Modeling new exotic states

A. Pilloni Director's seminar

JLab, December 2nd, 2015

Chronology 2012-2015: Ph.D. student at «Sapienza» Università di Roma

Main research topic: Exotic Hadron Spectroscopy,

Side projects in Large-N QCD

2013-: Member of the BABAR collaboration ongoing analysis of CP violations in SCS Charm Decays

Nov 2015-now: Member of JPAC, my current projects are

- $3 \rightarrow 3$ scattering, focusing on $D\overline{D}\pi \rightarrow D\overline{D}\pi$
 - $J/\psi
 ightarrow \gamma \pi^0 \pi^0$ amplitude analysis

Quarkonium orthodoxy

Heavy quarkonium sector is extremely useful for the understanding of QCD

Potential models

(meaningful when $M_0 \rightarrow \infty$)

 $V(r) = -\frac{C_F \alpha_s}{r} + \sigma r$ (Cornell potential)

Solve NR Schrödinger eq. → spectrum

Effective theories (HQET, NRQCD...)

Integrate out heavy DOF

(spectrum), decay & production rates

A precious training for understanding the strangeonia sector at JLab! 3

 $\alpha_s(M_Q) \sim 0.3$ (perturbative regime) OZI-rule, QCD multipole

q

Spin flip suppressed by heavy quark mass, approximate heavy quark spin symmetry (HQSS)

Quarkonium orthodoxy

A. Pilloni – Modeling new exotic states

Quarkonium orthodoxy?

X(3872)

- Discovered in $B \rightarrow K X \rightarrow J/\psi \pi \pi$
- Very close to DD^* threshold
- Too narrow for an above-treshold charmonium
 - Isospin violation too big $\frac{\Gamma(X \to J/\psi \ \omega)}{\Gamma(X \to J/\psi \ \rho)} \sim 0.8 \pm 0.3$ $J^{PC} = 1^{++}$, but mass not compatible with $\chi_{c1}(2P)$ $M = 3871.68 \pm 0.17$ MeV $M_X - M_{DD^*} = -3 \pm 192 \text{ keV}$ $\Gamma < 1.2 \text{ MeV } @90\%$

Large prompt production, comparable to $\psi(2S)$

X(3872)

