Space-time picture of chiral dynamics with nucleons

C. Weiss (JLab), Nuclear Dynamics with EFTs, Bochum, 01–Jul–13

Spatial representation of nucleon: $b\sim 1/M_{\pi}$ as new parameter for chiral expansion!

New insights into chiral EFT: Heavy-baryon expansion, chiral vs. non-chiral contributions

Connection with QCD structure: GPDs, peripheral ep/pp processes

- Parton picture of nucleon structure Fields vs. particles Transverse densities from elastic FFs
- Peripheral transverse densities Dispersion representation Peripheral densities from chiral EFT Chiral vs. non-chiral component Δ isobar and large- N_c QCD
- Time-ordered formulation of chiral EFT Chiral πN light-cone wave functions Particle picture of chiral processes
- Connections and extensions
 GPDs and peripheral quark/gluon structure
 Nuclear structure in high–energy processes

Nucleon structure: Parton picture

Strong non-perturbative gluon fields of size $\ll 1~fm~\leftarrow$ Lattice QCD, analytic models

Chiral symmetry breaking: $\bar{q}q$ pair condensate, π as collective excitation

• Slow-moving nucleon $P \sim \mu_{\rm vac}$ $\langle N | J_{\mu} | N \rangle$ from Euclidean correlation functns

> No concept of particle content! Cannot separate "constituents" from vacuum fluctuations

• Fast-moving nucleon $P \gg \mu_{\rm vac}$

Closed system: Wave function, Gribov, Feynman variable particle number, x_i , k_{Ti}

Physical properties:PDFsLongitudinal momentum densitiesPDFsTransverse distributions \rightarrow Form factors, GPDsQCD operator definitions:Renormalization, scale dependence

Alt. view: Observer moves with velocity $v \to 1$ Light–front quantization, time $x^+ = x^0 + x^3$

Nucleon structure: Transverse densities

• Current matrix element parametrized by invariant form factors

$$\langle N'|J_{\mu}|N
angle \, o \, F_1(t), F_2(t)$$
 Dirac, Pauli

• Transverse densities $t = -\Delta_T^2$ Soper 76, Miller 07 $F_{1,2}(t) = \int d^2 b \ e^{i\Delta_T b} \ \rho_{1,2}(b)$ 2D Fourier $\rho_1(b)$ charge density $\widetilde{\rho}_2(b) = \frac{d}{db} \left[\frac{\rho_2(b)}{2M_N} \right]$ spin-dependent current density

b displacement from transverse C.M.

• Proper densities for relativistic system

Overlap of light–front wave functions. Breit frame distributions not densities.

• Reduction of quark GPDs

$$ho_1(b) = \int dx \, f_{q-ar q}(x,oldsymbol b)$$

Elastic FFs \leftrightarrow QCD structure, high-energy processes

Nucleon structure: Peripheral densities

• Empirical transverse densities from spacelike form factor data

Experimental and incompleteness errors estimated Venkat, Arrington, Miller, Zhan 10

Recent low- and high-|t| data incorporated MAMI: Vanderhaeghen, Walcher 10. JLab Hall A Riordan et al.

Many interesting questions: Neutron, flavor structure, charge vs. magnetization

• Peripheral densities $b = O(M_{\pi}^{-1})$

Governed by chiral dynamics: universal, model-independent, calculable using EFT methods

Theoretical interest: Parametric control, space-time picture of EFT dynamics, chiral vs. non-chiral contributions

Practical interest: Low-|t| form factors, connection w. peripheral quark/gluon structure

Peripheral densities: Dispersion representation

$$F_{1,2}(t) = \int_{4m_{\pi}^2}^{\infty} \frac{dt'}{t' - t - i0} \frac{\operatorname{Im} F_{1,2}(t')}{\pi}$$

Spectral function Im $F_{1,2}(t')$ describes "process" current \rightarrow hadronic states $\rightarrow N\bar{N}$

