New developments in extracting parton densities and beyond

Nobuo Sato

Director's seminar, December 2nd 2015

About Me

Education

Florida State University, Tallahassee, FL, USA (2008-2014)

- Ph.D. program in Theoretical High Energy Physics, 2010-2014
- Thesis Topic: Threshold resummation in direct photon production at NLO+NLL.
- Advisor: J. F. Owens.

Universidad del Valle, Cali, Colombia (2002-2007)

- B.S. Physics,
- Thesis Topic: Tachyon field as source of dark energy.
- Advisor: N. Granda

Research topics

- PDFs, TMDs, threshold resummation, collider phenomenology

Projects @ JLab (fall 2014 - present)

JAM

- Inclusion of all 6GeV JLab data (eg1b-dvcs, eg1b, Hall A)
- New MC methodology to extract spin-dependent PDFs
- Constraints on higher twist distributions $ightarrow d_2$
- Extraction of Δg (JAM16)
- New software to perform global analysis
- Collaborators: A. Accardi, J. Ethier, W. Melnitchouk, S. Kuhn.

TMD

- New methodology to describe transverse dependent observables at low momentum transfer (SIDIS data from COMPASS, HERMES)
- New software for TMD analysis.
- Collaborators: T. Rogers, B. Wang, A. Prokudin, L. Gamberg, D. B.Clark.

Pions and nucleon structure

- Extraction of pion structure function from HERA leading neutron data and E866 $\bar{d}-\bar{u}$ asymmetry data.
- Collaborators: J. McKenney, W. Melnitchouk, C. R. Ji

JAM: Motivations

Spin structure of nucleons

- Spin sum rule $\rightarrow \frac{1}{2} = \frac{1}{2}\Delta\Sigma^{(1)} + \Delta g^{(1)} + \mathcal{L}$
- The spin contribution from quarks: $\rightarrow \Delta \Sigma^{(1)} = \Delta u^{(1)}_+ + \Delta d^{(1)}_+ + \Delta s^{(1)}_+$
- From existing global analysis $\rightarrow \Delta \Sigma^{(1)}_{[10^{-3},1]} \sim 0.3, \ \Delta g^{(1)}_{[0.05,0.2]} \sim 0.1$

Higher twists

- d_2 matrix element $\rightarrow d_2 = 2g_1^{(3)}(Q^2) + 3g_2^{(3)}(Q^2)$ - Color forces experienced by struck quarks $\rightarrow \tilde{F}_E = 2d_2 + f_2$, $\tilde{F}_B = 4d_2 - f_2$ 0.2 - Dedicated global QCD anlysis is required 0 -0.2 -0.4 High x -0.4
 - SU(6) spin-flavor symmetry: $\rightarrow \Delta u/u \rightarrow 2/3, \quad \Delta d/d \rightarrow -1/3$
 - pQCD $\rightarrow \Delta q/q \rightarrow 1$

х

JAM: Global Analysis

Data

- $\checkmark \text{ Polarized DIS} \rightarrow \Delta u, \Delta d$
 - Polarized SIDIS: $\rightarrow \Delta \bar{d}, \Delta \bar{u}, \Delta s$
 - Inclusive Jets/ π^0 : $\rightarrow \Delta g$
 - W production $\rightarrow \Delta \bar{d}, \Delta \bar{u}$

Theory

- ✓ Target mass corrections
- ✓ Twist-3 and twist-4 contributions in polarized structure functions
- \checkmark Nuclear corrections for ³He and deuteron targets
 - Threshold resummation $\rightarrow (\alpha_S^m \log(1-x)^n)$

Tools

- $\checkmark\,$ Numerical codes developed within python framework
- $\checkmark\,$ Development of DGLAP evolution equations in Mellin space
- $\checkmark\,$ Fast calculation of observables $\rightarrow\,$ Mellin space techniques

Asymmetries

$$\begin{aligned} A_{||} &= \frac{\sigma^{\uparrow \Downarrow} - \sigma^{\downarrow \Downarrow}}{\sigma^{\uparrow \Downarrow} + \sigma^{\downarrow \Downarrow}} = D(A_1 + \eta A_2) \\ A_{\perp} &= \frac{\sigma^{\uparrow \Rightarrow} - \sigma^{\downarrow \Rightarrow}}{\sigma^{\uparrow \Rightarrow} + \sigma^{\downarrow \Rightarrow}} = d(A_2 - \xi A_1) \\ A_1 &= \frac{(g_1 - \gamma^2 g_2)}{F_1} \qquad A_2 = \gamma \frac{(g_1 + g_2)}{F_1} \qquad \gamma^2 = \frac{4M^2 x^2}{Q^2} \end{aligned}$$