)	B decay mode	X decay mode	product branchin	g fraction $(\times 10^5)$	B_{fit}	R_{fit}
				K^+X	$X \to \pi \pi J\!/\!\psi$	0.86 ± 0.08	$(BABAR, 26 Belle^{25})$	$0.081\substack{+0.019\\-0.031}$	1
						$0.84 \pm 0.15 \pm 0.07$	BABAR ²⁶		
C	Б					$0.86 \pm 0.08 \pm 0.05$	Belle ²⁵		
		$\psi(2S)$ a) data	1600 FILICh	$K^0 X$	$X \to \pi \pi J\!/\!\psi$	0.41 ± 0.11	$(BABAR, 26 Belle^{25})$		
	300	- -				$0.35 \pm 0.19 \pm 0.04$	BABAR ²⁶		
~			E			$0.43 \pm 0.12 \pm 0.04$	Belle ²⁵		
Ge/			1200	$(K^+\pi^-)_{NR}X$	$X \to \pi \pi J\!/\!\psi$	$0.81 \pm 0.20^{+0.11}_{-0.14}$	Bellc ¹⁰⁶		
0	000		1000 E	$K^{*0}X$	$X \to \pi \pi J/\psi$	< 0.34, 90% C.L.	Belle ¹⁰⁶		
0.	200		F	KX	$X\to \omega J\!/\!\psi$	$R=0.8\pm0.3$	BABAR ³³	$0.061\substack{+0.024\\-0.036}$	$0.77_{-0.32}^{+0.28}$
s/0		- 1 -	800	K^+X		$0.6\pm0.2\pm0.1$	BABAR ³³		
ent			ene	K^0X		$0.6\pm0.3\pm0.1$	BABAR ³³		
Ж	100		F	KX	$X \to \pi \pi \pi^0 J/\psi$	$R = 1.0 \pm 0.4 \pm 0.3$	Belle ³²		
0	100		400	K^+X	$X \to D^{*0} \bar{D}^0$	8.5 ± 2.6	$(BABAR, \frac{38}{38} Belle^{37})$	$0.614_{-0.074}^{+0.166}$	$8.2^{+2.3}_{-2.8}$
		- X(3872) -	200			$16.7 \pm 3.6 \pm 4.7$	BABAR		
				<u>_</u>	0 - 0	$7.7\pm1.6\pm1.0$	Belle ³⁷		
	0		3600 3700	K^0X	$X \to D^{*0} \bar{D}^0$	$f 12\pm4$	$(BABAR, 38 Belle^{37})$		
		0.40 0.80 1.20	5000 5700			$22 \pm 10 \pm 4$	BABAR		
		M(π ⁺ π ⁻ ⁺ ⁻) - M(⁺ ⁻) (GeV)				$9.7 \pm 4.6 \pm 1.3$	Belle ³⁷	10.005	10.05
				K^+X	$X \to \gamma J/\psi$	0.202 ± 0.038	$(BABAR; {}^{35}Belle^{34})$	$0.019^{+0.005}_{-0.009}$	$0.24^{+0.05}_{-0.06}$
5	5	1	$2 \times 0 - 7 \text{ To} V$	K^+X		$0.28 \pm 0.08 \pm 0.01$	BABAR ³⁵		
	e,		18 fb^{-1}	0		$0.178^{+0.048}_{-0.044} \pm 0.012$	Bellc		
	8		1.2	K^0X		$0.26 \pm 0.18 \pm 0.02$	BABAR		
	ĽĽ.					$0.124^{+0.076}_{-0.061} \pm 0.011$	Belle	10.015	+0.19
	B		CD CD uncertainty	K^+X	$X \to \gamma \psi(2S)$	$\boldsymbol{0.44\pm0.12}$	BABAR	$0.04^{+0.015}_{-0.020}$	$0.51^{+0.13}_{-0.17}$
	· _			K^+X		$0.95 \pm 0.27 \pm 0.06$	BABAR		
	<u>d</u>	10 ⁻¹ ↓ ····	-			$0.083^{+0.198}_{-0.183} \pm 0.044$	Belle ³⁴		
	۲ (E ± '````	=	0		$R' = 2.46 \pm 0.64 \pm 0.29$	LHCb		
	npt 872	-		K^0X		$1.14 \pm 0.55 \pm 0.10$	BABAR		
	X(3	-	The second se			$0.112^{+0.051}_{-0.290} \pm 0.057$	Belle ³⁴		
	b	-	The second se	<u>K+X</u>	$X \to \gamma \chi_{c1}$	$< 9.6 \times 10^{-3}$	Belle	$< 1.0 \times 10^{-3}$	< 0.014
	Ū.	10 ⁻²	and the second sec	K^+X	$X \to \gamma \chi_{c2}$	< 0.016	Belle	$< 1.7 \times 10^{-3}$	< 0.024
		° E ₫		KX	$X \to \gamma \gamma$	$< 4.5 \times 10^{-3}$	Belle ¹¹¹	$< 4.7 \times 10^{-4}$	$< 6.6 \times 10^{-3}$
A.		-		KX	$X \to \eta J/\psi$	< 1.05	BABAR	< 0.11	< 1.55
				K^+X	$X \to p\bar{p}$	$< 9.6 \times 10^{-4}$	LHCHIN	$< 1.6 \times 10^{-4}$	$< 2.2 \times 10^{-3}$
26		10 15 20 p (1/)	$\pi^{+}\pi^{-}$ [GoV]						

A. The modeling new code states

Vector Y states

Lots of unexpected $J^{PC} = 1^{--}$ states found in ISR analyses (and nowhere else!)

A. Pilloni – Modeling new exotic states

Charged Z states

Charged quarkonium-like resonances have been found, 4q needed

Pentaquarks... and so on

LHCb, PRL 115, 072001

Two states seen in $\Lambda_b \rightarrow (J/\psi p) K^ M_1 = 4380 \pm 8 \pm 29 \text{ MeV}$ $\Gamma_1 = 205 \pm 18 \pm 86 \text{ MeV}$ $M_2 = 4449.8 \pm 1.7 \pm 2.5 \text{ MeV}$ $\Gamma_2 = 39 \pm 5 \pm 19 \text{ MeV}$

Opposite parities needed

...to be photoproduced at JLab@12 GeV

Usually, in the experimental analyses the amplitudes are parametrized with a coherent sum of Breit-Wigner functions (breaks unitarity)

While this works when the resonances are well separated, a more accurate parametrization is needed to avoid premature discovery claims

