Transverse nucleon structure and chiral symmetry breaking

C. Weiss (JLab), Penn State HEP/Astrophysics Seminar, 17–Apr–13 JHEP 1301 (2013) 163

Q: How does χ SB scale $\rho \sim 0.3$ fm express itself in nucleon's partonic structure?

- ightarrow Intrinsic transverse momenta
- \rightarrow Parton correlations

- Nucleon structure in QCD
 - Parton model QCD radiation, factorization
- Chiral symmetry breaking in QCD

Non–perturbative scale $\rho \ll R$

Effective description: Constituent quarks, Goldstone bosons

- Effect on partonic structure $p_T(sea) \gg p_T(valence)$ Short-range correlations of partons
- Experimental tests

Single–particle inclusive $P_{T,h}$ distributions $_{\rm HERMES,\ COMPASS,\ JLab12,\ EIC}$

Correlations current \leftrightarrow target regions EIC

Multiparton interactions Tevatron, LHC

Nucleon structure: Parton model

$$\sigma_T \sim rac{xf(x)}{Q^2}$$
 Bjorken scaling

$$f(x) = \int d^2 p_T f(x, p_T)$$

Parton density in longit. momentum

• Hadron as composite system

Pointlike constituents with interactions of finite range μ Relativistic, can create/annhilate particles

System moves with $P \gg \mu$

Constituents' momenta longitudinal $p_z = xP$ transverse $p_T \sim \mu$

• Scattering process $Q^2, W^2 \gg \mu^2$

Electron scatters from quasi-free constituent with momentum fraction $x = Q^2/(W^2 - M_N^2 + Q^2)$

Transverse momenta integrated over, integral converges $p_T \sim \mu$

Nucleon structure: QCD

- $\sigma_T \sim [\text{parton density}] \sim \mu$
 - \times [radiation]
 - \times [scattering process] $\sim Q$

• QCD radiation

Real emissions with p_T from $\sim \mu$ to Q Virtual radiation renormalizes couplings

• Factorization

Separation of scales in regime $Q^2 \gg \mu^2$

Inclusive scttering $\gamma^*N \to X$: Net radiation effect simple Factorization well understood

Semi-inclusive $\gamma^* N \rightarrow h(\text{low } P_T) + X'$: Radiation effect more complex Final-state interactions of struck parton Factorization more challenging Much progress: Collins 11 \rightarrow Seminar T. Rogers

Parton density as $\langle N | \text{QCD-operator} | N \rangle$, universal, process-independent Collins, Soper 82, . . .

• Parton transverse momentum

 $p_T \sim Q$ pert. QCD, calculable $p_T \sim \mu$ nonpert. interactions \leftarrow this talk!

Chiral symmetry breaking: Physical picture

• Chiral symmetry breaking in QCD

Pert. interactions conserve quark chirality L, R

Non-pert. gluon fields can flip chirality Topological gauge fields, instantons

Condensate of $q\bar{q}$ pairs $\langle \bar{\psi}_L \psi_R + \bar{\psi}_R \psi_L \rangle$, pion as collective excitation Order parameter, Goldstone boson

Dynamical mass generation: Constituent quarks, hadron structure Euclidean correlation functions \rightarrow Lattice, analytic methods

- Short–range interactions $\rho\sim 0.3\,{\rm fm}$

New dynamical scale $ho \ll R$ Shuryak; Diakonov, Petrov 80's

Gauge-invariant measure of $q\bar{q}$ pair size $\langle\bar{\psi}\nabla^2\psi\rangle/\langle\bar{\psi}\psi\rangle\sim 1~{\rm GeV}^2$ "average virtuality" Lattice: Teper 87, Doi 02, Chiu 03. Instantons: Polyakov, CW 96

• How does it affect partonic structure? Valence quark mostly in configurations of size $\sim R$ Sea quarks in correlated pairs of size $\lesssim \rho$ Can we quantify it? . . . Dynamical model!