Theory

$$\begin{split} g_1(x,Q^2) &= g_1^{LT+TMC}(\Delta u^+,\Delta d^+,\Delta g,\ldots) + g_1^{T3+TMC}(D_u,D_d) + g_1^{T4}(H_{p,n}) \\ g_2(x,Q^2) &= g_2^{LT+TMC}(\Delta u^+,\Delta d^+,\Delta g,\ldots) + g_2^{T3+TMC}(D_u,D_d) \end{split}$$

JAM: Fitting strategy

Parametrization

- $xf(x) = Nx^a(1-x)^b(1+c\sqrt{x}+dx)$
- LT quark distributions $\rightarrow \Delta u^+, \Delta d^+, \Delta s^+, \Delta g$
- T3 quark distributions $\rightarrow D_u, D_d$
- T4 structure functions $\rightarrow H_p, H_n$

Chi-squared minimization \rightarrow with correlated systematic uncertainties

$$\chi^{2} = \sum_{i} \left(\frac{D_{i} - T_{i} (1 - \sum_{k} r^{k} \beta_{i}^{k} / D_{i})^{-1}}{\alpha_{i}} \right)^{2} + \sum_{k} (r^{k})^{2}$$

Issues

- Stability in the moments (e.g. $\Delta\Sigma^{(1)})$
- Is the solution given by a single fit unique? \rightarrow False minima
- Is over-fitting present in our fits?
- Which parameters should be fixed and at which value?
- Determination of uncertainty bands.

$\textbf{Solution} \rightarrow \mathsf{MC} \text{ approach}$

JAM: results (fitted distributions)

JAM: results (impact of JLab data)

- Significant reduction of the uncertainties in the LT & HT distributions
- Sizable modifications to the gluon \rightarrow QCD evolution
- Constraints on HT distributions \rightarrow impact on d_2 matrix element
- In DSSV, strange is positive at the high x region

JAM: results (moments)

JAM: Outlook

JAM

- $\checkmark\,$ New JAM15 analysis to study impact of all JLab 6 GeV inclusive DIS data at low W and high x
- ✓ New extraction of LT & HT distributions
 - Upcoming JAM16 analysis to study polarization of sea quarks & gluons.
 - SIDIS for flavor separation.
 - polarized pp cross sections (inclusive jet & π production) for Δg
 - W boson asymmetries
 - Threshold resummation impacts on large x
 - Combined analysis of all inclusive (un)polarized DIS data
 - Fits to helicity distributions

JLab 12

- Measurements at high- $x \rightarrow \Delta q/q$
- Wider coverage in $Q^2 \to \Delta g$
- Determination of pure twist-3 d_2 in DIS

Backup

Leading twist structure functions:

$$\begin{split} g_1^{LT+TMC}(x,Q^2) &= \frac{x}{\xi} \frac{g_1^{LT}(\xi)}{(1+4\mu^2 x^2)^{3/2}} + 4\mu^2 x^2 \frac{x+\xi}{\xi(1+4\mu^2 x^2)^2} \int_{\xi}^1 \frac{dz}{z} g_1^{LT}(z) \\ &- 4\mu^2 x^2 \frac{2-4\mu^2 x^2}{2(1+4\mu^2 x^2)^{5/2}} \int_{\xi}^1 \frac{dz}{z} \int_{z'}^1 \frac{dz'}{z'} g_1^{LT}(z') \\ g_2^{LT+TMC}(x,Q^2) &= -\frac{x}{\xi} \frac{g_1^{LT}(\xi)}{(1+4\mu^2 x^2)^{3/2}} + \frac{x}{\xi} \frac{(1-4\mu^2 x\xi)}{(1+4\mu^2 x^2)^2} \int_{\xi}^1 \frac{dz}{z} g_1^{LT}(z) \\ &+ \frac{3}{2} \frac{4\mu^2 x^2}{(1+4\mu^2 x^2)^{5/2}} \int_{\xi}^1 \frac{dz}{z} \int_{z'}^1 \frac{dz'}{z'} g_1^{LT}(z') \end{split}$$

In the Bjorken limit $(Q^2 \rightarrow \infty)$:

$$g_1^{LT+TMC}(x,Q^2) \simeq g_1^{LT}(x), \quad g_2^{LT+TMC}(x,Q^2) \simeq -g_1^{LT}(x) + \int_{\xi}^1 \frac{dz}{z} g_1^{LT}(z)$$

Leading twist quark distributions:

$$g_1^{LT}(x) = \frac{1}{2} \sum_{q} e_q^2 \left[\Delta C_{qq} \otimes \Delta q(x) + \Delta C_{qg} \otimes \Delta g(x) \right]$$

