Space-time picture of chiral dynamics with nucleons

C. Weiss (JLab), Nuclear Dynamics with EFTs, Bochum, 01–Jul–13

- Parton picture of nucleon structure
 Fields vs. particles
 Transverse densities from elastic FFs

- Peripheral transverse densities
 Dispersion representation
 Peripheral densities from chiral EFT
 Chiral vs. non–chiral component
 Δ isobar and large–N_c QCD

- Time–ordered formulation of chiral EFT
 Chiral πN light–cone wave functions
 Particle picture of chiral processes

- Connections and extensions
 GPDs and peripheral quark/glueon structure
 Nuclear structure in high–energy processes

Spatial representation of nucleon:

$\rho(b)$

charge, magnetization

$\sim 1/M_\pi$

b

chiral component

New insights into chiral EFT:
Heavy–baryon expansion,
chiral vs. non–chiral contributions

Connection with QCD structure:
GPDs, peripheral ep/pp processes
Nucleon structure: Parton picture

- QCD vacuum not empty

 Strong non-perturbative gluon fields of size $\ll 1 \text{ fm}$ → Lattice QCD, analytic models

 Chiral symmetry breaking: $\bar{q}q$ pair condensate, π as collective excitation

- Slow–moving nucleon $P \sim \mu_{\text{vac}}$

 $\langle N| J_\mu |N \rangle$ from Euclidean correlation functions

 No concept of particle content!
 Cannot separate "constituents" from vacuum fluctuations

- Fast–moving nucleon $P \gg \mu_{\text{vac}}$

 Closed system: Wave function, Gribov, Feynman

 variable particle number, $x_i, k_{T,i}$

 Physical properties:
 Longitudinal momentum densities PDFs
 Transverse distributions → Form factors, GPDs

 QCD operator definitions: Renormalization, scale dependence

 Alt. view: Observer moves with velocity $v \to 1$

 Light–front quantization, time $x^+ = x^0 + x^3$
Nucleon structure: Transverse densities

- Current matrix element parametrized by invariant form factors
 \[\langle N'|J_\mu|N \rangle \rightarrow F_1(t), F_2(t) \text{ Dirac, Pauli} \]

- Transverse densities \(t = -\Delta_T^2 \) Soper 76, Miller 07
 \[F_{1,2}(t) = \int d^2b \ e^{i\Delta_T b} \rho_{1,2}(b) \] 2D Fourier
 \[\rho_1(b) \] charge density
 \[\tilde{\rho}_2(b) = \frac{d}{db} \left[\frac{\rho_2(b)}{2M_N} \right] \] spin–dependent current density
 \(b \) displacement from transverse C.M.

- Proper densities for relativistic system
 Overlap of light–front wave functions.
 Breit frame distributions not densities.

- Reduction of quark GPDs
 \[\rho_1(b) = \int dx f_{q-\bar{q}}(x, b) \]
 Elastic FFs \(\leftrightarrow \) QCD structure, high–energy processes
Nucleon structure: Peripheral densities

- Empirical transverse densities from spacelike form factor data

 Experimental and incompleteness errors estimated Venkat, Arrington, Miller, Zhan 10

 Recent low– and high–$|t|$ data incorporated
 MAMI: Vanderhaeghen, Walcher 10. JLab Hall A Riordan et al.

 Many interesting questions: Neutron, flavor structure, charge vs. magnetization

- Peripheral densities $b = O(M_{\pi}^{-1})$

 Governed by chiral dynamics: universal, model–independent, calculable using EFT methods

 Theoretical interest:
 Parametric control, space–time picture of EFT dynamics, chiral vs. non-chiral contributions

 Practical interest:
 Low–$|t|$ form factors, connection w. peripheral quark/gluon structure
Peripheral densities: Dispersion representation

- Dispersion representation of form factor

$$ F_{1,2}(t) = \int_{4m^2_\pi}^{\infty} \frac{dt'}{t' - t - i0} \frac{\text{Im} F_{1,2}(t')}{\pi} $$

