# F2(p,n,d) at the EIC - flavor separation at largish x -

# Alberto Accardi Hampton U. and Jefferson Lab

Large-x at the EIC

JLab, October 4<sup>th</sup>, 2016

## **Overview**

## A PDF landscape

## **State of the art at large** *x*: the CJ15 fit

NUCL/HEP symbiosi

Why EIC ?

## Simulations with F2(p) F2(d) and F2n(p-tagged)

- u/d flavor separation
- Bound nucleon structure
- Gluons

## Final thoughts

– What else can we do at EIC?

# A PDF landscape

Accardi, **PoS DIS2015 001** – "PDFs from protons to nuclei"

# Why PDFs ?

#### Accardi – Mod.Phys.Lett. A28 (2013) 35 Forte and Watt – Ann.Rev.Nucl.Part.Sci. 63 (2013) 291

### High-energy (large to small x)

- Beyond the Standard Model searches
- Precision (Higgs) physics
- NuTeV weak mixing angle
- Small-x and gluonic "matter"

## Hadron structure (large to medium x)

- Effects of confinement on valence quarks
- q qbar asymmetries; isospin asymmetry
- Strangeness, intrinsic charm

## Nuclear Physics

- Bound nucleons, EMC effect, SRC
- p+A and A+A collisions at RHIC / LHC
- Color propagation in nuclear matter



# A PDF landscape

#### Pert. order



# A nPDF landscape



# Needs the betrothal of HEP and NUCL

## A global approach across subfields



# New fitting methods

More computing power, efficient implementations

New fitting, analysis methods

Traditonal fits:

- Detailed  $\chi^2$  scans, refined statistical analysis
- Monte carlo fitting methods:
  - NNPDF: bootstrap + neural network fit
  - JAM: bootstrap + Iterative Monte Carlo (IMC) approach  $\rightarrow$  Sato, Ethier, et al. (2015 & 2016)

Large number of parameters, trustable uncertainty estimates

 $\Box$  Self organizing maps  $\rightarrow$  *Liuti et al.* 

# **Iterative Monte Carlo approach**

N.Sato at al [JAM], **PRD93 (2016) 074005** and **arXiv:1609.00899** 

- Provides control over large number of parameters
- Maximizes extraction of physics information from data



accardi@jlab.org

# Proton and neutron PDFs - the CJ15 global fit -

Accardi, Brady, Melnitchouk, Owens, Sato PRD93 (2016) 114017

PDFs available on: www.jlab.org/cj & LHAPDF

# The CJ15 fit at a glance

|            |                 |            |              | _                   |              |              | Large- <i>x</i> treatment |              |              | ent          |
|------------|-----------------|------------|--------------|---------------------|--------------|--------------|---------------------------|--------------|--------------|--------------|
|            | JLab &<br>BONUS | HER<br>MES | HERA<br>I+II | Tevatron<br>new W,Z | LHC          | ν+A<br>di-μ  | Nucl.                     | HT<br>TMC    | Flex<br>d    | low-W<br>DIS |
| CJ15 *     | $\checkmark$    | ✓          | $\checkmark$ | $\checkmark$        | in<br>prog.  | ×            | <b>√ √</b>                | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| CT14       |                 |            | DIS<br>2016  | 🗸 дд                | $\checkmark$ | $\checkmark$ |                           |              | ✓            |              |
| MMHT14     |                 |            | מממ          | 🖌 🕅                 | $\checkmark$ | $\checkmark$ | $\checkmark$              |              |              |              |
| NNPDF3.0   |                 |            |              |                     | $\checkmark$ | $\checkmark$ |                           | TMC<br>only  |              |              |
| JR14       | $\checkmark$    |            |              |                     | $\checkmark$ | <b>√</b>     | $\checkmark$              | $\checkmark$ |              |              |
| ABM15 **   |                 |            |              | 🗸 дд                | $\checkmark$ | ✓            | $\checkmark$              | $\checkmark$ |              | $\checkmark$ |
| HERAPDF2.0 |                 |            | $\checkmark$ | ¤                   |              |              |                           |              |              |              |

