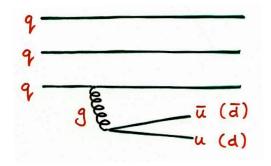
Large-x ("non-small x") Meeting Jefferson Lab, October 4, 2016

Pion structure from leading particle production

Wally Melnitchouk

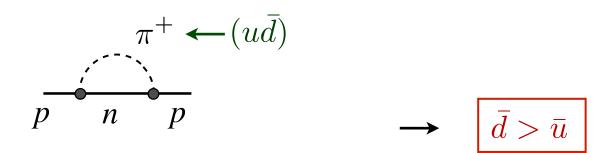
with Chueng Ji (NCSU), Josh McKinney (UNC), Nobuo Sato (JLab), Tony Thomas (Adelaide)

From perturbative QCD expect symmetric $q\bar{q}$ sea generated by gluon radiation into $q\bar{q}$ pairs (if quark masses are the same)

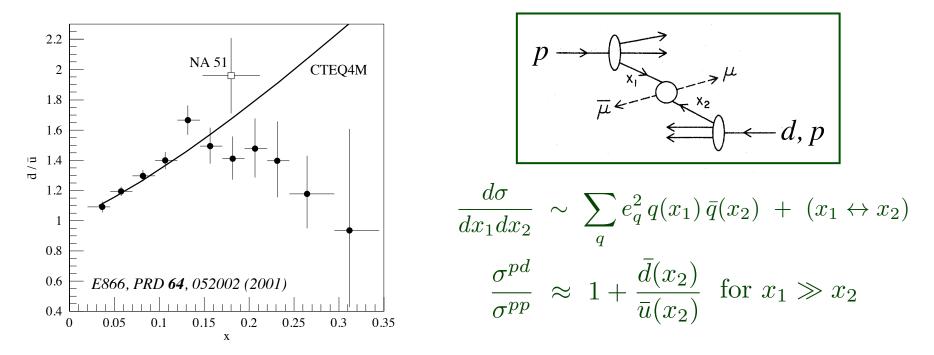


→ since u and d quarks nearly degenerate, expect flavor-symmetric light-quark sea $\bar{d} \approx \bar{u}$

In 1980s Thomas argued that chiral symmetry of QCD (important at low energies) should have consequences for antiquark PDFs in the nucleon (at high energies)



 Asymmetry spectacularly confirmed in high-precision DIS and Drell-Yan experiments

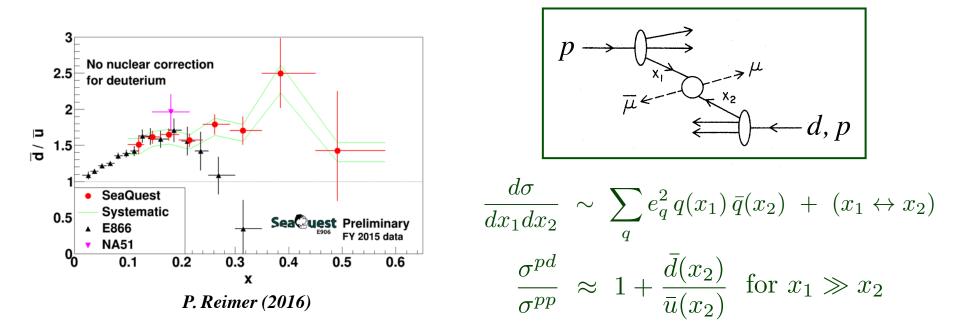


 strongly suggested role of chiral symmetry and pion cloud as central to understanding of nucleon's quark structure

$$(\bar{d} - \bar{u})(x) = (f_{\pi} \otimes \bar{q}_{\pi})(x)$$

pion distribution pion PDF in nucleon

 Asymmetry spectacularly confirmed in high-precision DIS and Drell-Yan experiments