Unphysical region: Im $F_{1,2}(t')$ from theory, FF fits Höhler et al. 76; Belushkin, Hammer, Meissner 06

• Transverse densities

$$\rho_{1,2}(b) = \int_{4m_{\pi}^2}^{\infty} \frac{dt}{2\pi} K_0(\sqrt{t}b) \frac{\operatorname{Im} F_{1,2}(t)}{\pi}$$

 $K_0 \sim e^{-b\sqrt{t}}$ exponential suppression of large t

Distance b selects masses $\sqrt{t}\sim 1/b$: "Filter" Cf. Borel transformation in QCD sum rules. Strikman, CW 10

Peripheral $\rho(b) \longleftrightarrow$ low-mass hadronic states

Peripheral densities: Spectral function

• Spectral function near threshold

Two-pion exchange with $t - 4M_{\pi}^2 = O(M_{\pi}^2)$

Subthreshold singularity on unphysical sheet from N pole in πN scattering amplitude

Anomalously small scale M_{π}^4/M_N^2

Dominates behavior of spectral function near threshold!

• Parametric regions of distances

 $b \sim M_{\pi}^{-1} \qquad t - 4M_{\pi}^2 \sim M_{\pi}^2 \qquad \text{``chiral''}$ $\sim \frac{M_N^2}{M_{\pi}^3} \qquad \sim \frac{M_{\pi}^4}{M_N^2} \qquad \text{``molecular''}$

Peripheral densities: Chiral component

• Spectral function from relativistic χ EFT Becher, Leutwyler 99; Kubis, Meissner 01; Kaiser 03

Efficient calculation: t-channel cut only, Cutkosky rules, no regularization

Compact analytic expressions

• Chiral component of isovector densities Strikman, CW 10; Granados CW 13

 $\rho_{1,2}^V(b) = e^{-2M\pi b} P_{1,2}(M_N, M_\pi, b)$

Yukawa tail with range $2M_\pi$

Pre-exponential factor varies strongly, exhibits rich structure

Heavy-baryon expansion for $b=O(M_\pi^{-1})$: Convergence limited by subthreshold singularity, but good numerical accuracy $\sim 10\%$ Granados CW 13. Cf. Becher, Leutwyler 99

Molecular region $b = O(M_N^2/M_\pi^3)$: Asymptotic behavior derived explicitly Very large distances ~ several 10 fm. Practical applications?

Peripheral densities: Chiral vs. non-chiral

• At what distances does the chiral component of densities become numerically dominant? Strikman, CW 10

Model higher mass states in spectral function by ρ meson pole Refined estimates w. empirical spectral functions Miller, Strikman, CW 11

Chiral component dominates only at b > 2 fm. Surprisingly large!

Reasons are strength of $\rho,$ suppression of $\pi\pi$ near threshold

• Spatial representation as new way of identifying chiral component

Model-independent, fully relativistic

Impact parameter b objectively defined, observable in exclusive processes \leftrightarrow Breit frame radius

Peripheral densities: Δ isobar

 $\bullet\,$ Two–pion component with intermediate Δ

Large coupling due to spin/isospin

N and Δ degenerate in large– N_c limit of QCD: $M_\Delta-M_N=O(N_c^{-1})$

 Δ contribution to spectral functions and densities calculated in relativistic Rarita–Schwinger formalism $_{\rm Strikman,\ CW\ 10,\ Granados,\ CW\ 13}$

• Peripheral densities in large– N_c limit of QCD

Transverse distances $b = O(M_{\pi}^{-1}) = O(N_{c}^{0})$

 $\begin{array}{ll} \rho_1(N \mbox{ alone}) &= O(N_c^2) & \mbox{ too large!} \\ \rho_1(N + \Delta) &= O(N_c) & \mbox{ correct} \\ \Delta \mbox{ restores proper } N_c \mbox{-scaling of isovector charge density} \end{array}$

