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Light quark sea

From perturbative QCD expect symmetric      sea generated
by gluon radiation into      pairs (if quark masses are the same)

qq̄
qq̄

In 1980s Thomas argued that chiral symmetry of QCD
(important at low energies) should have consequences for
antiquark PDFs in the nucleon (at high energies) 

+
PV PVp n p

⇡+ (ud̄)

d̄ > ū

since u and d quarks nearly degenerate,
expect flavor-symmetric light-quark sea

d̄ ⇡ ū



Light quark sea

Asymmetry spectacularly confirmed in high-precision DIS
and Drell-Yan experiments
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strongly suggested role of chiral symmetry and pion cloud
as central to understanding of nucleon’s quark structure
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Asymmetry spectacularly confirmed in high-precision DIS
and Drell-Yan experiments

strongly suggested role of chiral symmetry and pion cloud
as central to understanding of nucleon’s quark structure
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x=0. The fit yields the values 0=0.20~0.03 and b=0.59
+.0.06 and a contribution to SG of 0.013~0.005 (stat) forx(0.004. The quality of the fit is as good as that in Ref. [1]
and the result is insensitive to the upper limit of the fitted
range (up to x=0.40).
Summing the contributions from the measured and un-

measured regions we obtain for the Gottfried sum

SG=0.235 ~0.026.
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FIG. 1. The difference F~z F2 (ful—l symbols and scale to the
right) and J„'(F~z F2)dx/x —(open symbols and scale to the left) at
Q =4 GeV, as a function of x from the present reevaluation
(circles) and from Ref. [1] (triangles). The extrapolated result SG
from the present vmrk and the prediction of the simple quark-parton
model (OPM) are also shown.

uncertainty from the momentum calibration is reduced com-
pared to that given in Table 2 of Ref. [1], while the other
contributions are unchanged.
To evaluate the contributions to SG from the unmeasured

regions at high and low x, extrapolations of F2—Fz to x= 1
and x=0 were made using the same procedures as described
in Ref. [1]. The contribution from the region x&0.8 is
0.001~0.001. For the region x&0.004, the expression
ax, appropriate for a Regge-like behavior, was again fitted
to the data in the range 0.004&x&0.15 and extrapolated to

The error is the result of combining the statistical and sys-
tematic errors in quadrature, and including the effect of the
(correlated) systematic uncertainties on the extrapolations of
F2—F2 to x= 1 and x=0. This new value of SG agrees well
with that in Ref. [1].However, the total error given here is
larger than that quoted in Ref. [1]due to the more extensive
examination of the systematic uncertainties. Nevertheless,
the result for S& is significantly below the simple quark-
parton model value of 1/3, so that the conclusions of Ref. [1)
are unchanged.
The evaluation of the Gottfried sum at higher Q requires

large extrapolations of the measured values of Fz/F~z at low
x, which rapidly reduces the accuracy of Fz —F2. For this
reason a precise determination of the Gottfried sum from the
NMC data is restricted to Q around 4 GeV .
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Light quark sea

Asymmetry spectacularly confirmed in high-precision DIS
and Drell-Yan experiments

Sullivan process —
DIS from pion cloud
of the nucleon
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Chiral effective theory

Early calculations used phenomenological models
— more recently rigorous connection with QCD
     established via effective chiral field theory

lowest order       interaction includes
pion rainbow and tadpole contributions
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Early calculations used phenomenological models
— more recently rigorous connection with QCD
     established via effective chiral field theory
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expanding PDF moments in powers of      ,     
coefficients of leading nonanalytic (LNA) 
terms are model-independent!
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Spitting functions for various diagrams computed in chiral theory
e.g. pion rainbow diagram

Pion splitting functions
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and        contributions!
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For point-like nucleons and pions, integrals divergent
finite size of nucleon provides natural regularization scale
(but does not prescribe form of regularization)
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Detailed shape of splitting function depends on regularization, 
but common general features

e.g. on-shell
 function
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E866          data can be fitted with range of regulators.d̄� ū

are there other data that can be more discriminating?



Leading neutron production at HERA

ZEUS
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ZEUS & H1 collaborations measured spectra of neutrons
produced at very forward angles, 

xL ⇡ 1� y

✓n < 0.8 mrad

can data be described within same framework as E866 asymmetry?
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At large y non-pionic mechanisms contribute
(e.g. heavier mesons, absorption)
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Fit requires higher momentum pions with increasing ycut

values from fit to E866 data only
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Combined fit to HERA LN and E866 Drell-Yan data
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Fit to H1 LN spectra for               (t-dependent exponential)ycut = 0.3



Extracted pion structure function

stable values of      at                           from combined fitF⇡
2 4⇥10�4 . x⇡ . 0.03

shape similar to GRS fit to       Drell-Yan data (for             ),
but smaller magnitude
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Predictions at TDIS kinematics
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Outlook

Combined analysis can be extended by including       DY data⇡N

Generalize parametrization by fitting individual pion
valence and sea quark PDFs, rather than  F⇡

2

constrain large-     regionx⇡ (x⇡ & 0.2)

Longer-term goal is to use all data sensitive to pion structure 
(including TDIS, EIC) to constrain pion PDFs over full range 10�4 . x⇡ . 1

global analysis under way of HERA LN, Drell-Yan       + pd/pp 
(+ future JLab TDIS data) to determine pion PDFs at all x

⇡N

Patrick Barry, Chueng Ji (NCSU), Nobuo Sato, WM (2016)