\* NLO only \*\* No jet data \* see 1503.05221 \*\*\* see 1508.06621 \*\* no reconstructed W

accardi@jlab.org

# New in CJ15

s-ACOT scheme for heavy flavors

#### New data:

- BONUS spectator tagged DIS
- HERA I+II combination
- HERMES F2
- High-statistics W-boson charge asymmetries from D0



### New off-shell nucleon treatment in deuteron targets (DIS <u>and DY</u>)

- Parametrized vs. modeled  $\rightarrow$  absorbs wave function uncertainty

# CJ15 - PDFs



- Hessian error analysis
  - Correlated errors where available

### Error bands displayed for

 $\Delta\chi^2 = 2.71$ 

(90% confidence level in a perfect, Gaussian world)

 $\Box$  NLO fit gives  $\chi^2/\text{datum} = 1.04$ 

LO fit much worse – cannot accommodate Q<sup>2</sup> dependence of data

# **NUCL / HEP symbiosis**

 $\Box$  W and Z  $\rightarrow$  constrain d-quark at largest x on proton targets





Compare to deuteron DIS

- → constrain deuteron corrections
- → Off shell correction first time in Deuteron!

#### ❑ Abundant DIS deuteron data → precise u, d flavor separation



14

# **NUCL / HEP symbiosis**

| Observable          | Experiment                            | # points |      |                      | $\chi^2$ |           |  |
|---------------------|---------------------------------------|----------|------|----------------------|----------|-----------|--|
|                     |                                       |          | LO   | NLO                  | NLO      | NLO       |  |
|                     |                                       |          |      |                      | (OCS)    | (no nucl) |  |
| DIS $F_2$           | BCDMS $(p)$ [81]                      | 351      | 430  | 438                  | 436      | 440       |  |
|                     | BCDMS $(d)$ [81]                      | 254      | 297  | 292                  | 289      | 301       |  |
|                     | SLAC $(p)$ [82]                       | 564      | 488  | 434                  | 435      | 441       |  |
| [                   | SLAC $(d)$ [82]                       | 582      | 396  | 376                  | 380      | 507       |  |
| DIS $F_2$ tagged    | Jefferson Lab $\left(n/d\right)$ [21] | 191      | 218  | <b>214</b>           | 213      | 219       |  |
| W/charge asymmetry  | CDF(e)[88]                            | 11       | 11   | <b>12</b>            | 12       | 13        |  |
|                     | DØ ( $\mu$ ) [17]                     | 10       | 37   | <b>20</b>            | 19       | 29        |  |
|                     | DO(e) [18]                            | 13       | 20   | 29                   | 29       | 14        |  |
|                     | CDF(W)[89]                            | 13       | 16   | 16                   | 16       | 14        |  |
|                     | DØ (W) [19]                           | 14       | 39   | 14                   | 15       | 82        |  |
| Z rapidity          | CDF(Z)[90]                            | 28       | 100  | 27                   | 27       | 26        |  |
|                     | DO(Z) [91]                            | 28       | 25   | 16                   | 16       | 16        |  |
|                     |                                       | -        |      |                      |          |           |  |
| Drell-Yan           | $E866 \ (pp) \ [29]$                  | 121      | 148  | 139                  | 139      | 145       |  |
|                     | $E866 \ (pd) \ [29]$                  | 129      | 207  | $\left( 145 \right)$ | 143      | 158       |  |
|                     |                                       | -        | -    |                      |          |           |  |
| $\chi^2/{ m datum}$ |                                       |          | 1.33 | 1.04                 | 1.04     | 1.09      |  |