 $\rho_2(N + \Delta) = O(N_c^2) = \frac{3}{2}\rho_2(N \text{ alone})$ $\Delta \text{ enhances isovector magnetization density by 3/2}$

Agrees with findings for isovector electric/magnetic radii Cohen, Broniowski 92; Cohen 96

Time-ordered formulation: Wave functions

$$\psi_{\pi N}(y, oldsymbol{r}_T) = \lim_{P o \infty} rac{\langle \pi N | \mathcal{L}_\chi | N
angle}{E_{N\mathrm{f}} + E_\pi - E_{N\mathrm{i}}}$$

$$ho_1^V(b) = \int\limits_0^1 dy \sum_{L=0,1} \psi_{\pi N}^{L*} \psi_{\pi N}^L(y, b/ar y)$$

$$\rho_2^V(b) \qquad \Delta L = 1$$

• Time–ordered formulation of χEFT

Infinite-mom. frame $P \rightarrow \infty$ Light-front time $x^+ = x^0 + x^3 \}$ equivalent!

• Wave function of chiral πN system

Describe transition $N \to N\pi$, calculable from chiral Lagrangian

Universal, frame–independent, also in high–energy processes, \bar{u} – \bar{d}

Pion momentum fraction $y \sim M_\pi/M_N$, parametrically small

Orbital angular momentum L = 0, 1

• Densities as overlap integrals

Contact terms $\delta(y)$ represent high-mass intermediate states in TOPT. Coefficient $(1 - g_A^2)$ reflects "compositeness" of nucleon

Equivalent to invariant formulation Granados, CW 13

⁺ contact term

Time-ordered formulation: Few-body picture

• Light–front time evolution of $\chi {\rm EFT}$

Bare N fluctuates into πN system via $\chi {\rm EFT}$ interaction

Peripheral densities result from charge/current carried by pion at $b=O(M_{\pi})$

Light–front formulation frame–independent: Interpretation in rest frame

"Few-body picture" of chiral nucleon Fully relativistic!

• Explains peripheral densities

Nucleon polarized in y-direction

 $\langle J^+(\boldsymbol{b}) \rangle = \rho_1(b) + (2S^y) \cos \phi \, \tilde{\rho}_2(b) \ge 0$ for current carried by quasi-real pion, therefore $|\tilde{\rho}_2| \le \rho_1$

 $\widetilde{
ho}_2/
ho_1\sim v_\pi$ pion velocity

Outlook: Quark/gluon structure, nuclei

• Peripheral quark/gluon structure of nucleon

Parton densities at $b \sim M_\pi^{-1}$ and $x \sim M_\pi/M_N$

Calculable from $\chi \text{EFT } \pi N$ wave functions and empirical quark/gluon densities in pion Same πN WFs as in transverse charge/current densities!

Experimental probes: x-dependent transverse size, peripheral pion knockout in high-energy ep/pp

• Light–front structure of light nuclei in $\chi {\rm EFT}$

High-energy eA/hA scattering processes sensitive to low-energy nuclear structure

Light-front formulation essential: Factorization, momentum conservation, sum rules

I) Inclusive quark/gluon structure: EMC effect, antishadowing

II) High-energy processes with detected spectators: Neutron structure, nuclear modifications Becomes feasible with medium-energy Electron-Ion Collider

New application of nuclear EFT? Great need for theoretical control

Summary

• Light-front (or partonic) formulation provides concise spatial representation of relativistic system

Elastic FFs reveal transverse densities

Independent of dynamics; can be applied to QCD, $\chi {\sf EFT}$

• Peripheral transverse densities from $\chi {\rm EFT}$

Chiral expansion justified by $b = O(M_{\pi}^{-1})$, new parameter Chiral and non-chiral components identified by spatial size Chiral component dominant only at large $b \gtrsim 2 \text{ fm}$ Inclusion of Δ ensures proper N_c scaling of densities

