High-*t* form factors and **short**-range nucleon structure

C. Weiss (JLab), Hall A SBS Meeting, JLab, 4–Jun–13

A) Physics interpretation of high-t elastic form factors: Model-indep., quantitative! Transverse densities, configurations in WF

B) Connection with $x \to 1$ parton densities

- High-t form factors in QCD

 Partonic/light-front description
 Transverse densities
 Small-size vs. end-point configurations
- Pion form factor Transverse density from $e^+e^- \rightarrow \pi\pi$ Small-size configurations Non-pert. interactions from dynamical χ SB
- Nucleon form factors

Transverse densities Small-size vs. end-point configurations? Non-perturbative interactions? Connection with large-x PDFs

Form factors: Parton picture

Hadron resolved in pointlike constituents with momentum fraction x_i , transv. position r_i

 Δ transverse, current cannot produce pairs

Wave function description Subtle: Scale dependence, UV divergences, renormalization. . .

Quantum-mechanical superposition: Configs with different particle number, spatial size

• Transverse charge/current density

$$\begin{split} F_{1,2}(t) &= \int d^2 b \ e^{i \Delta b} \ \rho_{1,2}(b) \quad \text{2D Fourier} \\ \rho_{1,2}(b) &= \sum_{\text{configs}} \int dx \ \psi^*(x, \boldsymbol{r}, ..) \psi(x, \boldsymbol{r}, ..) \end{split}$$

Cumulative charge/current of constituents at transverse position *b*. Directly accessible from data!

• Selection of configurations

Large $|t| \longleftrightarrow \text{Small } b$ Singularity?

What configs generate density at small b?

Form factors: Configurations

$$\xrightarrow{3-\text{axis}} p^+ = E + p^3$$

 Two types of configurations contribute to small—b density

$x \sim \frac{1}{3}$	size $\ll R$	small-size	mostly qqq
$x \to 1$	size $\sim R$	end-point	multiparticle

• Basic questions

What is their relative importance? Probability of end-point configurations constrained by quark PDF at $x \to 1$

How do they arise dynamically? Perturbative vs. non-perturbative interactions?

• Rest frame picture

Can be rigorously discussed in light—front quantization Intuition from non-relativistic systems: Angular momentum, orbital motion, etc.

Pion: Transverse density

• Pion form factor $F_{\pi}(t)$

Spacelike FF from electroproduction $ep \to e' \pi^+ n$ $\,$ JLab Hall C 6/12 GeV

Timelike FF from exclusive annihilation $e^+e^- \to \pi^+\pi^-~$ CLEO, Belle, Babar, . . .

• Transverse density $\rho_{\pi}(b)$

Calculated from dispersion integral over timelike FF from e^+e^- data $_{\rm Miller,\ Strikman,\ CW\ 11}$

$$ho_{\pi}(b) = \int_{4m_{\pi}^2}^{\infty} rac{dt}{2\pi^2} K_0(\sqrt{t}b) \, \mathrm{Im} \, F_{\pi}(t)$$

Model-independent, controlled accuracy

High density at center $b \rightarrow 0$

Pion: Small-size configurations

- Is density in center due to small-size or end-point configurations?
- Model-independent assessment Miller, Strikman, CW 10

Probability of end-point configs constrained by quark density in pion at $x \rightarrow 1$ πA Drell-Yan data. PDF fits Glück, Reya, Schienbein 99. Subtle: Separate leading twist – higher twist in DY

Large-size configs account only for small part of empirical transverse density

Density in center of pion mostly from small-size configurations!

Pion: Dynamical origin of small–size configs

• Perturbative QCD interactions

High–momentum component of wave function built up by pQCD interactions

"Soft" wave function $k_T \sim R^{-1}$ as source $\Phi(x_i|\mu^2) = \int_{\mu^2} d^2 k_{Ti} \; \psi(x_i, {m k}_{Ti})$ distribution amplitude

Responsible for leading $|t| \rightarrow \infty$ asymptotics of pion FF Efremov, Radyushkin 77+; Brodsky Lepage 80

Dynamical chiral symmetry breaking

Non-perturbative gluon fields of size $\rho \sim$ 0.3 fm flip quark chirality

 $q\bar{q}$ condensate, dynamical mass generation Lattice QCD, instanton vacuum, Dyson–Schwinger eqs.