In this, the activity of JPAC plays a crucial role

see C. Fernandez-Ramirez et al., arXiv:1510.07065 on Λ^* states

Proposed models

Molecule of hadrons (loosely bound)

 8_c Glueball, Hybrids 8_c 8_c $8_c \times 8_c \in 1_c$ Glueball, Hybrids $8_c \times 8_c \in 1_c$ Glueball, Hybrids

 $\mathbf{3}_c \times \overline{\mathbf{3}}_c \in \mathbf{1}_c$ Diquark-antidiquark (tetraquark)

Hadrocharmonium (Van der Waals forces)

 $\mathbf{1}_c \times \mathbf{1}_c \in \mathbf{1}_c$

Rescattering effect (no actual resonance)

Cusp,

A. Pilloni – Modeling new exotic states

--- Tota

Tetraquark

In a constituent quark model, we can think of a diquark-antidiquark compact state

$$[cq]_{S=0}[\bar{c}\bar{q}]_{S=1}+h.c.$$

LCQJS=01-110 Maiani, Piccinini, Polosa, Riquer PRD71 014028 (2005) Faccini, Maiani, Piccinini, AP, Polosa, Riquer PRD87, 111102 (2013) Piccinini, Polosa, Riquer PRD89, 114010 (2014)

$$H = \sum_{dq} m_{dq} + 2 \sum_{i < j} \kappa_{ij} \, \overrightarrow{S_i} \cdot \overrightarrow{S_j} \, \frac{\lambda_i^a}{2} \frac{\lambda_j^a}{2}$$

If the diquarks are compact objects spacially separated from each other, only $\kappa_{cq} \neq 0$, existing spectrum is fitted if $\kappa_{cq} = 67 \text{ MeV}$

Decay pattern mostly driven by HQSS

Fair understanding of existing spectrum (Ys and Z(4430))

A full nonet for each level is expected

Tornqvist, Z.Phys. C61, 525 Braaten and Kusunoki, PRD69 074005 Swanson, Phys.Rept. 429 243-305 $X(3872) \sim \overline{D}^0 D^{*0}$ $Z_c(3900) \sim \overline{D}^0 D^{*+}$ $Z'_c(4020) \sim \overline{D}^{*0} D^{*+}$

 $Y(4260) \sim \overline{D}D_1$

A deuteron-like meson pair, the interaction is mediated by the exchange of light mesons

- Some model-independent relations (Weinberg's theorem) ✓
- Good description of decay patterns (mostly to constituents) and X(3872) isospin violation ✓
- States appear close to thresholds ✓ (but Z(4430) ×)
- Binding energy varies from -70 to -0.1 MeV, or even positive (repulsive interaction) ×
- Unclear spectrum (a state for each threshold?) depends on potential models ×

Prompt production of *X*(3872)

If the X(3872) is a $D^0 \overline{D}^{0*}$ molecule, the binding energy is $E_B \approx -0.14 \pm 0.22$ MeV, $k_{rel} \approx 50$ MeV

How many pairs can we produce at hadron colliders? Bignamini, Piccinini, Polosa, Sabelli PRL103 (2009) 162001 Esposito, Piccinini, AP, Polosa JMP 4 (2013), 1569-1573 Guerrieri, Piccinini, AP, Polosa PRD90 (2014), 034003

We obtain with MC simulations $\sigma(p\bar{p} \rightarrow DD^*) \approx 0.1 \text{ nb } @\sqrt{s} = 1.96 \text{ TeV}$

Experimentally $\sigma(p\bar{p} \rightarrow X(3872)) \approx 30 \text{ nb}!!!$

Also the comparison with light nuclei production at ALICE seems not to favor a molecular interpretation

Esposito, Guerrieri, Maiani, Piccinini, AP, Polosa, Riquer PRD92 (2015), 034028

One pion-exchange

D

The dominant binding mechanism is expect to be the exchange of one- (two-...) pion in the *u* channel

In the literature, this has been evaluated in the static limit only $\frac{\overline{D}}{\overline{D^*}} = \frac{g_{\pi N}^2}{3} (\overrightarrow{\tau_1} \cdot \overrightarrow{\tau_2}) \left\{ [T(\overrightarrow{\sigma_1}, \overrightarrow{\sigma_2})] \left(1 + \frac{3}{(m_{\pi}r)^2} + \frac{3}{m_{\pi}r} \right) + (\overrightarrow{\sigma_1} \cdot \overrightarrow{\sigma_2}) \right\}$ Solve Schrödinger equation, look for bound states $\times \frac{e^{-m_{\pi}r}}{r}$ Yukawa-like potential, needs regularization

