Exclusive J/ψ production and gluonic structure

C. Weiss (JLab), Exclusive Meson Production Workshop, JLab, 22–24 Jan 2015

- Quarkonium size and structure
 Parametric: Dynamical scales
 Numerical: Potential models, Lattice QCD

- J/ψ photo/electroproduction at $W \gg W_{th}$
 FNAL, COMPASS, HERA, EIC
 Space–time picture in rest frame
 GPD as color dipole moment of nucleon
 “Gluon imaging” of nucleon

- J/ψ photo/electroproduction near threshold
 Cornell, SLAC, JLab 12 GeV
 Kinematics of large t_{min}, x
 Gluonic form factor of nucleon
 Nuclear targets
 Connections: Small–size configurations, high–Q^2 meson production, high–t form factors, color transparency . . .
Heavy quarkonium: Scales and size

- **Parametric: Non–relativistic system**

 Cf. Positronium in QED, \(v \sim \alpha_{em} \)

 \[
 m \gg mv \gg mv^2
 \]

 mass \quad momentum, \quad inv. size \quad binding energy

 Effective field theory approach:
 Non–relativistic QCD, \(mv^n \) expansion

 Lepage et al 92; Manohar 97; Brambilla 2000; Kniehl et al. 2002

- **Numerical: Potential models**

 Eichten et al. 75; Quigg, Rosner 77

 Typical \(c \bar{c} \) distances \(r \sim 0.2–0.3 \text{ fm} \ll 1 \text{ fm} \)

 Transverse size in light–cone wave function
 \(\langle r_T^2 \rangle = 2/3 \langle r^2 \rangle \)

 High–momentum components with \(k \gtrsim m \)
 account for \(\sim 30\% \) of \(R_{00}(r = 0) \)
 \(\rightarrow \) Decays

 \(J/\psi \) “moderately small,” relativistic
Heavy quarkonium: Size from lattice QCD

- Charmonium form factors

Separate ground ↔ excited states using matrix of correlation functions
Dudek et al. 06 → Light quarks, hybrid mesons

Artificial J/ψ "charge form factor" from current with $c \neq \bar{c}$ coupling

J/ψ charge radius $\langle r^2 \rangle^{1/2} \approx 0.26$ fm

Also η_c, radiative transitions
Heavy quarkonium: Probe of color field

- Use heavy quarkonium as probe of color fields in light hadrons

 Fields change with incident energy, size of $Q\bar{Q}$ configurations

 Multipole expansion: Dipole $+$ \ldots

- Exclusive photo/electroproduction

 Target recoils: Gluonic form factor

 Q^2 tests/changes “mix” of $Q\bar{Q}$ sizes

 Theoretical challenges! Separate structures of target and probe (factorization), model gluonic structure of target

- Quarkonium–hadron rescattering

 Theoretically simpler, but difficult to realize at low energies!
Photoproduction: Kinematics

- Exclusive production $\gamma N \rightarrow J/\psi + N$

 Invariant momentum transfer grows near threshold $|t_{\text{min,th}}| = 2.2 \text{ GeV}^2$

- Light–cone variables

 ζ “Plus” momentum transfer, cf. x_B
 large near threshold, but not $x \rightarrow 1!$

 Δ_T Transverse momentum transfer

 $$t = - (\zeta^2 m_N^2 + \Delta_T^2)/(1 - \zeta)$$

- Two regimes

 $W \approx W_{\text{th}}$ \hspace{1cm} $t_{\text{min}} = 1$–2 GeV^2, ζ large
 cf. nucleon elastic form factors
 Cornell, SLAC, JLab 12 GeV

 $W \gg W_{\text{th}}$ \hspace{1cm} t_{min} negligible, $\zeta \ll 1$
 cf. diffractive processes
 FNAL, COMPASS, HERA, EIC
High W: QCD factorization and dipole picture

- **QCD factorization theorem**
 Collins, Frankfurt, Strikman 96

 Collinear factorization of amplitude
 GPD \times Hard scattering \times Meson dist. amp.