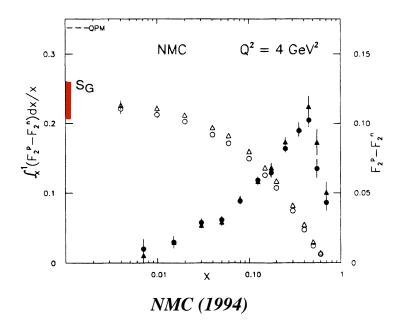


 strongly suggested role of chiral symmetry and pion cloud as central to understanding of nucleon's quark structure

$$(\bar{d} - \bar{u})(x) = (f_{\pi} \otimes \bar{q}_{\pi})(x)$$

pion distribution pion PDF in nucleon

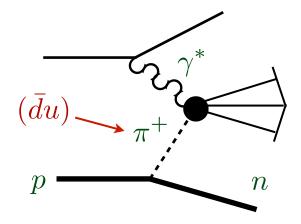
Asymmetry spectacularly confirmed in high-precision DIS and Drell-Yan experiments



$$\int_0^1 \frac{dx}{x} (F_2^p - F_2^n) = \frac{1}{3} - \frac{2}{3} \int_0^1 dx \, (\bar{d} - \bar{u})$$
$$= 0.235(26)$$

violation of Gottfried sum rule!

Sullivan process —
 DIS from pion cloud
 of the nucleon



Sullivan (1972)

Chiral effective theory

Early calculations used phenomenological models
 — more recently rigorous connection with QCD established via effective chiral field theory

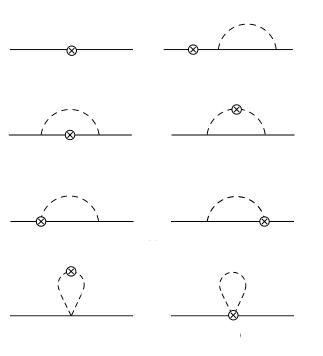
$$\mathcal{L}_{\text{eff}} = \frac{g_A}{2f_\pi} \, \bar{\psi}_N \gamma^\mu \gamma_5 \, \vec{\tau} \cdot \partial_\mu \vec{\pi} \, \psi_N - \frac{1}{(2f_\pi)^2} \, \bar{\psi}_N \gamma^\mu \, \vec{\tau} \cdot (\vec{\pi} \times \partial_\mu \vec{\pi}) \, \psi_N \qquad \text{Weinberg (1967)}$$

- \rightarrow lowest order πN interaction includes pion rainbow and tadpole contributions
- matching quark- and hadron-level operators

$$\mathcal{O}_q^{\mu_1\cdots\mu_n} = \sum_h c_{q/h}^{(n)} \ \mathcal{O}_h^{\mu_1\cdots\mu_n}$$

yields convolution representation

$$q(x) = \sum_{h} \int_{x}^{1} \frac{dy}{y} f_h(y) q_v^h(x/y)$$



Chiral effective theory

Early calculations used phenomenological models
 — more recently rigorous connection with QCD established via effective chiral field theory

$$\mathcal{L}_{\text{eff}} = \frac{g_A}{2f_\pi} \, \bar{\psi}_N \gamma^\mu \gamma_5 \, \vec{\tau} \cdot \partial_\mu \vec{\pi} \, \psi_N - \frac{1}{(2f_\pi)^2} \, \bar{\psi}_N \gamma^\mu \, \vec{\tau} \cdot (\vec{\pi} \times \partial_\mu \vec{\pi}) \, \psi_N \qquad \text{Weinberg (1967)}$$

→ expanding PDF moments in powers of m_{π} , coefficients of leading nonanalytic (LNA) terms are model-independent!

