ Dirac, Pauli

• Transverse densities $t=-\Delta_T^2$ Soper 76, Miller 07 $F_{1,2}(t)~=~\int\!d^2b~e^{i\Delta_{
m T}b}~
ho_{1,2}(b)$ 2D Fourier

Transverse density of charge and magnetization \boldsymbol{b} displacement from transverse C.M.

• Proper densities for relativistic systems

Overlap of wave functions with same particle nr Breit frame distributions are not densities

Spatial representation of relativistic system

• Reduction of quark distributions GPDs $\rho_1(b) = \sum_q e_q \int_0^1 dx \left[q(x,b) - \bar{q}(x,b)\right]$

Nucleon structure: Empirical densities

• Empirical transverse densities from spacelike form factor data

Experimental and incompleteness errors estimated Venkat, Arrington, Miller, Zhan 10

Recent low- and high-|t| data incorporated MAMI: Vanderhaeghen, Walcher 10. JLab Hall A Riordan et al.

Many interesting questions: Neutron, flavor structure, charge vs. magnetization

• Meson exchange picture

Current couples to nucleon via hadronic exchange mechanism Relativity, causality: Analyticity, crossing invariance

Sucessful phenomenology: Vector dominance Cf. NN interaction parametrization Bonn potential

Relate to parton picture — quantitatively!

VMD expressed in QCD D.o.F New insight into partonic structure Parton-hadron duality in *t*-channel

Spectral analysis: Dispersion representation

$$F_1(t) = \int_{4m_{\pi}^2}^{\infty} \frac{dt'}{t' - t - i0} \frac{\operatorname{Im} F_1(t')}{\pi}$$

Spectral function ${\rm Im}\ F_1(t')$ describes "process" current \rightarrow hadronic states $\rightarrow N\bar{N}$

Im $F_1(t')$ from form factor fits and theory: χ PT near threshold, dispersion rels, pQCD $t \to \infty$

• Transverse density

$$\rho(b) = \int_{4m_{\pi}^2}^{\infty} \frac{dt}{2\pi^2} K_0(\sqrt{t}b) \operatorname{Im} F_1(t)$$

 $K_0 \sim e^{-b\sqrt{t}}$ exponential suppression of large t

Distance b selects masses $\sqrt{t}\sim 1/b$: "Filter" Cf. Borel transformation in QCD sum rules. Strikman, CW 10

Peripheral $\rho(b) \longleftrightarrow$ Low-mass hadronic states

$$egin{array}{lsovector:} & \pi\pi,\
ho,\
ho', \ egin{array}{lsoscalar:} & \omega,\ \phi,\ Kar{K} \end{array}$$

, . . .

Spectral analysis: Isovector charge density

• Isovector spectral function

Near-threshold $\pi\pi$ from chiral dynamics Universal, model-independent. Subthreshold singularity from N pole. χ EFT: Becher, Leutwyler 99; Kubis, Meissner 00; Kaiser 03

 ρ region from dispersion analysis πN and $\pi \pi$ phase shifts. Höhler 76; Belushkin et al. 05

High-mass continuum from form factor fits Belushkin, Hammer, Meissner 07. Update Lorenz et al. 12

• Spectral analysis of isovector density

Near-threshold $\pi\pi$ relevant only at b > 2 fmSurprisingly large distances! Peripheral density from χ EFT. Strikman, CW 10; Granados, CW 13

Intermediate $b=0.5-1.5\,{\rm fm}$ dominated by ρ , only $\sim 10\%$ correction from higher states "Vector dominance" quantified in partonic picture

Higher-mass states relevant only at $b < 0.3 \ {\rm fm}$ $_{\rm Average \ out \ at \ larger \ distances}$

Spectral analysis: Isovector charge density

Radial charge density $2\pi b \rho^V(b)$ Area under curve gives total charge

Isovector transverse charge density at $b\sim 1~{\rm fm}$ is dual to ρ meson exchange with 90% accuracy!

Spectral analysis: Isoscalar charge density

• Isoscalar spectral function

 ω exhausts strength below $1~GeV^2$ Non-resonant 3π negligible

Large negative strength above 1 GeV^2 , dynamical origin unclear ϕNN coupling $\leftrightarrow s\bar{s}$ content of nucleon

High-mass continuum from form factor fits Belushkin, Hammer, Meissner 07

• Spectral analysis of isoscalar density Miller, Strikman, CW 11

 ω dominates at $b>1.5\,{\rm fm}$ Fit uncertainty in ωNN coupling $\pm 15\%$

Large cancellations between ω and higher–mass states at $b=0.5-1\,{\rm fm}$

• Impact of future form factor data

Sensitivity to ωNN coupling broadly distributed at spacelike $|t| \lesssim 1 \ {\rm GeV}^2$. Does not require measurements at extemely small |t|

Spectral analysis: Neutron charge density

• Spectral analysis of neutron density

 $\omega-\rho$ alone gives large positive density!