 D^*

However, the π can happen to be on shell: we aim to estimate this contribution, and check wether a (loosely) bound state can actually be formed

My current project

One pion-exchange

Once developed, the formalism will be extended to other $3 \rightarrow 3$ channels, like the $\rho \pi \rightarrow \rho \pi$, which JLab@12 GeV is going to produce with huge statistics

This is also connected with JLab Lattice QCD group activity on 3-body physics

Conclusions

The quarkonium sector was quite well understood, until the XYZ states have challenged our beliefs

Quarkonium-like states are fairly narrow and exhibit clean experimental signatures, providing the ideal environment to test new phenomenological models, and different amplitude parametrizations, which is the core activity of JPAC group

A better understanding of this sector will improve our knowledge of strong interactions

BACKUP

Joint Physics Analysis Center (JPAC)

JPAC members

Mike Pennington (JLab) Adam Szczepaniak (IU/JLab) Tim Londergan (IU) Geoffrey Fox (IU) Emilie Passemar (IU/JLab) Peng Guo (IU/JLab) Cesar Fernandez-Ramirez (JLab) Ron Workman (GWU) Michael Döring (GWU) Vladyslav Pauk (Mainz → JLab) Alessandro Pilloni (Rome → JLab) Igor Danilkin (JLab → Mainz) Lingyun Dai (IU/JLab → Valencia) Meng Shi (JLab → Beijing) Astrid Blin (Valencia) Andrew Jackura (IU) Vincent Mathieu (IU)

. . .

CLAS collaboration Diane Schott (GWU/JLab) Viktor Mokeev (JLab) HASPECT:

. . .

Marco Battaglieri (Genova) Derek Glazier (Glasgow)

GlueX collaboration Matthew Shepherd (IU) Justin Stevens (JLab) COMPASS collaboration Mikhail Mikhasenko (Bonn) Fabian Krinner (TUM) Boris Grube (TUM)

. . .

Vector Y states

The lineshape in $h_c \pi \pi$ looks pretty different Different states contributing?

Charged *Z* states: $Z_b(106010), Z'_b(10650)$

Other beasts

One/two peaks seen in $B \rightarrow XK \rightarrow J/\psi \phi K$, close to threshold

X(3915), seen in $B \rightarrow X K \rightarrow J/\psi \omega$ and $\gamma \gamma \rightarrow X \rightarrow J/\psi \omega$ $J^{PC} = 0^{++}$, candidate for $\chi_{c0}(2P)$ But X(3915) $\not\rightarrow D\overline{D}$ as expected, and the hyperfine splitting M(2^{++}) - M(0^{++}) too small