Pion as collective excitation

Non-perturbative small-size configurations in pion light-cone wave function, orbital angular momentum $L=1_{\rm Schweitzer,\ Strikman\ CW\ 12}$

Nucleon: More complex system

• Transverse densities from FF data

Errors estimated for $b \ll 1 {\rm fm}$ Miller, Venkat 11. Incompleteness and experimental error

Empirical proton density does not rise at $b \rightarrow 0,$ contrast to pion

• Complex system, more possibilities

Small–size qqq configurations require multiple or 3–body interactions

Diquark–like configurations "between" small–size and end–point

Mean-field picture successful at $x \sim 1/3$, cf. quark model, chiral soliton $N_c \rightarrow \infty$. End-point configs require dynamical correlations. . . what is their nature?

• Spin and orbital angular momentum

 Q^2F_2/F_1 suggests important role of orbital angular momentum Hall A 6 GeV 00/02. Belitsky, Ji, Yuan 03

Nucleon: End-point configurations

- Role of end-point configurations?
- Flavor-separated densities $\rho_{u,d}(b)$

Large b from dispersion fit to FF data: Correct analytic structure essential in Fourier transform Belushkin, Hammer, Meissner 06

Small b < 0.3 fm from new flavor–separated FF parametrization Cates, de Jager, Riordan, Wojtsekhowski 11

• Interpretation of ratio $ho_d/
ho_u(b)$

 $\rho_d/\rho_u \to -1$ for $b \gg 2$ fm: Pion cloud, rigorous chiral prediction $_{\rm Strikman,\ CW\ 10;\ Granados,\ CW\ 13}$

 $\rho_d/\rho_u \sim 1/2$ for 0.2 < b < 2 fm: Mean field picture of valence quark bound state $\,$ Miller, Strikman, CW 11 $\,$

 $\rho_d/\rho_u < 1/2$ for b < 0.2 fm: Consistent with end-point configs: $d(x)/u(x) \ll 1/2$ for $x \rightarrow 1$ cf. PDF fits, particularly CJ Accardi et al. 13

Hint only, more quantitative analysis needed!

Nucleon: Theoretical approaches

• QCD light—cone sum rules Balitsky, Braun, Kolesnichenko 89; Braun et al. 02+

> pQCD-generated small-size configurations give leading asymptotic contribution Distribution amplitudes calculable in Lattice QCD

End-point contributions reformulated as higher twist Can results be explained/reproduced in simple terms?

• Soft-collinear effective theory SCET Form factors: Kivel, Vanerhaeghen 10+, incl. two-photon exchange

Process-driven classification of quark/gluon modes

Soft spectator rescattering for $Q^2 \gg Q\Lambda \gg \Lambda^2$

• Light-front phenomenology Suggestions only!

Must include correlations in LCWF $\chi {\rm SB}$ interaction $\rho \sim$ 0.2 fm?

Analyze jointly high-t FFs and large-x PDFs

Include other high-t processes: WACS

"Mean field"

Correlation

Summary

• Physics interpretation of FFs based on partonic/light-front picture

Transverse densities directly accessible from data

Selection of configurations in wave function provides intuitive understanding

Rigorous formulation: Scale dependence, renormalization \rightarrow LC sum rules, SCET

• Small-size configurations in pion

Seen in model-independent analysis Likely of non-perturbative origin: Dynamical χ SB

• Nucleon complex

Likely "mix" of configs, no single type dominant at $|t| \sim 10 \,\text{GeV}^2$ Evidence for end-point configs in ratio $\rho_d/\rho_u(b)$ at small bAnalyze high-t FFs together with large-x PDFs Other processes: WACS, high-t meson production