 GPD as transition matrix element of twist–2 operator: Gluonic form factor of nucleon
 $x_1 = x_2, t = 0$: Usual gluon density

- **Space–time picture in rest frame**
 Brodsky et al. 94

 Coherence length $l_{\text{coh}} \gg 1$ fm

 $A = \int d^2 r_T \psi_\gamma(r_T) A_{QQN}(r_T) \psi_{J/\psi}(r_T)$

 $\propto r_T^2 \alpha_s \text{GPD}(\text{Scale } \propto r_T^{-2})$

 Distribution of $Q\bar{Q}$ sizes determined dynamically, changes with energy, electroproduction Q^2

 Cf. Color transpareny

 GPD as transition color dipole moment

\[
\langle N' | F_{+i}(0) F_{+i}(z^-) | N \rangle
\]

$z^2 = 0$ light–like distance

Integrand

Size distribution in integral, McDermott et al. 00

Small sizes ~ 0.1 fm

Run fixed mass

Running mass

$N \rightarrow \text{GPD} \rightarrow N$
High W: Data and interpretation

- J/ψ photo/electroproduction at high W well understood HERA data, extensive literature

 Experimental tests of small–size regime
 Universality of t–slopes above $Q^2 \approx 10 \text{ GeV}^2$

 GPD/dipole calc’s describe cross sections
 Frankfurt et al. 95; Goloskokov, Kroll 08+; . . .

- Transverse spatial distribution of gluons

 Fourier $\Delta_T \to b$ impact parameter

 Distribution changes with x and scale Q^2:
 Parton diffusion, DGLAP evolution

 Fundamental gluonic size of nucleon in QCD:
 Gluon vs. quark radii, non–pert. dynamics

 Input for small–x physics:
 Evolution equations, saturation

 Needed for pp@LHC: Underlying event, multiparton processes, diffraction

Frankfurt, Strikman, CW 11, $Q^2 \approx 3 \text{ GeV}^2$
Near threshold: Reaction mechanism

- Near–threshold kinematics
 Large $|t_{\text{min}}|$, up to 2.2 GeV2
 Large longit. momentum transfer $x_1 - x_2 = \zeta$

- Reaction mechanism near threshold
 Strikman, CW, in progress
 $\gamma gg J/\psi$ vertex local on scale $R_{\text{nucl}} \sim 1$ fm
 Amp $\sim CF_{gg}(t)$ local gluonic form factor.
 Energy dependence through $F_{gg}(t_{\text{min}})$
 Consistent with existing low–energy data.
 Can be tested with JLab 12 GeV!

- Theoretical questions
 Matching collinear \leftrightarrow short–distance expansion?
 Quantum numbers of gluonic operator?
 Behavior of two–gluon form factor?
 Correlated configurations in nucleon LCWF?
 Cf. model of Brodsky, Chudakov, Hoyer, Laget 01
Near–threshold: Nuclei and ψN interaction

- Kinematics of ψN scattering

 \[t \approx 0 \] accessible at all \(W > W_{\text{th}} \)

 "Ideal process" for probing color fields in hadrons and nuclei!

- Physics of low–energy ψN interaction

 Operator expansion: Dipole–dipole interaction
 Fuji, Kharzeev 99

 Van–der–Waals force of QCD
 Brodsky, Miller 97

 Nuclear bound states?
 Brodsky, de Teramond 90; Luke, Manohar, Savage 92

- Near–threshold $\gamma A \rightarrow J/\psi + X$

 \[\frac{p_\psi}{m_\psi} \approx \frac{m_\psi}{2m_N} \]
 J/ψ fast, relativistic!

Produced J/ψ is fast —
How to study bound states?
Summary

- \(J/\psi \) as small–size probe of color fields in hadrons

 "moderately small," relativistic

- High–\(W \) photo/electroproduction at probes gluon GPD

 Transverse spatial distribution of gluons at fixed \(x \)

- Near–threshold photo/electroproduction probes local gluonic form factor

 Theory/phenomenology developing

 "New physics" accessible with JLab 12 GeV!

- \(J/\psi \) fast in photoproduction

 How to study low–energy \(\psi N \) interaction, bound states?

- Connections with other JLab 12 GeV experiments

 Small–size \(q\bar{q} \) configurations in high–\(Q^2 \) meson production

 High–\(t \) form factors — gluon vs. quark operators?

 Color transparency — different probes

 Nuclear short–range correlations — high–momentum components in WF