> Thomas, WM, Steffens (2000) Chueng Ji, WM, Thomas (2012)

→ nonanalytic behavior vital for chiral extrapolation of lattice data on PDF moments $\langle x \rangle_{u=d}^{\text{LNA}} \sim m_{\pi}^2 \log m_{\pi}^2$ Detmold et al. (2001)

Pion splitting functions

Spitting functions for various diagrams computed in chiral theory *e.g.* pion rainbow diagram

$$\frac{k}{p} \qquad \qquad f_{\pi}(y) = f^{(\mathrm{on})}(y) + f^{(\delta)}(y)$$

has on-shell (y > 0)and $\delta(y)$ contributions!

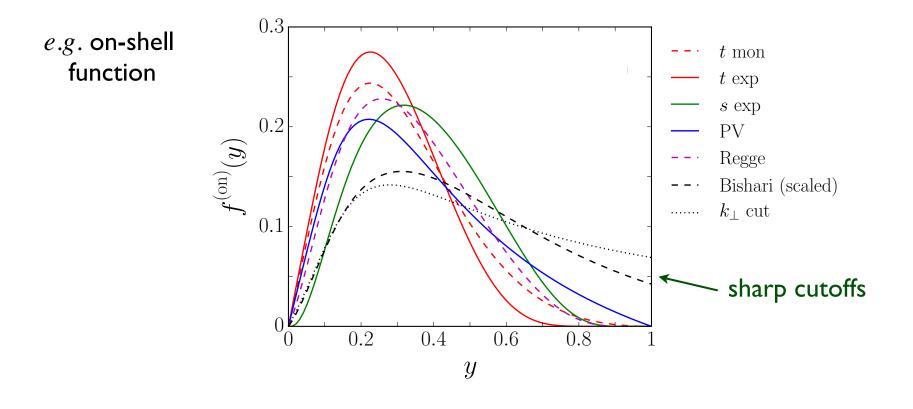
$$f^{(\text{on})}(y) = \frac{g_A^2 M^2}{(4\pi f_\pi)^2} \int dk_\perp^2 \frac{y(k_\perp^2 + y^2 M^2)}{\left[k_\perp^2 + y^2 M^2 + (1-y)m_\pi^2\right]^2}$$
$$f^{(\delta)}(y) = \frac{g_A^2}{4(4\pi f_\pi)^2} \int dk_\perp^2 \log\left(\frac{k_\perp^2 + m_\pi^2}{\mu^2}\right) \delta(y)$$

- For point-like nucleons and pions, integrals divergent
- → finite size of nucleon provides natural regularization scale (but does not prescribe form of regularization)

$$\mathcal{F} = \Theta(\Lambda^2 - k_{\perp}^2) \quad k_{\perp} \text{ cutoff} \qquad \qquad \mathcal{F} = \exp\left[(M^2 - s)/\Lambda^2\right] \quad s\text{-dep. exponential}$$
$$\mathcal{F} = \left(\frac{\Lambda^2 - m_{\pi}^2}{\Lambda^2 - t}\right) \quad t \text{ monopole} \qquad \qquad \mathcal{F} = \left[1 - \frac{(t - m_{\pi}^2)^2}{(t - \Lambda^2)^2}\right]^{1/2} \quad \text{Pauli-Villars}$$
$$\mathcal{F} = \exp\left[(t - m_{\pi}^2)/\Lambda^2\right] \quad t \text{ exponential} \qquad \qquad \mathcal{F} = y^{-\alpha_{\pi}(t)} \exp\left[(t - m_{\pi}^2)/\Lambda^2\right] \quad \text{Regge}$$