Twist-3 structure functions:

$$g_1^{T3+TMC}(x,Q^2) = 4\mu^2 x^2 \frac{D(\xi)}{(1+4\mu^2 x^2)^{3/2}} - 4\mu^2 x^2 \frac{3}{(1+4\mu^2 x^2)^2} \int_{\xi}^{1} \frac{dz}{z} D(z) + 4\mu^2 x^2 \frac{2-4\mu^2 x^2}{(1+4\mu^2 x^2)^{5/2}} \int_{\xi}^{1} \frac{dz}{z} \int_{z'}^{1} \frac{dz'}{z'} D(z') g_2^{T3+TMC}(x,Q^2) = \frac{D(\xi)}{(1+4\mu^2 x^2)^{3/2}} - \frac{1-8\mu^2 x^2}{(1+4\mu^2 x^2)^2} \int_{\xi}^{1} \frac{dz}{z} D(z) - \frac{12\mu^2 x^2}{(1+4\mu^2 x^2)^{5/2}} \int_{\xi}^{1} \frac{dz}{z} \int_{z'}^{1} \frac{dz'}{z'} D(z')$$

Bjorken limit $(Q^2 \rightarrow \infty)$:

$$g_1^{T3+TMC}(x,Q^2) \simeq 0$$
 $g_2^{T3+TMC}(x,Q^2) \simeq D(x) - \int_{\xi}^1 \frac{dz}{z} D(z)$

Twist-3 quark distributions:

$$D(x,Q^2) = \frac{4}{9}D_u(x,Q^2) + \frac{1}{9}D_d(x,Q^2)$$

Twist-4 structure function:

$$g_1^{T4(p,n)}(x,Q^2) = H^{(p,n)}(x)/Q^2$$

Nuclear corrections: \rightarrow nuclear smearing functions

$$g_i^A(x,Q^2) = \sum_N \int \frac{dy}{y} f_{ij}^N(y,\gamma) g_j^N(x/y,Q^2)$$

Curse of dimensionality \rightarrow Mellin trick (Stratmann, Vogelsang)

$$\begin{split} I(x) &= \int_{x}^{1} \frac{dy}{y} f(y) \int_{y}^{1} \frac{dz}{z} g\left(\frac{x}{yz}\right) & \leftarrow \qquad g(\xi) = \frac{1}{2\pi i} \int dN \xi^{-N} g_{N} \\ &= \frac{1}{2\pi i} \int dN g_{N} \left[\int_{x}^{1} \frac{dy}{y} f(y) \int_{y}^{1} \frac{dz}{z} \left(\frac{x}{yz}\right)^{-N} \right] \\ &= \frac{1}{2\pi i} \int dN g_{N} \mathcal{M}_{N} \\ &= \sum_{i,k} w_{i}^{k} j^{k} \operatorname{Im} \left(e^{i\phi} g_{N_{j}^{k}} \mathcal{M}_{N_{j}^{k}} \right) & \leftarrow \qquad \text{Gaussian quadrature} \end{split}$$

 \rightarrow time consuming part can be precalculated prior to the fit

JAM: Iterative MC fitting strategy

JAM: results (data vs. theory)

JAM: results (moments)

- New extraction of $\Delta\Sigma^{(1)}=0.31\pm0.03$ (Only truncated moments are shown $x\in[10^{-3},0.8]$)
- First extraction of d_2 matrix element in global QCD analysis
- JAM16: reduction of gluon uncertainties (jet data)

TMD: Summary

At present

- TMD factorization formalism exists \rightarrow difficult to implement @ low Q^2
- Current description of HERMES and COMPASS data \rightarrow Gaussian models
- Gaussian models are approximate description data.
- Need to address these issues to describe 12GeV JLab data
- ✓ New framework to describe transverse dependent observables at small momentum transfer → (see talk by BW)
- \checkmark Numerical tools to analyze data \rightarrow extraction of non-perturbative quantities (TMD)

Future

- Higher order pQCD corrections
- Fracture functions
- Higher twist
- Target mass corrections
- Treatment of heavy quark contributions
- Development of TMD event generators

Pions and nucleon structure: Summary

Goals

- Study the role of pions in connection with $\bar{d} \bar{u}$ asymmetry in the proton (E866 DY)
- Asymmetry described within effective chiral framework

$$\rightarrow \bar{d} - \bar{u} = f_{\pi/N} \otimes \bar{q}_v^{\pi}$$

- Analyze recent ZEUS and H1 measurements on SIDIS leading neutron cross sections: $ep \to en X$

$$\frac{d^3 \tilde{\sigma}^{\rm LN}}{dx dQ^2 dy} = f_{\pi/N}(y) F_2^{\pi}(x/y, Q^2)$$

- HERA data probes F_2^π for down to $x_\pi = x/y \sim 10^{-4}$

Results

- HERA data alone **cannot** constrain F_2^{π}
- New analysis of combined E866 & HERA data \rightarrow constraints on F_2^{π} and $f_{\pi/N}$
- Predictions made for 12GeV Tagged DIS experiment JLab