Substantially reduced by higher-mass states in isoscalar spectral function

Neutron form factor measurements can help to determine isoscalar spectral function $\rightarrow \phi NN$ coupling, $s\bar{s}$ in nucleon

Parton interpretation: Quark densities

extreme $x \rightarrow 1$ configurations

mean-field motion of valence quarks

peripheral πn configurations

• Transverse densities of u and d quarks Constructed from FF fits. Small b from JLab Hall A Cates et al. 11

$$\phi_u(b) = \int_0^1 dx \, [u(x,b) - \bar{u}(x,b)] \, \text{etc.}$$

• Ratio ρ_d/ρ_u for interpretation

Large b: $\rho_d / \rho_u \rightarrow -1$ Peripheral πN configs in nucleon WF Equivalence of invariant and light-cone χ PT: Strikman, CW 10 Same configs govern chiral contributions to PDFs: Strikman, CW 09 Many interesting theoretical issues!

 $\begin{array}{ll} \mbox{Small } b < 0.3 \mbox{ fm:} & \rho_d/\rho_u < 1/2 \\ \mbox{Extreme } x \rightarrow 1 \mbox{ configs where } u \gg d \\ \mbox{PDF fits, pQCD counting} \end{array}$

• Model-independent insights into partonic structure!

Parton interpretation: Duality

• Parton-hadron duality explored locally in transverse space

Model-independent, quantitative statements

Benchmarks for dynamical model calculations

Disks indicate "region of dominance" of the various configurations/exchanges

Parton interpretation: Much more information

• Pauli FF

Transverse distribution of spin-dependent current

 $ho_2(b) = \sum_q e_q \int_0^1 dx \; [e_q(x,b) - e_{\bar{q}}(x,b)]$ nucleon helicity-flip GPD

• Axial and pseudoscalar FFs

Transverse distribution of axial and pseudoscalar charge

 $\rho_A(b) = \sum_q \int_0^1 dx \left[\Delta q(x, b) + \Delta \bar{q}(x, b) \right]$ spin-dependent parton densities

- Pseudoscalar FF has π pole: Longest–range component of nucleon structure
- Energy-momentum tensor FFs

Transverse distribution of momentum and matter Second moments of GPDS $\int_0^1 dx \ x \ [q(x, b) + \bar{q}(x, b)]$ etc. *C*-even exchange: σ

• *x*-dependent form factors: GPDs

Unify concepts of parton density and elastic FFs

Probed in high- Q^2 , low-t exclusive processes: Deeply virtual Compton scattering $N(e, e'\gamma)N'$, meson production N(e, e'M)N'HERMES, COMPASS, JLab. Extensive program planned with JLab 12 GeV and future EIC. Analysis challenging!

Pion: Transverse density from timelike data

- Spacelike FF poorly known at $|t| > 1 \,{
 m GeV}^2$ Electroproduction on nucleon, model-dependent. JLab Hall C 6/12 GeV
- Timelike FF from e^+e^- annihilation

 $|F_{\pi}|^2$ from cross secn, phase from models/theory

Resonance–based parametrization from fit to data Bruch, Khodjamirian, Kuhn 04. CLEO 05 results not included.

• Transverse density from dispersion integral Miller, Strikman, CW 10

$$\rho_{\pi}(b) = \int_{4m_{\pi}^2}^{\infty} \frac{dt}{2\pi^2} K_0(\sqrt{t}b) \operatorname{Im} F_{\pi}(t)$$

Fully calculable, precise, error estimates Singular charge density at center of pion

Pion: Parton interpretation

• Singular charge density at center due to point-like configurations in pion wave functr

Configs of size $r \ll R_\pi$, mostly elementary q ar q

Observable in other high-momentum transfer processes: $\gamma^* \gamma \rightarrow \pi^0, \ \pi + A \rightarrow 2 \text{ jets}, \ldots$ Universal property

Large-size configurations with $x\to 1$ at scales $Q^2>1\,{\rm GeV}^2$ cannot account for empirical charge density at $b\to 0$ $_{\rm Miller,\ Strikman,\ CW\ 10}$

Detailed modeling with light-cone wave functions in progress

• 2D image of fast-moving pion

First accurate transverse image based on data!

Summary: Theory

• Transverse densities connect partonic structure with hadronic spectrum Fully quantitative, consistent with QCD

New approach to quark-hadron duality in t-channel

- Dispersion integral for $\rho(b)$ samples spectral function at masses $\sqrt{t} \sim 1/b$ Systematic study of exchange mechanisms Mathematical properties: Asymptotic behavior, error analysis, ...
- Nucleon charge density at intermediate distances $b=0.5-1.5\,{\rm fm}$ governed by vector mesons

Chiral component relevant only at $b>2\,{\rm fm}$

Origin of isoscalar strength beyond ω still unclear

• Pion charge density from timelike form factor data

Precise 2D image with controlled accuracy Singular charge density at center attributed to pointlike $q\bar{q}$ configurations

Summary: Experiment

• Can the chiral component be studied experimentally?

Effect on low- Q^2 form factors? Lorenz et al. 12 CLAS/PRIMEX 12 GeV measurement at $10^{-4} - 10^{-2} \,\text{GeV}^2$ PR12-11-106 Gasparian et al. Test fundamental χ PT predictions! Affects extrapolation to $Q^2 \rightarrow 0$

- Dispersion fits to form factors provide much more information than $Q^2{\rm -}{\rm dependent}$ parametrizations

Should be updated with expected JLab 12 GeV data!

Analyticity essential for studying nucleon's periphery

• Neutron form factor data crucial for determining isoscalar spectral function Impact on $s\bar{s}$ content of nucleon