Quantum fluctuations of parton densities in diffractive *ep* scattering

C. Weiss (JLab), APS April Meeting 2015, Baltimore, 12–Apr–15

• Diffractive vector meson production

$$e+p \rightarrow \left\{ \begin{array}{ll} e'+V+p & {\rm elastic} \\ e'+V+X & {\rm inelastic} \end{array} \right.$$

Gluon fluctuations from inelastic diffraction Frankfurt, Strikman, Treleani, CW, PRL **101**:202003, 2008

Jefferson Lab

• Dynamical origin of fluctuations

Scaling model

 $\mathsf{QCD}\xspace$ evolution

• Experimental studies HERA: Diffractive ρ^0 and ϕ

EIC: Quantitative studies of fluctuations

Quantum fluctuations: Inelastic diffraction

• Nucleon quantum many-body system: Partonic wave function has components with different particle number size, etc.

Usual DIS measures average parton density $\langle f \rangle = \sum_n f_n$

Can we observe quantum fluctuations? Frankfurt, Strikman, Treleani, CW, PRL **101**:202003, 2008

• Hard diffractive processes at small \boldsymbol{x}

Amplitude diagonal in partonic states $|n\rangle$, proportional to gluon density G_n

Fluctuations of G_n lead to dissociation cf. soft diffraction: Good, Walker 60, Miettinen, Pumplin 78

$$\omega_g \equiv \frac{\langle G^2 \rangle - \langle G \rangle^2}{\langle G \rangle^2} \; = \; \frac{d\sigma/dt \; (\gamma^* N \to V X)}{d\sigma/dt \; (\gamma^* N \to V N)} \bigg|_{t=0}$$

Quantum fluctuations: Dynamical origin

- Fluctuations challenge our understanding of nucleon structure and non-perturbative dynamics
- First estimate: Scaling model Close, Roberts, Ross 83: EMC effect

Fluctuations of nucleon size change normalization scale of non-perturbative gluon density μ^2 (gluon density) $\propto R^{-2}$

DGLAP evolution: Dispersion of gluon density changes with $x,\,Q^2$

• Fluctuations arise also from DGLAP evolution itself

Parton at given x and Q^2 can arise from lower scale partons through emission or no emission

Quantum fluctuations: Experimental studies

HERA H1 2009 exclusive vector mesons

• Experimental requirements

Forward detection of elastic protons and low-mass diffractive states at x < 0.01Accurate t measurements (coverage, resolution) for extrapolation $t \rightarrow 0$

• HERA: Diffractive ρ^0 and ϕ

Inelastic/elastic ratio comparable with scaling model prediction, but kinematic dependences not reproduced. . . likely needs fluctuations from DGLAP evolution

• EIC: Detailed studies of quantum fluctuations

Dedicated forward detectors also for DVCS, meson production

High luminosity permits fully differential measurements in x, Q^2, t

Summary and outlook

- Nucleon in QCD as quantum many-body system: Quantum fluctuations of parton densities
- Challenge understanding of non-perturbative QCD and nucleon structure
- Explore as next step after one-body densities (PDFs, GPDs)
- EIC will enable fully quantitative studies: Forward detection, luminosity
- Interesting theoretical questions: Formal operator definition, fluctuations from DGLAP evolution, . . .
- Fluctuations of parton densities affect other high-energy processes, e.g. rapidity gap survival probability in diffractive *pp* scattering Frankfurt, Strikman, Treleani, CW, PRL **101**:202003, 2008; Frankfurt, Hyde, Strikman, Weiss, PRD **75**:054009, 2007