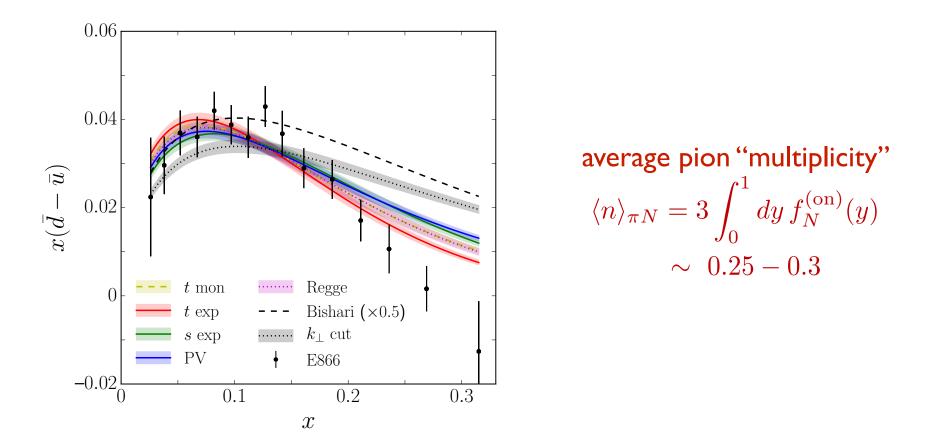
Pion splitting functions

Detailed shape of splitting function depends on regularization, but common general features



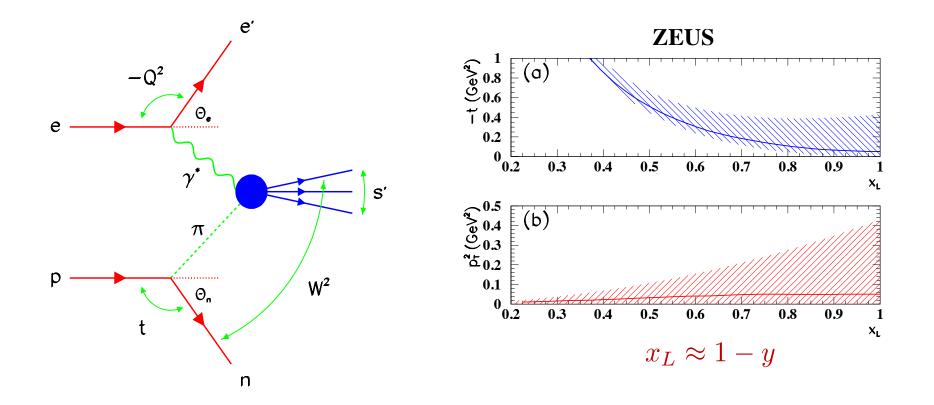
 $\mathcal{F} = \Theta(\Lambda^2 - k_{\perp}^2) \quad k_{\perp} \text{ cutoff} \qquad \qquad \mathcal{F} = \exp\left[(M^2 - s)/\Lambda^2\right] \quad s\text{-dep. exponential}$ $\mathcal{F} = \left(\frac{\Lambda^2 - m_{\pi}^2}{\Lambda^2 - t}\right) \quad t \text{ monopole} \qquad \qquad \mathcal{F} = \left[1 - \frac{(t - m_{\pi}^2)^2}{(t - \Lambda^2)^2}\right]^{1/2} \quad \text{Pauli-Villars}$ $\mathcal{F} = \exp\left[(t - m_{\pi}^2)/\Lambda^2\right] \quad t \text{ exponential} \qquad \qquad \mathcal{F} = y^{-\alpha_{\pi}(t)} \exp\left[(t - m_{\pi}^2)/\Lambda^2\right] \quad \text{Regge}$

Pion splitting functions



- \rightarrow with exception of k_{\perp} cutoff and Bishari models, all others give reasonable fits, $\chi^2 \lesssim 1.5$
- → are there other data that can be more discriminating?