Spectral function $\text{Im} F_{1,2}(t')$ describes “process” current \rightarrow hadronic states $\rightarrow N\bar{N}$

Unphysical region: $\text{Im} F_{1,2}(t')$ from theory, FF fits Höhler et al. 76; Belushkin, Hammer, Meissner 06

- Transverse densities

$$ \rho_{1,2}(b) = \int_{4m^2_\pi}^{\infty} \frac{dt}{2\pi} K_0(\sqrt{tb}) \frac{\text{Im} F_{1,2}(t)}{\pi} $$

$$ K_0 \sim e^{-b\sqrt{t}} $$ exponential suppression of large t

Distance b selects masses $\sqrt{t} \sim 1/b$: “Filter”
Cf. Borel transformation in QCD sum rules. Strikman, CW 10

Peripheral $\rho(b) \leftrightarrow$ low–mass hadronic states

- Isovector: π, ρ, ρ', \ldots
- Isoscalar: $\omega, \phi, K\bar{K}, \ldots$
Peripheral densities: Spectral function

- Spectral function near threshold

 \[\frac{M_\pi^4}{M_N^2} \quad \text{two–pion cut} \]

 Two–pion exchange with \(t - 4M_\pi^2 = O(M_\pi^2) \)

 Subthreshold singularity on unphysical sheet from \(N \) pole in \(\pi N \) scattering amplitude

 Anomalously small scale \(\frac{M_\pi^4}{M_N^2} \)

 Dominates behavior of spectral function near threshold!

- Parametric regions of distances

 \[b \sim M_\pi^{-1} \quad t - 4M_\pi^2 \sim M_\pi^2 \quad \text{“chiral”} \]

 \[\sim \frac{M_N^2}{M_\pi^3} \quad \sim \frac{M_\pi^4}{M_N^2} \quad \text{“molecular”} \]
Peripheral densities: Chiral component

- Spectral function from relativistic χEFT

 \begin{align*}
 &\text{Becher, Leutwyler 99; Kubis, Meissner 01; Kaiser 03} \\
 &\text{Efficient calculation: } t\text{–channel cut only,} \\
 &\text{Cutkosky rules, no regularization} \\
 &\text{Compact analytic expressions}
 \end{align*}

- Chiral component of isovector densities

 \begin{align*}
 &\text{Strikman, CW 10; Granados CW 13} \\
 &\rho_{V,1,2}(b) = e^{-2M_\pi b} P_{1,2}(M_N, M_\pi, b) \\
 &\text{Yukawa tail with range } 2M_\pi \\
 &\text{Pre-exponential factor varies strongly,} \\
 &\text{exhibits rich structure} \\
 &\text{Heavy–baryon expansion for } b = O(M_\pi^{-1}): \\
 &\text{Convergence limited by subthreshold singularity,} \\
 &\text{but good numerical accuracy } \sim 10\% \\
 &\text{Granados CW 13. Cf. Becher, Leutwyler 99} \\
 &\text{Molecular region } b = O(M_N^2/M_\pi^3): \\
 &\text{Asymptotic behavior derived explicitly} \\
 &\text{Very large distances } \sim \text{ several 10 fm. Practical applications?}
 \end{align*}
Peripheral densities: Chiral vs. non-chiral

- At what distances does the chiral component of densities become numerically dominant?
 Strikman, CW 10

 Model higher mass states in spectral function by ρ meson pole
 Refined estimates w. empirical spectral functions
 Miller, Strikman, CW 11

 Chiral component dominates only at $b > 2$ fm. Surprisingly large!