accardi@jlab.org

# **NUCL / HEP symbiosis**

| Observable         | Experiment                            | # points |     |                   | $\chi^2$ |           |  |
|--------------------|---------------------------------------|----------|-----|-------------------|----------|-----------|--|
|                    |                                       |          | LO  | NLO               | NLO      | NLO       |  |
|                    |                                       |          |     |                   | (OCS)    | (no nucl) |  |
| DIS $F_2$          | BCDMS $(p)$ [81]                      | 351      | 430 | 438               | 436      | 440       |  |
|                    | BCDMS $(d)$ [81]                      | 254      | 297 | 292               | 289      | 301       |  |
|                    | SLAC $(p)$ [82]                       | 564      | 488 | 434               | 435      | 441       |  |
|                    | SLAC $(d)$ [82]                       | 582      | 396 | 376               | 380      | 507       |  |
| DIS $F_2$ tagged   | Jefferson Lab $\left(n/d\right)$ [21] | 191      | 218 | <b>214</b>        | 213      | 219       |  |
| W/charge asymmetry | CDF(e)[88]                            | 11       | 11  | 12                | 12       | 13        |  |
|                    | DØ ( $\mu$ ) [17]                     | 10       | 37  | 20                | 19       | 29        |  |
|                    | DO(e) [18]                            | 13       | 20  | 29                | 29       | 14        |  |
|                    | CDF(W)[89]                            | 13       | 16  | 16                | 16       | 14        |  |
|                    | DO(W) [19]                            | 14       | 39  | $\left(14\right)$ | 15       | 82        |  |
| Z rapidity         | CDF(Z)[90]                            | 28       | 100 | 27                | 27       | 26        |  |

If one ignores nuclear dynamics,

SLAC(d) and D0(W) pull *d* quark in opposite directions

- D0 (W) data determine nuclear corrections !!
- other asymmetries inconclusive by themselves
- BONUS data validate DO(W) analysis

# Hadronic physics output: d/u ratio



 $\square$  d-quark determined by p+p $\rightarrow$ W+X

#### Nuclear corrections dominant at large x

- SLAC(d)'s statistical power used to fit the off-shell function...
- ... and to improve d/u flavor separation, esp. at x<0.3 (see backup)</li>

# Hadronic physics output: d/u ratio

- → d/u ratio at high x of interest for nonperturbative models of nucleon
- → CJ15:

more flexible parametrization

 $d \ \rightarrow \ d \ + \ b \ x^c \ u$ 

allows finite, nonzero x = 1 limit

(standard PDF form gives 0 or  $\infty$  unless  $a_2^d = a_2^u$ )

x
MMHT14: fitted deuteron corrections
standard d parametrization
→ "UNDERCONSTRAINED"

0.4

### JR14 (and ABM12):

0.2

0.8

0.6

0.2

0

0

n/p 0.4

Similar deuteron corrections standard *d* ; no lepton/W asym. → "OVERCONSTRAINED"

CJ15 MMHT14

CT14

**JR14** 

0.6

0.8

SU(6)

DSE

helicity

- scalar qq

**CT14:**  $\beta_u = \beta_d \implies d/u$  finite No nuclear corrections

# **HEP output: BSM searches**

Observation of new physics signals requires accurate determination of QCD backgrounds, which depend on PDFs
 *e.g.*, heavy W' boson production at LHC

![](_page_18_Figure_2.jpeg)

- $3.4 \sigma$  excess in WZ diboson channel at ~ 2 TeV
- extended gauge model  $W' \rightarrow WZ$ with M < 1.5 TeV excluded at 95% c.l.

- For  $W'^-$  production the parton luminosity is

 $\mathcal{L}_{W'^{-}} \sim x_1 x_2 \Big[ \cos^2 \theta_C \big( d(x_1) \bar{u}(x_2) + s(x_1) \bar{c}(x_2) \big) \\ + \sin^2 \theta_C \big( s(x_1) \bar{u}(x_2) + d(x_1) \bar{c}(x_2) \big) \Big] + (x_1 \leftrightarrow x_2)$ 

 $\sim d(x_1) ar{u}(x_2)$  at large rapidity  $y_{W'}$ 

 $x_{1,2} = \frac{M_{W'}}{\sqrt{s}} e^{\pm y_{W'}}$ 

# **HEP output: BSM searches**

Observation of new physics signals requires accurate determination of QCD backgrounds, which depend on PDFs

Large-x uncertainties scale with masses

![](_page_19_Figure_3.jpeg)

 PDF uncertainty is small at low x, rises dramatically at large y for all M<sub>w</sub>

```
accardi@jlab.org
```

Why EIC?