■ ZEUS & H1 collaborations measured spectra of neutrons produced at very forward angles, $\theta_n < 0.8 \text{ mrad}$

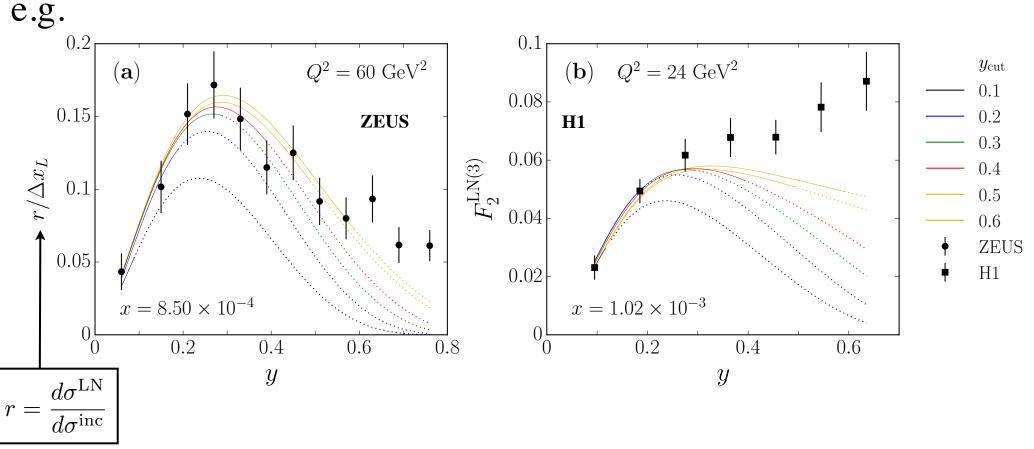


- \rightarrow can data be described within same framework as E866 asymmetry?
- \rightarrow simultaneous fit never previously been performed!

 \blacksquare Measured LN differential cross section (integrated over p_{\perp})

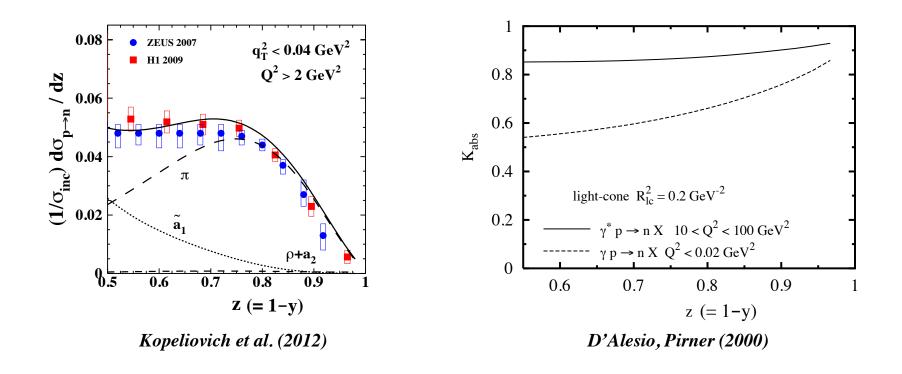
$$\frac{d^3 \sigma^{\text{LN}}}{dx \, dQ^2 \, dy} \sim F_2^{\text{LN}(3)}(x, Q^2, y)$$

$$2f_N^{(\text{on})}(y) F_2^{\pi}(x/y, Q^2) \text{ for } \pi \text{ exchange}$$



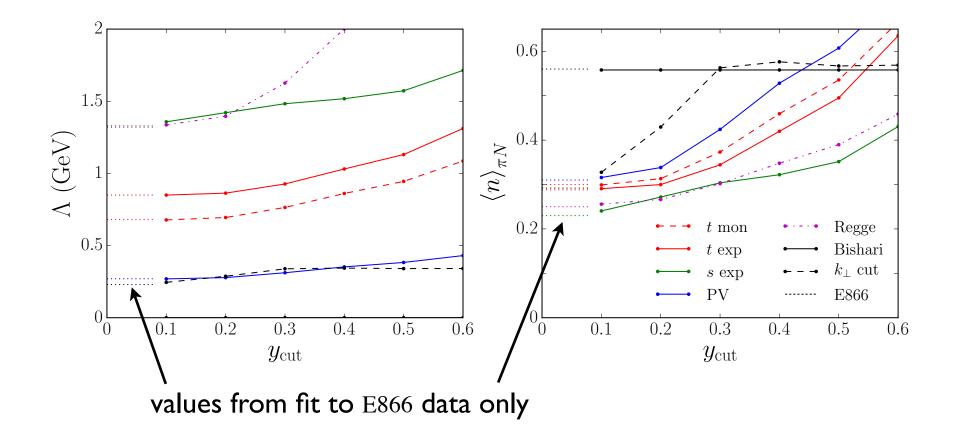
 \rightarrow quality of fit depends on range of y fitted