 Reasons are strength of ρ, suppression of $\pi\pi$ near threshold

- Spatial representation as new way of identifying chiral component

 Model–independent, fully relativistic
 Impact parameter b objectively defined, observable in exclusive processes
 \leftrightarrow Breit frame radius
Peripheral densities: Δ isobar

- Two–pion component with intermediate Δ

 Large coupling due to spin/isospin

 N and Δ degenerate in large–N_c limit of QCD:
 \[M_\Delta - M_N = O(N^{-1}_c) \]

 Δ contribution to spectral functions and densities calculated in relativistic Rarita–Schwinger formalism
 Strikman, CW 10, Granados, CW 13

- Peripheral densities in large–N_c limit of QCD

 Transverse distances $b = O(M^{-1}_\pi) = O(N^0_c)$

 $\rho_1(N \text{ alone}) = O(N^2_c)$ too large!
 $\rho_1(N + \Delta) = O(N_c)$ correct

 Δ restores proper N_c–scaling of isovector charge density

 $\rho_2(N + \Delta) = O(N^2_c) = \frac{3}{2}\rho_2(N \text{ alone})$

 Δ enhances isovector magnetization density by $3/2$

 Agrees with findings for isovector electric/magnetic radii
 Cohen, Broniowski 92; Cohen 96
Time–ordered formulation: Wave functions

\[\psi_{\pi N}(y, r_T) = \lim_{P \to \infty} \frac{\langle \pi N | \mathcal{L}_\chi | N \rangle}{E_{N_f} + E_{\pi} - E_{N_i}} \]

- **Time–ordered formulation of \(\chi \)EFT**
 Infinite–mom. frame \(P \to \infty \)
 Light–front time \(x^+ = x^0 + x^3 \) equivalent!

- **Wave function of chiral \(\pi N \) system**
 Describe transition \(N \to N\pi \),
 calculable from chiral Lagrangian
 Universal, frame–independent,
 also in high–energy processes, \(\bar{u} - \bar{d} \)
 Pion momentum fraction \(y \sim M_\pi / M_N \),
 parametrically small
 Orbital angular momentum \(L = 0, 1 \)

- **Densities as overlap integrals**
 Contact terms \(\delta(y) \) represent high–mass intermediate states in TOPT.
 Coefficient \((1 - g_A^2) \) reflects “compositeness” of nucleon
 Equivalent to invariant formulation

Granados, CW 13
Time–ordered formulation: Few–body picture

- Light–front time evolution of χEFT

 Bare N fluctuates into πN system via χEFT interaction

 Peripheral densities result from charge/current carried by pion at $b = O(M_\pi)$

 Light–front formulation frame–independent: Interpretation in rest frame

 “Few–body picture” of chiral nucleon
 Fully relativistic!

- Explains peripheral densities

 Nucleon polarized in y–direction

 $\langle J^+(b) \rangle = \rho_1(b) + (2S_y) \cos \phi \tilde{\rho}_2(b) \geq 0$

 for current carried by quasi–real pion, therefore $|\tilde{\rho}_2| \leq \rho_1$

 $\tilde{\rho}_2/\rho_1 \sim v_\pi$ pion velocity
Outlook: Quark/gluon structure, nuclei

- Peripheral quark/gluon structure of nucleon

 Parton densities at $b \sim M_{\pi}^{-1}$ and $x \sim M_{\pi}/M_N$

 Calculable from χEFT πN wave functions and empirical quark/gluon densities in pion

 Same πN WFs as in transverse charge/current densities!

 Experimental probes: x–dependent transverse size, peripheral pion knockout in high–energy ep/pp

- Light–front structure of light nuclei in χEFT

 High–energy eA/hA scattering processes sensitive to low–energy nuclear structure

 Light–front formulation essential: Factorization, momentum conservation, sum rules

 I) Inclusive quark/gluon structure: EMC effect, antishadowing

 II) High–energy processes with detected spectators: Neutron structure, nuclear modifications

 Becomes feasible with medium–energy Electron–Ion Collider

 New application of nuclear EFT? Great need for theoretical control
Summary

- Light–front (or partonic) formulation provides concise spatial representation of relativistic system

 Elastic FFs reveal transverse densities
 Independent of dynamics; can be applied to QCD, χEFT

- Peripheral transverse densities from χEFT

 Chiral expansion justified by $b = O(M_\pi^{-1})$, new parameter
 Chiral and non–chiral components identified by spatial size
 Chiral component dominant only at large $b \gtrsim 2 \text{ fm}$
 Inclusion of Δ ensures proper N_c scaling of densities

