Nuclear physics at the energy-luminosity frontier: From JLab 12 GeV to an Electron-Ion Collider

L. Elouadrhiri, C. Weiss (Organizers), APS DNP Session 1WA, 23–Oct–13

This workshop
Physics at “energy–luminosity frontier”
Complementarity JLab 12 GeV – EIC
Status and prospects of EIC

- Scattering energy
 Resolution scale $1/Q$
 Target configurations, types of constituents

- Luminosity
 Rare processes, exceptional configurations
 Multi-variable final states
 Polarization effects
Physics topics

I) Three–dimensional structure of nucleon in QCD

- Quark/gluon number densities
- Spin and orbital motion
- Spatial distributions
- Multiparticle correlations

Xiangdong Ji

II) QCD in nuclei – short distances, high energies

- Short–range structure and NN interaction in QCD
- Modification of nucleon’s quark/gluon structure
- Collective effects: Shadowing, diffraction
- High gluon densities and saturation

M. Sargsian

III) Emergence of hadrons from color charge

- Parton fragmentation, color neutralization, hadron formation
- Interaction of color charge with matter

W. Brooks

Natural complementarity/evolution JLab 12 GeV \rightarrow EIC

Other topics: Electroweak physics, hadron spectroscopy, in DNP sessions!

Other contexts for EIC physics: RHIC Spin, HERA ep, RHIC/LHC heavy–ion, not excluded!
Physics: 3D nucleon structure in QCD

- Relativistic many-body system

 Particle number changes with energy and resolution scale!

 JLab 12 GeV: Valence quark component, incl. $x \to 1$

 EIC: Sea quarks, gluons, scale dependence

- Physical characteristics

 Quark/gluon number densities, incl. spin and flavor dependence PDFs

 Transverse spatial distributions GPDs

 Orbital motion TMDs

 Multiparticle correlations GPDs

 Reveal structure in unprecedented detail!
Physics: QCD in nuclei

- Small–size probe of color fields
 Color fields change with energy and probe size!

- JLab 12: Coherence length short
 Short–range correlations, QCD origin of NN interaction
 Quark structure of bound nucleon

- EIC: Wide range of probe size and coherence length
 Collective color fields in nuclei: Shadowing, diffraction, transparency
 Nuclear sea quarks and gluons
 High gluon densities, saturation

Explore region of new QCD phenomena!
Facilities: JLab 12 GeV

- CEBAF “race track” accelerator with linacs + arcs

 Uses unique superconducting RF technology

 Extensible to max. 24 GeV

- Experimental halls

 A, C Magnetic spectrometers

 B Large–acceptance detector CLAS

- JLab 12 GeV Upgrade

 Double beam energy $6 \rightarrow 12$ GeV

 Largely complete, accelerator to be commissioned

 Add Hall D: γ beam, GlueX detector

 Hall construction finished, detector assembly on-going

 New/upgraded detectors in existing halls:

 CLAS12 in Hall B, SHMS in Hall C

 Assembly on-going

 DOE project (CD0 2004, CD3 2008)

 Total cost $\sim 300M$

CW beam $\sim 100 \mu A$

Energy before upgrade 6 GeV

Accelerator operating since 1994
Facilities: Electron–Ion Collider

- **BNL linac–ring design eRHIC**
 RHIC proton/ion beam up to 325 GeV
 5–20 (30) GeV electrons from linac in tunnel staged
 Luminosity $\sim 10^{34}(10^{33})$ cm$^{-2}$s$^{-1}$ over wide range
 Re-use RHIC detectors? PHENIX, STAR

- **JLab ring–ring design MEIC/ELIC**
 11 GeV CEBAF as injector continued fixed-target op
 Medium–energy: 1 km ring, 3–11 on 60/96 GeV
 High–energy: 2.5 km ring, 3–11 on 250 GeV
 Luminosity $\sim 10^{34}$ over wide range
 Figure–8 for polarization transport, up to four IP’s
 Polarized deuteron beam possible

- **Related proposals**
 CERN LHeC: 20–150 GeV on 7 TeV ep unpol
 Ring–ring and linac–ring discussed, $L \sim 10^{33}$

EIC@China project in Lanzhou
Design targets similar to JLab MEIC

GSI ENC: 3.3 GeV on 15 GeV ring–ring
using FAIR HESR, $L \sim 10^{32}$ PANDA detector

Convergence in design parameters, "staging."
Different technological challenges!

First eA collider, first polarized!