At large y non-pionic mechanisms contribute (e.g. heavier mesons, absorption)



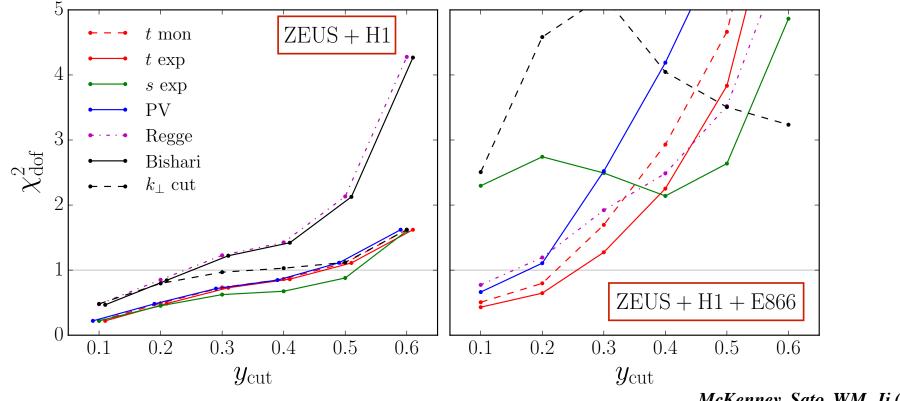
To reduce model dependence, fit the value of y_{cut} up to which data can be described in terms of π exchange

Fit requires higher momentum pions with increasing y_{cut}



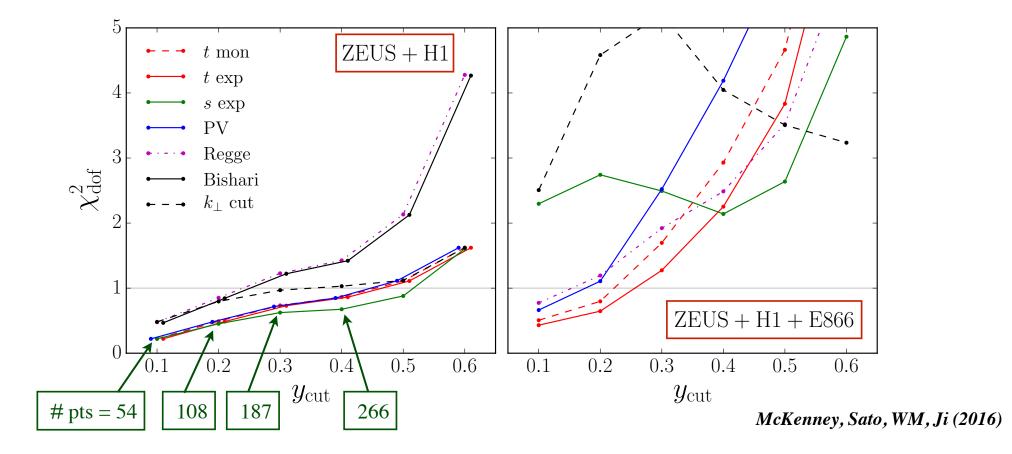
 \rightarrow larger values of y_{cut} more in conflict with E866 data