- Light–front time evolution of χEFT

 “Few–body picture” of low–energy chiral nucleon structure
 Connection with quark/gluon structure, high–energy processes

- Light–front nuclear structure new challenge for nuclear χEFT

 High–energy processes with tagged spectators: Great potential, need theoretical control
Supplementary material
Spectral analysis: Isovector charge density

- Empirical isovector spectral function

 Near–threshold $\pi\pi$ from chiral dynamics
 ρ region from $\pi\pi$ phase shifts
 Höhler 76
 High–mass continuum from form factor fits
 Belushkin, Hammer, Meissner 07

- Spectral analysis of isovector density
 Strikman, CW 10; Miller, Strikman, CW 11

 Near–threshold $\pi\pi$ relevant only at $b > 2$ fm

 Intermediate $b = 0.5 - 1$ fm dominated by ρ, with $\sim 10\%$ correction from higher masses
 "Vector dominance" quantified

- Isoscalar density

 ω dominates at $b > 1.5$ fm.

 Large cancellations between ω and higher–mass states at $b = 0.5 - 1$ fm

Model–independent identification of chiral component, “vector dominance” in QCD
Spectral analysis: Isoscalar charge density

- Isoscalar spectral function
 \[\omega \text{ exhausts strength below } 1 \text{ GeV}^2 \]
 Non-resonant 3π negligible

 Large negative strength above 1 GeV^2, dynamical origin unclear
 \[\phi NN \text{ coupling } \leftrightarrow s\bar{s} \text{ content of nucleon} \]

 High–mass continuum from form factor fits
 Belushkin, Hammer, Meissner 07

- Spectral analysis of isoscalar density
 Miller, Strikman, CW 11

 \[\omega \text{ dominates at } b > 1.5 \text{ fm} \]
 Fit uncertainty in ωNN coupling $\pm 15\%$

 Large cancellations between ω and higher–mass states at $b = 0.5 - 1 \text{ fm}$

- Impact of future form factor data
 Sensitivity to ωNN coupling broadly distributed at spacelike $|t| \lesssim 1 \text{ GeV}^2$
 Does not require measurements at extremely small $|t|$
Peripheral hard processes

- **Hard exclusive process on peripheral pion**

 \[k_\pi^2 \sim M_\pi^2 \] quasi-real

 Requires \(x \ll M_\pi/M_N \sim 0.1 \)

- **Kinematics with**\(p_T(\pi) \gg p_T(N) \)

 suppresses production on nucleon

 \[F_{\pi NN}(t) \text{ softer than } \text{GPD}_{\pi}(t) \]

- **Probe gluon GPD in pion at** \(|t_\pi| \sim 1 \text{ GeV}^2 \)

 Fundamental interest

 Moments calculable in Lattice QCD

- **Requires detection of forward nucleon and moderate–\(p_T \) pion**

 Feasible with Electron–Ion Collider EIC

 Direct probe of chiral component of nucleon’s partonic structure!
Chiral component: Effect on form factors

- Moments of transverse charge density

\[
\langle b^2 \rangle = \int d^2 b \, b^2 \rho(b) = 4 F'_1(0)
\]

\[
\langle b^4 \rangle = 32 F''_1(0)
\]

- Contribution of chiral component \textit{isovector}

\[
\langle b^2 \rangle_{\text{chiral}} \approx 0.2 \times \langle b^2 \rangle_{\text{fit}} \quad \text{small}
\]

\[
\langle b^4 \rangle_{\text{chiral}} \approx 1.5 \times \langle b^2 \rangle^2_{\text{fit}} \quad \text{sizable}
\]

Chiral component should be visible in “unnatural” second and higher derivatives of FF at \(Q^2 = 0 \)
Can we extract it?

- Analyticity of form factor fit is essential

Needs dispersion analysis: Belushkin et al. 07

- Affects extrapolation to \(t \to 0 \)

CLAS/PRIMEX 12 GeV experiment at \(Q^2 = 10^{-4} - 10^{-2} \text{GeV}^2 \)
PR12-11-106 Gasparian et al.