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Precision and control through
spectator nucleon tagging

• Light ion physics at EIC

Physics objectives

Polarized deuteron

Spectator nucleon tagging

• Precision measurements with tagging

Free neutron structure functions

Polarized neutron structure

Bound nucleon structure and EMC effect

Coherence and shadowing at x ≪ 0.1

• Experimental apparatus and R&D
JLab 2014/15 LDRD Project: Simulation tools, resources
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Light ions: Energy, luminosity, polarization
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• CM energy
√
seN ∼ 20–100 GeV

Q2 ∼ few 10 GeV
2 for DIS

x ∼ 10−1–10−3 for sea quarks, gluons

• Luminosity ∼ 10
34 cm−2 s−1

Exceptional configurations in target

Multi-variable final states

Polarization effects

• Polarized light ions

eRHIC: unpol D, pol 3
He

MEIC: polarized D and 3
He

with Figure-8 ring layout
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Light ions: Physics objectives

n

[Nucleus rest frame view]

• Neutron structure

Flavor decomposition of quark spin,
sea quarks ∆ū,∆d̄, gluon polarization ∆g

How to account for binding, polarization,
final–state interactions?

• Bound nucleon in QCD

Modification of basic quark/gluon structure by
nuclear medium, QCD origin of nuclear forces

How to control nuclear environment?

• Coherence and saturation

Interaction of high–energy probe with
coherent quark/gluon fields

How to verify onset of coherence?

• Challenges to be addressed by theory
and new experimental techniques! ←
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Light ions: Deuteron, spectator tagging
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• Polarized deuterium

Wave function simple, known well
incl. light-cone wave function for high–energy processes

Neutron spin–polarized

Limited possibilities for nuclear
final–state interaction

• Spectator nucleon tagging

Detection of forward proton or neutron

Identifies active nucleon,
controls quantum state

Unique for collider: No target material,
forward detection of charged/neutral p’s,
polarized ion beams
Tagging with fixed target: CLAS BONUS,
limited to recoil momenta pR > 100 MeV
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Tagging: Free neutron structure
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Spectator tagging e + D → e' + p + X

x = 0.04-0.06, Q2 = 30-40

Int. luminosity 106 nb-1

CM energy seN = 1000 GeV2

EIC simulation

Kinemat. limit

Free neutron

Recoil LC fraction αR = 1.00

1.04
1.08

• Extract free neutron structure

Recoil momentum defines/controls
neutron’s off-shellness t − M2

N

Free neutron at pole t − M2
N :

On-shell extrapolation

Model-independent method!

Eliminates nuclear binding effects
and final–state interaction

• Precise measurements

F2n extracted with percent-level
accuracy at x < 0.1
JLab LDRD project: Detailed uncertainty estimates

Non-singlet F2p − F2n at x . 0.1,
sea quark flavor asymmetry d̄ − ū
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Tagging: Polarized neutron structure
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Neutron spin structure with tagged DIS  →e  +  
→
D →  e’ + p(recoil) + X

EIC simulation,  seN = 2000 GeV2,  Lint = 100 fb−1

Nuclear binding eliminated through on-shell extrapolation in recoil proton momentum

Q2 = 10−16

6−10

4−6

2.5−4

16−25

25−40

40−63

Error estimates include
extrapolation uncertainty

A‖n =
σ(+−) − σ(++)

σ(+−) + σ(++)

= D
g1

F1
+ ...

D =
y(2 − y)

2 − 2y + y2

depolarization factor

y =
Q2

xseN

• Precise measurement of neutron spin structure

Wide kinematic range: Leading ↔ higher twist, QCD evolution

Parton density fits: Flavor separation ∆u ↔ ∆d, gluon spin ∆G

Nonsinglet g1p − g1n and Bjorken sum rule
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Tagging: EMC effect
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EMC effect in tagged DIS e + D → e' + p + X, backward kinematics

x = 0.3-0.4, Q2 = 20-30 GeV2

αR = 0.89-0.91  (backward)

Lint = 107 nb-1,    seN = 1000 GeV2

K
in

em
at

ic
 li

m
it

on-shell modified
unmodified

• Nucleon’s quark/gluon structure
modified in nucleus A 6=

∑
N

Seen in inclusive DIS: EMC effect

Dynamical origin?

What momenta and distances in nuclear
wave function cause modification?

Spin–isospin dependence?

• EMC effect in tagged DIS

Study modification as function of
recoil momentum ↔ off-shellness

Control size of nuclear configuration!

EIC: Q2 evolution, gluons,
spin dependence with polarized D
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Tagging: Coherence and shadowing
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• Coherent scattering at x ≪ 0.1

Coherence length & NN distance:
Quantum–mechanical interference of
scattering from different nucleons

Inclusive DIS: Shadowing

• Coherence in tagged DIS

Explore interference as function
of recoil momentum

Strong effect, controled studies

Important for quantifying approach
to saturation at small x
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Experimental apparatus and R&D

• Tagging requires dedicated forward detector with sufficient coverage
and momentum resolution, integrated with EIC accelerator design
(interaction region, beam optics, beam quality)
JLab MEIC forward detector optimized for tagging

• R&D project develops simulation tools (physics models, event generators,
analysis tools) and performs detailed process simulations
Tools, documentation and results publicly available at https://www.jlab.org/theory/tag/
Open for collaboration!

Summary

• EIC will dramatically expand the capabilities for exploring the
short-range structure of light nuclei with electromagnetic probes

• Spectator tagging in eD scattering enables next-generation measurements
with maximal control and unprecedented accuracy

Neutron structure functions, including spin

Nuclear modifications of quark/gluon structure

Coherence and shadowing