■ Combined fit to HERA LN and E866 Drell-Yan data



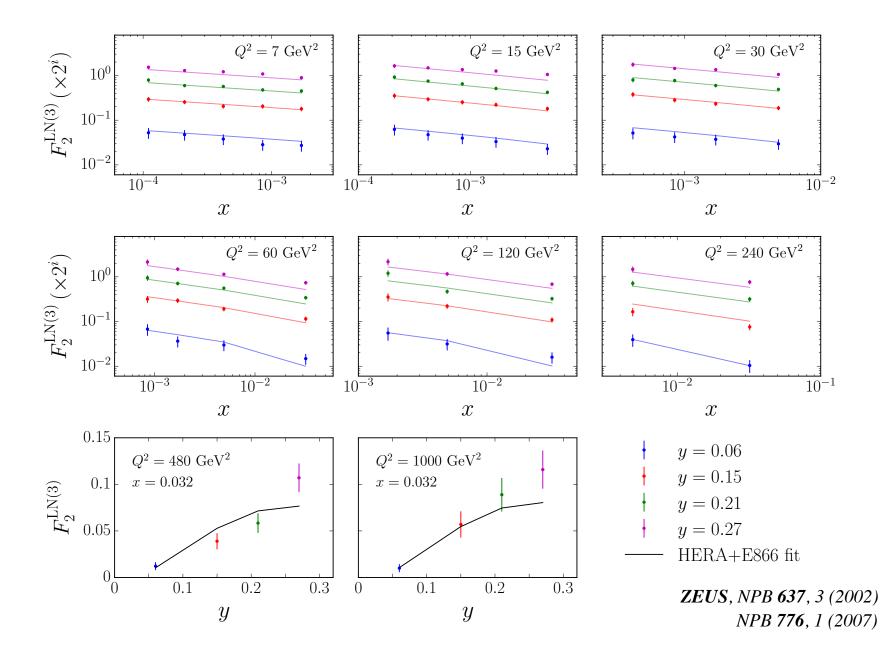
McKenney, Sato, WM, Ji (2016)

Combined fit to HERA LN and E866 Drell-Yan data

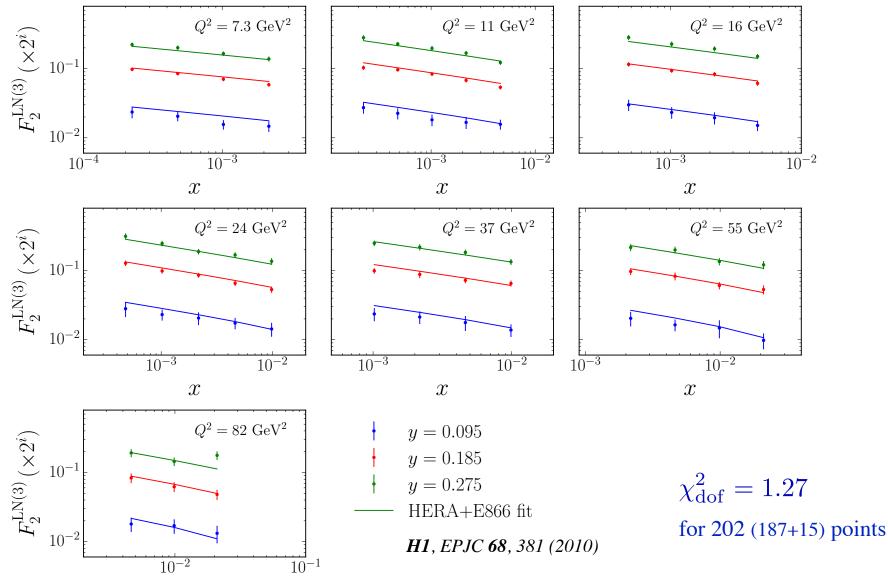


best fits for largest number of points afforded by
 t-dependent exponential (and t monopole) regulators

Fit to ZEUS LN spectra for $y_{cut} = 0.3$ (*t*-dependent exponential)