Chiral symmetry breaking: Dynamical model

$$L_{\text{eff}} = \bar{\psi} \left(i \partial \!\!\!/ - M e^{i \gamma_5 \tau \pi / f_\pi} \right) \psi$$

binds valence quarks

creates quark– antiquark pairs

• Effective description of χ SB Diakonov, Eides 83; Diakonov, Petrov 86

Constituent quarks/antiquarks with dynamical mass $M \sim$ 0.3-0.4 GeV

Coupled to chiral field (Goldstone boson) with eff. coupling $M/f_{\pi}=$ 3–4 $_{\rm strong!}$

Valid up to χ SB scale ρ^{-2} : Matching with QCD quarks/gluons

Field theory, solved non–perturbatively in $1/N_c$ expansion

• Nucleon as chiral soliton Diakonov, Petrov, Pobylitsa 88; Kahana, Ripka 84

> Classical chiral field "Hedgehog" $\pi \parallel r$ in rest frame, cf. skyrmion

Binds valence quarks, creates quark–antiquark pairs Relativistic mean–field approximation

Field theory: Completeness, conservation laws, positivity $\rho^{-2} \gg M^2$ No Fock space truncation! \rightarrow PDFs, sea quarks

Chiral symmetry breaking: Parton distributions

• Parton densities in model Diakonov, Petrov, Pobylitsa, Polyakov, CW 96+; Wakamatsu et al. 97+

$$f^{q}(x, \boldsymbol{p}_{T}) = \langle N | a^{\dagger} a(xP, \boldsymbol{p}_{T}) | N \rangle_{P \to \infty}$$

 $f^{\bar{q}}(x, \boldsymbol{p}_{T}) = b^{\dagger} b$

Quark/antiquark number densities at $P\to\infty$ equivalent to light–cone correlation function $\bar\psi...\psi$

 p_T integral convergent due to cutoff ρ^{-2}

Intrinsic p_T distributions, not "TMDs" no FSI!

• Interpretation

x and p_T distribution of constituent quarks and antiquarks $_{\rm effective\ DOF}$

Matching with QCD quarks, antiquarks and gluons at scale ρ^{-2} PDF fits show 30% of nucleon momentum carried by gluons at $\mu^2 \sim 0.5 \, {\rm GeV}^2$: "Accuracy" of model

• Flavor asymmetries

Describes well measured $\bar{d} - \bar{u}$ E866 Drell-Yan Predicts sizable $\Delta \bar{u} - \Delta \bar{d} \rightarrow$ DSSV, RHIC W

Partonic structure: p_T distributions

Sea quark p_T distribution qualitatively different from valence quarks!

• Valence quarks $q - \bar{q}$

 $p_T\sim R^{-1}$, approximate Gaussian shape $\langle p_T^2
anglepprox 0.15\,{
m GeV}^2$, weakly x-dependent

• Sea quarks \bar{q}

Power-like tail $f^{\bar{q}}(x,p_T) \sim C(x)/p_T^2$ up to cutoff scale ρ^{-2}

Structure determined by low-energy chiral dynamics, model-independent

 $p_T^2 \sim \rho^{-2}$: Some model dependence from UV cutoff

Similar tail in $\Delta \bar{u} - \Delta \bar{d}$

• Qualitative difference

Generic feature, rooted in dynamical scale $\rho \ll R$

Partonic structure: Short-range correlations

Parton SRCs as imprint of χ SB on partonic structure

• Parton short-range correlations

Sea quarks in nucleon LC wave function partly in correlated pairs of size $\rho \ll R$ $_{\rm Explains high-momentum tail of <math display="inline">p_T$ distribution

Pairs have distinctive spin-isospin structure: Scalar–isoscalar Σ , pseudoscalar–isovector Π

Restoration of chiral symmetry at high p_T : $|\Psi_{\Sigma}|^2 = |\Psi_{\Pi}|^2 \text{ at } p_T^2 \sim \rho^{-2} \gg M^2$

Large effect: Fraction of correlated sea is O(1)

• Cf. NN short-range correlations in nuclei Mean field $\Psi(\mathbf{r}_1, ... \mathbf{r}_N) \approx \prod_i^N \Phi(\mathbf{r}_i)$

Rare configs with $|\mathbf{r}_i - \mathbf{r}_j| \ll$ average experience short-range NN interaction, generate high momentum components

Indirect probes: Momentum distributions, x>1 Direct probes: $(e,e^\prime NN)$ in special kinematics JLab Hall A, CLAS, Hall C at 12 GeV

. . . What about parton correlations?