## 1 - Data coverage for PDF fits

![](_page_21_Figure_1.jpeg)

## 1 - Data coverage for PDF fits

![](_page_22_Figure_1.jpeg)

## 1 - Data coverage for PDF fits

![](_page_23_Figure_1.jpeg)

# **Enters the EIC**

![](_page_24_Figure_1.jpeg)

Interpolates fixed target and HERA

- Large Q<sup>2</sup> leverage
  - More evolution at large x
  - Better separation of LT and HT
- $\square$  High luminosity  $\rightarrow$  large x capabilities

### **Unique at the EIC**

- "Easy" spectator tagging in DIS
  - Quasi-free neutron targets ← this talk
- Strong PID capabilities  $\rightarrow F_2^{c}, F_2^{cc}, ...$
- High luminosity  $\rightarrow$  PVDIS  $\rightarrow$  strange quarks, d/u, ...
- Unolarized & polarized scattering (also light ions)

# Preliminary simulations - impact of EIC on d,u,g -

In collaboration with:

- R. Ent, C. Keppel, K. Park, R. Yoshida (JLab),
- M. Wing (UC London)

# Can EIC help?

Flavor separation, nuclear corrections with F2(p) and F2(d)

- "bread and butter", but: how large in x, what precision?
- What impact on PDFs ?
- d-quarks wtithout nuclear corrections: F2(n)
  - possible with planned EIC spectator tagging capabilities
- Gluons through scaling violation
  - require range in both x, Q2
  - not currently possible at large x without the EIC
  - Don't forget jets!
- To begin investigating possibilities, we used rough projected data kinematics and uncertainties, and the "CJ" global PDF fit...

# Tagged structure functions at the EIC

![](_page_27_Figure_1.jpeg)

accardi@jlab.org

# **EIC:** full acceptance for forward physics

### Example: acceptance for p' in $e + p \rightarrow e' + p' + X$

![](_page_28_Figure_2.jpeg)

Huge gain in acceptance for forward tagging to measure  $F_2^n$  and diffractive physics!!!

accardi@jlab.org

# Spectator tagging at Jlab: quasi-free neutrons

N.Baillie et al., PRL 108 (2012) 199902

![](_page_29_Figure_2.jpeg)

# Spectator tagging at JLab12

- Neutron off-shellness depends on on spectator momentum:
  - Slow: nearly on-shell (BONUS12)
  - Fast: more and more off-shell (LAD)

![](_page_30_Picture_4.jpeg)

![](_page_30_Figure_5.jpeg)

# Spectator tagging at EIC: even better!

- measure neutron F<sub>2</sub> in D target
  - flavor separation

- measure proton F<sub>2</sub> in D target
  - Unique at colliders
  - Compare off-shell to free proton
  - Establish nuclear effects
  - Validate on-shell extrapolation techniques

### proton, neutron in light nuclei

embedding in nuclear matter
 (a piece of the EMC puzzle)

Large x at the EIC, 4 Oct 2016

 $^{6}He$ 

<sup>3</sup>H e

 $^{7}Li$ 

3ц

<sup>4</sup>H e

<sup>4</sup>H e

32

# (Tagged) neutron structure extrapolation in t

![](_page_32_Figure_1.jpeg)

t resolution better than 20 MeV, < fermi momentum</p>

- Resolution limited/given by ion momentum spread
- Allows precision extraction of F2n neutron structure function

# (Tagged) neutron structure extrapolation in t

![](_page_33_Figure_1.jpeg)

t resolution better than 20 MeV, < fermi momentum</p>

- Resolution limited/given by ion momentum spread
- Allows precision extraction of F2n neutron structure function

# (Tagged) neutron structure extrapolation in t

![](_page_34_Figure_1.jpeg)

# Projected data (so far) and impact on PDFs

So far, JLEIC 10x100 GeV<sup>2</sup> projections in bins 0.1 < x < 0.9 for:

✓ F<sub>2</sub><sup>p</sup>

 $\checkmark F_2^d$ 

- ✓  $F_2^n$  from deuterium with tagged proton spectator
- L
- Assume 1% systematic uncertainty
- $W^2 > 3.5 \text{ GeV}^2$  and  $Q^2 > 1.69 \text{ GeV}^2$  (standard CJ15 cuts)

Finally,

- fit projected data along rest of CJ15 data sets
- examine impact on d, u, g
- A simple study so far (first results from this summer )...