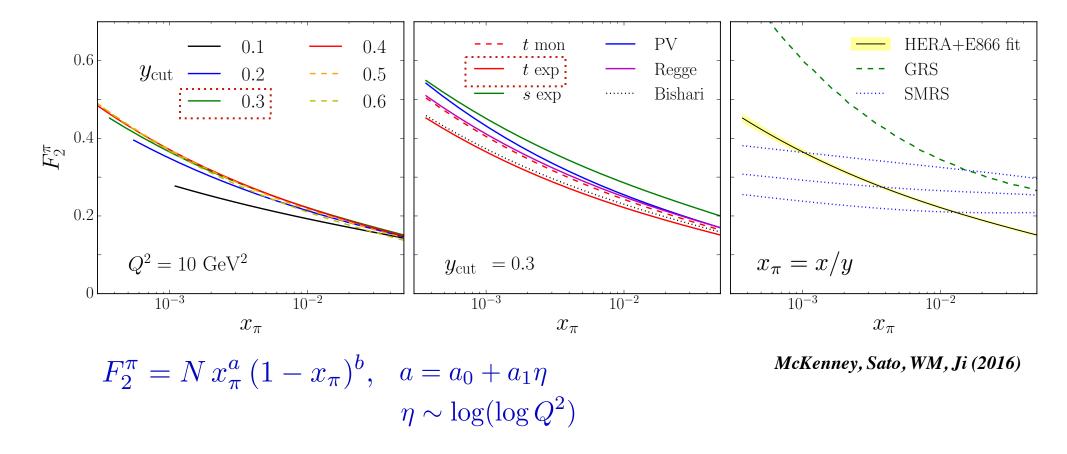


Fit to H1 LN spectra for $y_{cut} = 0.3$ (*t*-dependent exponential)



x

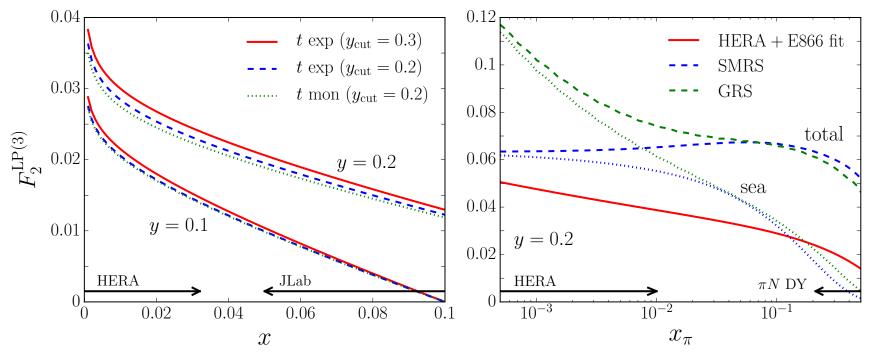
Extracted pion structure function



→ stable values of F_2^{π} at $4 \times 10^{-4} \lesssim x_{\pi} \lesssim 0.03$ from combined fit

→ shape similar to GRS fit to πN Drell-Yan data (for $x_{\pi} \gtrsim 0.2$), but smaller magnitude

Predictions at TDIS kinematics



McKenney, Sato, WM, Ji (2016)

→ JLab TDIS experiment can fill gap in x_{π} coverage between HERA and πN Drell-Yan kinematics

Outlook

- **Combined analysis can be extended by including** πN DY data
 - \rightarrow constrain large- x_{π} region $(x_{\pi} \gtrsim 0.2)$
- Generalize parametrization by fitting individual pion valence and sea quark PDFs, rather than F_2^{π}
- Longer-term goal is to use all data sensitive to pion structure (including TDIS, EIC) to constrain pion PDFs over full range $10^{-4} \leq x_{\pi} \leq 1$
 - → global analysis under way of HERA LN, Drell-Yan $\pi N + pd/pp$ (+ future JLab TDIS data) to determine pion PDFs at all x

Patrick Barry, Chueng Ji (NCSU), Nobuo Sato, WM (2016)