• Light–front time evolution of $\chi {\rm EFT}$

"Few-body picture" of low-energy chiral nucleon structure Connection with quark/gluon structure, high-energy processes

Light–front nuclear structure new challenge for nuclear χEFT
 High–energy processes with tagged spectators: Great potential, need theoretical control

Supplementary material

Spectral analysis: Isovector charge density

• Empirical isovector spectral function

Near-threshold $\pi\pi$ from chiral dynamics ρ region from $\pi\pi$ phase shifts Höhler 76 High-mass continuum from form factor fits Belushkin, Hammer, Meissner 07

• Spectral analysis of isovector density Strikman, CW 10; Miller, Strikman, CW 11

Near-threshold $\pi\pi$ relevant only at $b>2\,{
m fm}$

Intermediate $b=0.5-1\,{\rm fm}$ dominated by $\rho,$ with $\sim 10\%$ correction from higher masses "Vector dominance" quantified

• Isoscalar density

 ω dominates at $b>1.5\,{\rm fm}.$

Large cancellations between ω and higher–mass states at $b=0.5-1\,{\rm fm}$

Model-independent identification of chiral component, "vector dominance" in QCD

Spectral analysis: Isoscalar charge density

• Isoscalar spectral function

 ω exhausts strength below $1~GeV^2$ Non-resonant 3π negligible

Large negative strength above 1 GeV^2 , dynamical origin unclear ϕNN coupling $\leftrightarrow s\bar{s}$ content of nucleon

High-mass continuum from form factor fits Belushkin, Hammer, Meissner 07

• Spectral analysis of isoscalar density Miller, Strikman, CW 11

 ω dominates at $b>1.5\,{\rm fm}$ Fit uncertainty in ωNN coupling $\pm 15\%$

Large cancellations between ω and higher–mass states at $b=0.5-1\,{\rm fm}$

• Impact of future form factor data

Sensitivity to ωNN coupling broadly distributed at spacelike $|t| \lesssim 1~{\rm GeV}^2$. Does not require measurements at extemely small |t|

Peripheral hard processes

suppressed!

• Hard exclusive process on peripheral pion Strikman, CW PRD69:054012,2004

 $k_\pi^2 \sim M_\pi^2$ quasi-real Requires $x \ll M_\pi/M_N \sim 0.1$

• Kinematics with $p_T(\pi) \gg p_T(N)$ suppresses production on nucleon

 $F_{\pi NN}(t)$ softer than $\text{GPD}_{\pi}(t)$

• Probe gluon GPD in pion at $|t_{\pi}| \sim 1 \,\mathrm{GeV}^2$

Fundamental interest Moments calculable in Lattice QCD

• Requires detection of forward nucleon and moderate— p_T pion Feasible with Electron-Ion Collider EIC

Direct probe of chiral component of nucleon's partonic structure!

Chiral component: Effect on form factors Simple estimates!

Dispersion fit Belushkin, Hammer, Meissner 07 New data from Bates, MAMI, JLab

• Moments of transverse charge density

$$\langle b^2 \rangle = \int d^2 b \ b^2 \rho(b) = 4 F'_1(0)$$

$$\langle b^4 \rangle = 32 F''_1(0)$$

• Contribution of chiral component isovector

$\langle b^2 angle_{ m chiral}$	\approx	$0.2 imes \langle b^2 angle_{ m fit}$	small
$\langle b^4 angle_{ m chiral}$	\approx	$1.5 imes \langle b^2 angle_{ m fit}^2$	sizable

Chiral component should be visible in "unnatural" second and higher derivatives of FF at $Q^2=0$ $_{\rm Can}$ we extract it?

- Analyticity of form factor fit is essential Needs dispersion analysis: Belushkin et al. 07
- Affects extrapolation to $t \rightarrow 0$ CLAS/PRIMEX 12 GeV experiment at $Q^2 = 10^{-4} - 10^{-2} \text{GeV}^2$ PR12-11-106 Gasparian et al.