PDFs from an EIC perspective

Alberto Accardi
Hampton U. and Jefferson Lab

Joint CTEQ meeting / POETIC 7
Temple U., 16 November 2016
Why PDFs?

- **High-energy** *(large to small x)*
 - Beyond the Standard Model searches
 - Precision (Higgs) physics
 - NuTeV weak mixing angle
 - Gluonic “matter” at small x

- **Hadron structure** *(large to medium x)*
 - Effects of confinement on valence quarks
 - $q - \bar{q}$ asymmetries; isospin asymmetry
 - Strangeness, intrinsic charm

- **Nuclear Physics**
 - Bound nucleons, EMC effect, SRC
 - $p + A$ and $A + A$ collisions at RHIC / LHC
 - Color propagation in nuclear matter
Why PDFs?

- **High-energy** *(large to small x)*
 - Beyond the Standard Model searches
 - Precision (Higgs) physics
 - NuTeV weak mixing angle
 - Gluonic “matter” at small \(x \)

- **Hadron structure** *(large to medium x)*
 - Effects of confinement on valence quarks
 - \(q - \bar{q} \) asymmetries; isospin asymmetry
 - Strangeness, intrinsic charm

- **Nuclear Physics**
 - Bound nucleons, EMC effect, SRC
 - \(p+A \) and \(A+A \) collisions at RHIC / LHC
 - Color propagation in nuclear matter
A PDF landscape

Pert. order

N3LO

“Do we need N³LO parton distributions?”
→ Forte et al., PLB 731 (2014)

Plenty of opportunities @ NLO

QED corrections

NNLO

Resummation(s)

NLO

On the way to “1% precision” for the LHC

Theory input (roughly x)

Quark-hadron duality

HERAPDF

CT

NNPDF

MMHT

JR

ABMP

CTEQ-JLab

LT

NUCL

TMC/HT

RESUM

NNPDF

Do we need N³LO parton distributions?”

"Do we need N³LO parton distributions?”

"Do we need N³LO parton distributions?”
A nPDF landscape

Atomic number

→ K. Kovarik

Much room for progress!

nCTEQ
DSSZ
EPS
HKN
Kulagin-Petti

nCTEQ
DSSZ
EPS
HKN
Kulagin-Petti

MMHT
ABMP / JR
CTEQ-JLab

LT
NUCL
TMC/HT
RESUM

x > 1, SRC, exotica

accardi@jlab.org Large x at the EIC, 16 Nov 2016
Needs the betrothal of HEP and NUCL

- A global approach across subfields

Diagram:*

- **Nuclear data**
- **HEP data**
- **New physics**
- **Hadron structure**
- **In-medium q & g**
- **Nuclear, hadron theory**

Flow arrows:
- PDFs
- pQCD
- Global QCD fits

Equations:
- θ

Additional text:

Needs the betrothal of HEP and NUCL

- A global approach across subfields
Enters the EIC

- The EIC is the machine to bind them all

- Global QCD fits

- Hadronic Physics

- HEP & BSM

- pQCD

- Nuclear Physics

- Global QCD fits
Enters the EIC

- Interpolates fixed target and HERA
- Large Q^2 leverage
 - More evolution at large x
 - Better separation of LT and HT
- High luminosity → large x capabilities

- EIC can “do it all”:
 - “Easy” spectator tagging in DIS
 - Strong PID capabilities: F_2^c, F_2^{cc}, Fragmentation Functions, ...
 - High luminosity → CC, PVDIS → d/u, strange quarks, dbar/ubar, ...
 - Unpolarized & polarized scattering (also light ions)
 - Nuclear targets → K. Kovarik
Example 1: Tevatron as NUCL facility (!)

Reconstructed $W \rightarrow$ constrain d-quark at largest x on proton targets

$A_W(y) \xrightarrow{x \rightarrow 1} \frac{1 - d/u(x_1)}{1 + d/u(x_1)}$

- Compare to abundant deuteron *DIS data:*
 - constrain deuteron corrections
 - precise u, d flavor separation
Example 1: Tevatron as NUCL facility (!)

Accardi, Brady, Melnitchouk, Owens, Sato, PRD93 (2016) 114017

- Two results in 1:
 - confinement at large x
 - off-shell corrections in deuteron PDFs
Example 2: large x PDFs at the EIC

Include **EIC projected data** in global fit:

- \(L = 100/\text{fb} \) @ 10x100 GeV\(^2\) energy
- \(F_2(\text{proton}), F_2(\text{deuteron}), F_2(\text{tagged neutron}) \) at \(0.1 < x < 0.9 \)
Example 2: large x PDFs at the EIC

Accardi, Ent, Keppel, Park, Yoshida – in progress

Results:
- The d quark precision will become comparable to current u !
- The u quark uncertainty becomes less than 1%
- 20% improvement in $g(x)$ through evolution

Can impact BSM searches, e.g., heavy W' boson production at LHC

- 3.4 σ excess in WZ diboson channel at ~ 2 TeV
- extended gauge model $W' \to WZ$ with $M < 1.5$ TeV excluded at 95% c.l.

$$\mathcal{L}_{W'} \to d(x_1) \bar{u}(x_2) \text{ at large } y_{W'}, \text{ or } M_{W'}$$

$$x_{1,2} \approx \frac{M_{W'}}{\sqrt{s}} e^{\pm y_{W'}}$$
Example 3: strange, strange quarks

- $\gamma + A \rightarrow \text{dimuons}$ vs. $p + p \rightarrow W + c$ at LHC

Alekhin et al., arXiv:1404.6469

Final state propagation of c quark / D meson

- Not quite under theoretical or phenomenological control, yet (cf. heavy quark “puzzle” in A+A at RHIC, LHC)
Example 3: strange, strange quarks

- Use PVDIS projected data at EIC
 → Y. Zhao [Mon]

\[A_L = \frac{G_F Q^2}{2 \sqrt{2} \pi \alpha} \left[g_5^{e} \frac{g_5^{\gamma Z}}{F_1^{\gamma}} + g_1^{e} \frac{Y_+ - g_1^{\gamma Z}}{F_1^{\gamma}} \right] \]

- Can constrain strange at ~20% level, and
 - Help resolve LHC vs. ν+A tension (also with RHIC W&Z, PVDIS@JLab12)
 - Study charm propagation in nuclear matter

accardi@jlab.org
Some final thoughts
EIC to bind them all

- EIC has excellent potential, for example, for
 - \textbf{u, d, g flavor determination at large }x\textbf{ } \leftrightarrow \textbf{hadronic structure, BSM}
 - \textbf{Strangeness} in complementary \(x\) range to LHC, similar to RHIC
 - \textbf{Revolutionizing nuclear physics studies using hard probes}
What else can we dream of doing at the EIC?

- **Isospin violations**
 - Play free n from BONUS/EIC vs. free p from D0, RHIC W-asym.

- **Intrinsics charm**
 - Positive signal only from (contested) EMC data
 - Take new and better data with EIC!

- **Large leverage in A – from light to heavy**
 - Combined PDF / nPDF fits \(\rightarrow K. Kovarik (?)\)
 - Structure of light nuclei, by contrast with heavy & p, d

- **Polarized and unpolarized data at large Q2 from same machine**
 - Another combined fit \(\leftarrow\rightarrow\) helicity separation

- **SIDIS & DIS (at large Q2) from same machine** \(\rightarrow N. Sato\)
 - Will reduce many uncertainties
 - Yet another combined fit \(\leftarrow\rightarrow\) flavor separation

- ...

accardi@jlab.org

Large \(x\) at the EIC, 16 Nov 2016