State	M (MeV)	Γ (MeV)	J^{PC}	Process (mode)	Experiment $(\#\sigma)$	State	M (MeV)	Γ (MeV)	J^{PC}	Process (mode)	Experiment $(\#\sigma)$
X(3823)	3823.1 ± 1.9	< 24	??-	$B \to K(\chi_{c1}\gamma)$	$Belle^{23}(4.0)$	Y(4220)	4196^{+35}_{-30}	39 ± 32	1	$e^+e^- \rightarrow (\pi^+\pi^-h_c)$	BES III data ^{63,64} (4.5)
X(3872)	3871.68 ± 0.17	< 1.2	1^{++}	$B \to K(\pi^+\pi^-J\!/\!\psi)$	$Belle^{24,25}$ (>10), $BABAR^{26}$ (8.6)	Y(4230)	4230 ± 8	38 ± 12	1	$e^+e^- \to (\chi_{c0}\omega)$	BES III <mark>65</mark> (>9)
				$p\bar{p} \rightarrow (\pi^+\pi^- J/\psi) \dots$	$CDF^{27,28}(11.6), D0^{29}(5.2)$	$Z(4250)^+$	4248^{+185}_{-45}	177^{+321}_{-72}	$?^{+}$	$\bar{B}^0 \to K^-(\pi^+\chi_{c1})$	Belle ⁵⁴ (5.0), BABAR ⁵⁵ (2.0)
				$pp \rightarrow (\pi^+\pi^- J/\psi) \dots$	LHCb ^{30,31} (np)	Y(4260)	4250 ± 9	108 ± 12	1	$e^+e^- \rightarrow (\pi\pi J/\psi)$	$BABAR^{66,67}(8), CLEO^{68,69}(11)$
				$B \to K (\pi^+ \pi^- \pi^0 J / \psi)$	Belle ³² (4.3), $BABAR^{33}$ (4.0)	()					Belle ^{41,53} (15), BES III ⁴⁰ (np)
				$B \to K(\gamma J\!/\!\psi)$	$Belle^{34}(5.5), BABAR^{35}(3.5)$					$e^+e^- \rightarrow (f_0(980)J/\psi)$	$BABAR^{67}$ (np), $Belle^{41}$ (np)
					LHCb ³⁶ (> 10)					$e^+e^- \to (\pi^- Z_c(3900)^+)$	BES III ⁴⁰ (8), Belle ⁴¹ (5.2)
				$B \to K(\gamma\psi(2S))$	$BABAR^{35}(3.6), Belle^{34}(0.2)$					$e^+e^- \rightarrow (\gamma X(3872))$	BES $II^{70}(5.3)$
					$LHCb^{36}(4.4)$	Y(4290)	4293 ± 9	222 ± 67	1	$e^+e^- \rightarrow (\pi^+\pi^-h_c)$	BES III data $63,64$ (np)
				$B \to K(D\bar{D}^*)$	Belle ³⁷ (6.4), BABAR ³⁸ (4.9)	X(4350)	$4350.6^{+4.6}$	13^{+18}	$\frac{1}{0/2^{?+}}$	$e^+e^- \rightarrow e^+e^-(\phi Ibb)$	$\frac{Bell}{58}(3.2)$
$Z_c(3900)^+$	3888.7 ± 3.4	35 ± 7	1^{+-}	$Y(4260) \to \pi^- (D\bar{D}^*)^+$	BES III ³⁹ (np)	V(4360)	4350.0 - 5.1 4354 ± 11	10 - 10 78 + 16	1	$e^+e^- \rightarrow (\pi^+\pi^-\psi(2S))$	Bell (71) (8) BABAR (72) (np)
				$Y(4260) \to \pi^-(\pi^+ J/\psi)$	BES III ⁴⁰ (8), Belle ⁴¹ (5.2)	7(4300)+	4334 ± 11	10 ± 10 100 ± 21	1 1+-	$\bar{\mathcal{D}}^{0} \rightarrow K^{-}(\pi^{+}\pi^{0}\psi(2S))$	$D_{\text{oll}}(73,74)$ (6.4) $D_{\text{A}}D_{\text{A}}D_{\text{A}}T_{\text{C}}^{75}$ (2.4)
					CLEO data $\frac{42}{(>5)}$	$Z(4430)^{+}$	4470 ± 17	100 ± 31	1,	$D \rightarrow K (\pi^+ \psi(2S))$	$Dene_{-1} (0.4), DADAt (2.4)$
$Z_c(4020)^+$	4023.9 ± 2.4	10 ± 6	1^{+-}	$Y(4260) \to \pi^-(\pi^+ h_c)$	BES III $\frac{43}{(8.9)}$					\overline{D} , $V = (-\pm I/I)$	$L\Pi \cup D^{-11}(13.9)$
				$Y(4260) \to \pi^- (D^* D^*)^+$	BES III ⁴⁴ (10)	V(1000)	400 +9	oo+41	1	$B^{\circ} \to K^{\circ}(\pi^+ J/\psi)$	$\operatorname{Bell}_{\mathbf{C}}^{\mathbf{C}}(4.0)$
Y(3915)	3918.4 ± 1.9	20 ± 5	0^{++}	$B \to K(\omega J/\psi)$	Belle ⁴⁵ (8), <i>BABA</i> 33,46 (19)	Y(4630)	4634_{-11}^{+0}	92_{-32}^{+11}	I	$e^+e^- \to (\Lambda_c^+ \Lambda_c^-)$	$\operatorname{Bell}_{\bullet}^{\bullet}(8.2)$
				$e^+e^- \rightarrow e^+e^-(\omega J/\psi)$	Belle ⁴⁷ (7.7), BABAR ⁴⁸ (7.6)	Y(4660)	4665 ± 10	53 ± 14	1	$e^+e^- \to (\pi^+\pi^-\psi(2S))$	Belle ^{(11)} (5.8), BABAR ^{(2)} (5)
Z(3930)	3927.2 ± 2.6	24 ± 6	2^{++}	$e^+e^- \rightarrow e^+e^-(D\bar{D})$	Belle ⁴⁹ (5.3), BABAR ⁵⁰ (5.8)	$Z_b(10610)^+$	10607.2 ± 2.0	18.4 ± 2.4	1+-	$\Upsilon(5S) \to \pi(\pi\Upsilon(nS))$	Belle ^{78,79} (>10)
X(3940)	3942^{+9}_{-8}	37^{+27}_{-17}	??+	$e^+e^- \rightarrow J/\psi \; (D\bar{D}^*)$	Belle ^{51,52} (6)					$\Upsilon(5S) \to \pi^-(\pi^+ h_b(nP))$	Belle ⁷⁸ (16)
Y(4008)	3891 ± 42	255 ± 42	1	$e^+e^- \rightarrow (\pi^+\pi^- J/\psi)$	$\text{Belle}^{41,53}(7.4)$					$\Upsilon(5S) \to \pi^- (B\bar{B}^*)^+$	$\operatorname{Belle}^{80}(8)$
$Z(4050)^+$	4051_{-43}^{+24}	82^{+51}_{-55}	??+	$\bar{B}^0 \to K^-(\pi^+\chi_{c1})$	Belle ⁵⁴ (5.0), BABAR ⁵⁵ (1.1)	$Z_b(10650)^+$	10652.2 ± 1.5	11.5 ± 2.2	1^{+-}	$\Upsilon(5S) \to \pi^-(\pi^+\Upsilon(nS))$	$Belle^{78}$ (>10)
Y(4140)	4145.6 ± 3.6	14.3 ± 5.9	$\dot{5}_{5+}$	$B^+ \to K^+(\phi J/\psi)$	$CDF^{56,57}(5.0), Belle^{58}(1.9),$					$\Upsilon(5S) \to \pi^-(\pi^+ h_b(nP))$	$\operatorname{Belle}^{\overline{78}}(16)$
					LHC $^{59}(1.4)$, CM $^{60}(>5)$					$\Upsilon(5S) \to \pi^- (B^* \bar{B}^*)^+$	$Belle^{80}(6.8)$
	1.00	1110			$D \varnothing^{61}(3.1)$						
X(4160)	4156^{+29}_{-25}	139^{+113}_{-65}	??+	$e^+e^- \rightarrow J/\psi \ (D^*D^*)$	$\text{Bell}_{62}^{52}(5.5)$						
$Z(4200)^+$	4196^{+35}_{-30}	370^{+99}_{-110}	1^{+-}	$B^0 \rightarrow K^-(\pi^+ J/\psi)$	$\text{Belle}^{62}(7.2)$				ioni		Delese