# Can EIC help?

![](_page_36_Figure_1.jpeg)

Compressed scale makes it somewhat difficult to see the experimental and fit uncertainties

Currently no cut in y:

- would loose a little bit in the high Q<sup>2</sup> range from y<ymax,</li>
- would loose some low Q<sup>2</sup>
   at large x from a y\_min cut,
   → impact on gluon fits ?
- requires more careful simulations, evaluation of systematic uncertainties

# 10/fb luminosity

![](_page_37_Figure_1.jpeg)

Top: improvement in relative PDF uncertainties compared to CJ15

• Bottom: relative uncertainties compared to CJ15

> Improvement in u impressive, but already small uncertainty

- Large improvement in d(x), ~50%
  - d/u tracks d
  - ~20% improvement in g(x)

# 100/fb luminosity

![](_page_38_Figure_1.jpeg)

- d quark precision will become comparable to current u!!
- CJ15- CJ15+F2p similar improvement in g(x)- CJ15+F2p+F2ntag- CJ15+F2p+F2ntag+F2d
  - The u quark uncertainty becomes less than ~1%; may be important for large mass BSM new particles.
  - With d quark nailed by F<sub>2</sub><sup>n</sup>, fitting F<sub>2</sub><sup>d</sup> data will explore details of nuclear effects

<sup>39</sup> 

## Improved d/u precision is good news

![](_page_39_Figure_1.jpeg)

• The d-quark goes from a few 10% to ~1% percent level

- Resolve long-standing mystery of d/u at large x,
   → Can explore in detail fundamental models nucleon structure
- D/(p+n) in one experiment for the first time
  - $\rightarrow$  unprecedented handle on nuclear medium modifications
  - $\rightarrow$  can quantitatively address interplay of hard scattering and (soft) nucleon dynamics
- Facilitate accurate neutron excess/isoscalar corrections
  - Important also for neutrino physics and nuclear PDFs

# Improved gluon precision is also good news

![](_page_40_Figure_1.jpeg)

- Gluons improve by a bit less than 10% per data set included, seemingly independent of luminosity
  - Gluons are accessed by the F<sub>2</sub> shape in Q<sup>2</sup>, so precision of each data point is not very important; lever arm in Q<sup>2</sup> matters most
- Energy scans at, say, 3+100 and 6+100 may improve up to 80%

   and also provide direct access of gluons thorugh F<sub>L</sub>.
- Need more work to confirm above

# Some final thoughts

# EIC has big potential

- EIC has excellent potential for
  - u, d, g flavor determination at large  $x \leftarrow \rightarrow$  hadronic structure
  - Revolutionizing nuclear structure studies using hard probes
     Needs more work, realistic systematics, grid optimization, y cuts, ...
- For discussion later: what's best to use in a QCD fit:
  - QCD cross sections at many energies
  - or, experimental extraction and fit of FL ?
- How much glue and strange can one get from QCD evolution w/o utilizing directly sensitive data (*i.e.*, on day 0, before E-scan?)
  - IMC analysis by JAM indicates non negligible info can be etracted if advanced techniques utilized in fits

# What else can we dream of doing at the EIC?

#### Isospin violations

- Play free neutrons from BONUS/EIC vs. free protons from D0 W-asym.

#### Strangeness from PVDIS

- Strange quarks are quaint: LHC vs fixed target; HERMES SIDIS; ...

#### Intrinsics charm

- Positive signal only from (contested) EMC data
- Take new and better data with EIC !

#### Large leverage in A – from light to heavy

- Combined PDF / nPDF fits
- Study propagation of charm in cold nuclei using nu+A dimuon data

### Polarized and unolarized data at large Q2 from same machine

– Another combined fit!

# Time for discussion!