Measurements: Single-particle inclusive

• Hadron $P_{T,h}$ distributions in SIDIS

Intrinsic p_T in WF Final-state interaction $\left. \right\}$ Observable $P_{T,h}$ Parton fragmentation

External handles: $z \leftrightarrow x, z \leftrightarrow P_{T,h}$ To be explored with CLAS12: Kinematic coverage

• Separate valence and sea quarks in target

Charge separation with pions $N(\pi^+ - \pi^-) \propto e_u^2(u - \bar{u}) - e_d^2(d - \bar{d})$ $N(\pi^+ + \pi^-) \propto e_u^2(u + \bar{u}) + e_d^2(d + \bar{d})$

Charge separation with kaons: u dominance, $s = \bar{s}$ fragmentation

 $N(K^+) \propto u$ mostly valence $N(K^-) \propto \bar{u}$

Different widths of valence/sea affect flavor separation if ${\cal P}_{T,h}$ coverage incomplete Frankfurt et al. 89; Christova, Leader 01

Sea quarks contribute only at $x \sim 0.1$ Intrinsic p_T manifest only at z > 0.512 GeV kinematics probably marginal. Schweitzer, Strikman, CW 12; simulations in progress

Measurements: Correlations

Unravel SIDIS mechanism: What balances observed $P_{T,h}$?

Observe nonpert. correlations induced by $\chi {\rm SB}$

• Kinematics for nonperturbative correlations

Sufficient separation in rapidity $\Delta y \approx \ln [W^2/(P_{T,h}^2+m_h^2)]\gtrsim 4$

Moderate virtuality to avoid pQCD radiation $Q^2 \sim {\rm few}~{\rm GeV}^2$

Momentum fractions of nonperturbative sea $x \sim$ 0.05–0.1

 \rightarrow "Kinematic window" at $W^2 \approx 30 \text{ GeV}^2$, $P_{T,h}^2 \approx 0.5 \text{ GeV}^2$

COMPASS: Detection of target fragments? EIC: Medium energiesideal JLab12: Probably marginal, but should be explored

• Other option: Exclusive meson production "Knockout" of correlated $q\bar{q}$ pairs. Many possibilities with JLab12!

Measurements: Multiparton processes in pp

 $\frac{\sigma(12;34)}{\sigma(12)\sigma(34)} = \frac{1}{\sigma_{\text{eff}}}$ $\times \frac{f(x_1, x_3)f(x_2, x_4)}{f(x_1)f(x_2)f(x_3)f(x_4)}$

• Double dijet rate parametrized by $\sigma_{\rm eff}^{-1}$

Mean field $\sigma_{\rm eff}=\pi R_{13}^2$ avg distance btw collision points. Calculable from transverse distributions

$$\sigma_{
m eff}^{-1}$$
 (mean field) $= \int d^2 b \ P_{12}(b) \ P_{34}(b)$

• Observed enhancement

CDF/D0 3jet + γ rate two times larger than mean field with $\langle \rho^2 \rangle (x \sim 0.1)$

Possible explanation: Parton correlations FSW, Annalen Phys. 13 (2004)

Perturbative vs. nonperturbative correlations? Higher-order vs. mulitparton processes? Many challenges. Blok, Dokshitzer, Frankfurt, Strikman 11

• LHC: High rates for multijet events

Background to new physics processes

Detailed studies of parton correlations New field of study. Great interest! MPI@TAU Tel Aviv 2012

Summary

- Dynamical $\chi {\rm SB}$ in QCD creates short–distance scale $\rho \ll R \sim 1\,{\rm fm}$

Natural scale for separating soft wave function \leftrightarrow pQCD radiation

- Qualitatively different p_T distributions of valence and sea quarks Valence quarks $p_T \sim R^{-1}$ Sea quarks "tail" $p_T \lesssim \rho^{-1}$
- Parton short-range correlations in nucleon

Imprint of QCD vacuum on partonic structure

• Experimental tests

Separate valence and sea quarks in single-particle inclusive DIS: Charged pions, kaons. Details simulations in progress.

Correlations between current and target fragmentation regions: Kinematic window for non-perturbative correlations. Ideal for medium-energy EIC

Exclusive meson production: Knockout of correlated $q\bar{q}$ pair. Exploratory studies in progress.

Multiparton interactions in high-energy pp collisions