Guerrieri, AP, Piccinini, Polosa, IJMPA 30, 1530002

Diquarks

Attraction and repulsion in 1-gluon exchange approximation is given by

The singlet $\mathbf{1}_{c}$ is an attractive combination

A diquark in $\overline{\mathbf{3}}_c$ is an attractive combination A diquark is colored, so it can stay into hadrons but cannot be an asymptotic state Evidence (?) of diquarks in lattice QCD, Alexandrou, de Forcrand, Lucini, PRL 97, 222002 • $3_c \times 3_c \in \overline{3}_c$ • diquark

Tetraquark: new ansatz

Maiani, Piccinini, Polosa, Riquer PRD89 114010

New ansatz: the diquarks are compact objects spacially separated from each other, only $\kappa_{cq} \neq 0$, existing spectrum is fitted if $\kappa_{cq} = 67$ MeV

Tetraquark: radial excitations

Maiani, Piccinini, Polosa, Riquer PRD89 114010

Radial excitations Z(2S) = Z(4430) $Y_1(2P) = Y(4360)$ $Y_2(2P) = Y(4660)$ Decay in $\psi(2S)$ preferably

$$\chi_{cJ}(2P) - \chi_{cJ}(1P) \sim 437 \text{ MeV}$$

$$\chi_{bJ}(2P) - \chi_{bJ}(1P) \sim 360 \text{ MeV}$$

Use the same splittings for tetraquarks

 $M(Z(4430)) - M(Z_c(3900)) = 586^{+17}_{-26} \text{ MeV}$

 $Z_c(3900) \rightarrow \eta_c \rho$

If tetraquark

Kinematics with PHS and HQSS Dynamics estimated according to Brodsky, Hwang, Lebed, PRL113, 112001

Esposito, Guerrieri, AP, PLB 746, 194-201

If molecule

Non-Relativistic Effective Theory HQET and Hidden gauge Lagrangian

 $\frac{\mathcal{BR}(Z_c \to \eta_c \rho)}{\mathcal{BR}(Z_c \to J/\psi \pi)} = \left(4.6^{+2.5}_{-1.7}\right) \times 10^{-2}; \quad \frac{\mathcal{BR}(Z_c' \to \eta_c \rho)}{\mathcal{BR}(Z_c' \to h_c \pi)} = \left(1.0^{+0.6}_{-0.4}\right) \times 10^{-2}.$

A. Pilloni – Exotic Hadron Spectroscopy

Doubly charmed states

We explored the phenomenology of doubly charmed states, which in tetraquark model are $[cc]_{S=1}[\bar{q}\bar{q}]_{S=0,1}$ The doubly charged $cc\bar{d}\bar{d}$ partner cold not be interpreted as a molecule

These states might be observed in B_c decays @LHC and sought on the lattice Esposito, Papinutto, AP, Polosa, Tantalo, PRD88 (2013) 054029

Preliminary results on spectrum for $m_{\pi} = 490$ MeV, $32^3 \times 64$ lattice, a = 0.075 fm Guerrieri, Papinutto, AP, Polosa, Tantalo, PoS LATTICE2014 106

Weinberg theorem

Resonant scattering amplitude

$$f(ab \to c \to ab) = -\frac{1}{8\pi E_{CM}}g^2 \frac{1}{(p_a + p_b)^2 - m_c^2}$$

with $m_c = m_a + m_b - B$, and $B, T \ll m_{a,b}$

$$f(ab \to c \to ab) = -\frac{1}{16\pi (m_a + m_b)^2} g^2 \frac{1}{B+T}$$

This has to be compared with the potential scattering for slow particles ($kR \ll 1$, being $R \sim 1/m_{\pi}$ the range of interaction) in an attractive potential U with a superficial level at -B

$$f(ab \to ab) = -\frac{1}{\sqrt{2\mu}} \frac{\sqrt{B} - i\sqrt{T}}{B + T}$$
$$B = \frac{g^4}{512\pi^2} \frac{\mu^5}{(m_a m_b)^2}$$

This holds if the constituents are stable!

Weinberg, PR 130, 776 Weinberg, PR 137, B672 Polosa, PLB 746, 248

Weinberg theorem

$$Z = \sum_{n} |\langle n|X \rangle|^{2} = \text{elementariness}$$
$$a = \frac{2(1-Z)}{2-Z} \frac{1}{\sqrt{2\mu B}}$$
$$r_{0} = -\frac{Z}{1-Z} \frac{1}{\sqrt{2\mu B}}$$

$$B = \frac{g^4}{512\pi^2} \frac{\mu^5}{(m_a m_b)^2} \frac{1}{(1-Z)^2}$$

Weinberg, PR 130, 776 Weinberg, PR 137, B672 Polosa, PLB 746, 248

Hadro-charmonium

Dubynskiy, Voloshin, PLB 666, 344 Dubynskiy, Voloshin, PLB 671, 82 Li, Voloshin, MPLA29, 1450060

Born in the context of QCD multipole expansion

$$\begin{split} H_{eff} &= -\frac{1}{2} a_{\psi} E^a_i E^a_i \\ a_{\psi} &= \left\langle \psi | (t^a_c - t^a_{\bar{c}}) r_i \; G \; r_i (t^a_c - t^a_{\bar{c}}) | \psi \right\rangle \end{split}$$

the chromoelectric field interacts with soft light matter (highly excited light hadrons)

A bound state can occur via Van der Waals-like interactions

Expected to decay into core charmonium + light hadrons, Decay into open charm exponentially suppressed

Estimating *k*_{max}

A solution can be FSI (rescattering of DD^*), which allow k_{max} to be as large as $5m_{\pi} \sim 700$ MeV $\sigma(p\bar{p} \rightarrow DD^*|k < k_{max}) \approx 230$ nb Artoisenet and Braaten, PRD81, 114018

$$\mathcal{M} = -NA_{prod}^{on} \cdot \frac{e^{i\delta}\sin\delta}{ka_{NN}} \qquad \sigma(p\bar{p} \to X(3872)) \to \sigma(p\bar{p} \to DD^*|k < k_{max}) \times \frac{6\pi\sqrt{2\mu E_B}}{k_{max}}$$

However, the applicability of Watson-Migdal approach is challenged by the presence of pions that interfere with DD^* propagation

Bignamini, Grinstein, Piccinini, Polosa, Riquer, Sabelli, PLB684, 228-230

FSI saturate unitarity bound? Influence of pions small?

Artoisenet and Braaten, PRD83, 014019

Guo, Meissner, Wang, Yang, JHEP 1405, 138; EPJC74 9, 3063; CTP 61 354 use $E_{max} = M_X + \Gamma_X$ for above-threshold unstable states With different choices, 2 orders of magnitude uncertainty, limits on predictive power

Tuning of MC

Monte Carlo simulations A. Esposito

• We compare the $D^0 D^{*-}$ pairs produced as a function of relative azimuthal angle with the results from CDF:

Such distributions of charm mesons are available at Tevatron No distribution has been published (yet) at LHC

A new mechanism?

		HERWIG		Pythia	
k_0^{\max}		$50 { m MeV}$	$100 {\rm ~MeV}$	$50 { m MeV}$	$100 {\rm ~MeV}$
No. of events	0 scatt.	52	253	240	1560
	1 scatt.	44	299	283	1984
	3 scatt.	843	2069	4843	11679
	4 scatt.	1166	2802	6489	14916
	5 scatt.	1689	4167	7770	18284
σ [nb]	0 scatt.	0.10	0.50	0.13	0.83
	1 scatt.	0.09	0.59	0.15	1.05
	3 scatt.	1.67	4.10	2.57	6.20
	4 scatt.	2.31	5.55	3.44	7.92
	5 scatt.	3.34	8.25	4.12	9.71

Striking increase of σ after each scattering!

Down by a factor 5-7 wrt $\sigma_{\rm exp} \approx 30$ nb,

#events	Herwig	Pythia
0π	10	3
1π	19	21
3π	802	814

The enhancement is impressive because first bins are almost empty

Light nuclei at ALICE

Recently, ALICE published data on production of light nuclei in Pb-Pb and *pp* collisions

These provide a benchmark for *X*(3872) production

A. Pilloni – Exotic Hadron spectroscopy

Nuclear modification factors

We can use deuteron data to extract the values of the nuclear modification factors (caveat: for RAA data have different \sqrt{s})

A. Pilloni – Exotic Hadron Spectroscopy

Light nuclei at ALICE

Esposito, Guerrieri, Maiani, Piccinini, AP, Polosa, Riquer, PRD92, 034028

We assume a pure Glauber model (RAA = 1) and a value RAA = 5 to rescale Pb-Pb data to pp

Constant RAA \rightarrow same shape in Pb-Pb and pp

$$\left(\frac{d\sigma\left({}^{3}_{\Lambda}\mathrm{H}\right)}{dp_{\perp}}\right)_{pp} = \frac{\Delta y}{\mathcal{B}({}^{3}\mathrm{He}\,\pi)} \times \frac{\sigma_{pp}^{\mathrm{inel}}}{N_{\mathrm{coll}}} \left(\frac{1}{N_{\mathrm{evt}}} \frac{d^{2}N({}^{3}\mathrm{He}\,\pi)}{dp_{\perp}dy}\right)_{\mathrm{Pb-Pb}}$$

We extrapolate this data at higher p_T either by assuming an exponential law, or with a blast-wave function, which describes the emission of particles in an espanding medium

The blast-wave function is

$$\frac{dN}{dp_{\perp}} \propto p_{\perp} \int_{0}^{R} r dr \, m_{\perp} I_0 \left(\frac{p_{\perp} \sinh \rho}{T_{\rm kin}}\right) K_1 \left(\frac{m_{\perp} \cosh \rho}{T_{\rm kin}}\right),$$

where m_{\perp} is the transverse mass, R is the radius of the fireball, I_0 and K_1 are the Bessel functions, $\rho = \tanh^{-1}\left(\frac{(n+2)\langle\beta\rangle}{2}(r/R)^n\right)$, and $\langle\beta\rangle$ the averaged speed of the particles in the medium.

Light nuclei at ALICE vs. X(3872)

Esposito, Guerrieri, Maiani, Piccinini, AP, Polosa, Riquer, PRD92, 034028

We assume a pure Glauber model (RAA = 1) and a value RAA = 5 to rescale Pb-Pb data to pp

The X(3872) is way larger than the extrapolated cross section

A. Pilloni – Exotic Hadron Spectroscopy