BONuS / TDIS Collaboration Meeting Jefferson Lab, December 12, 2016

New developments in tagged structure functions and PDF determination

Wally Melnitchouk

After almost 100 years of nuclear physics, what do we know about the nucleon?

 \rightarrow it has finite size

$$\left. \frac{d\sigma}{d\Omega} = \left. \frac{d\sigma}{d\Omega} \right|_{\text{point}} \times F^2(Q^2)$$

elastic form factor

Hofstadter (1955)

→ from slope of form factor at low Q^2 r.m.s. charge radius ~ 0.75×10^{-15} m

(precise value currently under hot debate!)

 \rightarrow at high Q^2 inelastic cross section looks point-like

$$\frac{d^2\sigma}{d\Omega dE'} = \left. \frac{d^2\sigma}{d\Omega dE'} \right|_{\text{point}} \left(2F_1 \tan^2 \frac{\theta}{2} + F_2 \right)$$

Friedman, Kendall, Taylor (1969)

structure functions

At high energies, scattering from point-like constituents • Fourier transform of $J_{\mu}(z)J_{\nu}(0)$ of nucleon

- - Fourier Series of a control of (Call Mann. 972)
 - estimules, where τ , so here $\pi \stackrel{\text{if }}{=} d - n$

 $N \cdot$

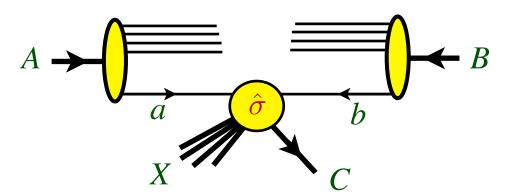
- \rightarrow series in $(-1)^{d}$, $(-1)^{d}$, (-"twist"
- Measurement of structure "twist" how nucleon is made up of multiplet
 - \rightarrow in Feynman's parton model structure functions given by parton distribution line
 - $F_{2} = x \sum_{\substack{a \in \overline{q} \\ a \in \overline{q}}} e^{\frac{2}{\overline{q}}} q(\underline{a}_{n}^{(2)} + \frac{A}{A})$ • $A_n^{(2)} =$ leading twist $q(x) = \underbrace{\text{probability distribution to find quark}}_{free mark scattorin during to find quark q^{\psi}}$ hascattering in nucleo $\psi \gamma_{\mu} \psi$ ree quark scattering $\cdot g \cdot \psi \gamma_{\mu} \psi$

In QCD, parton distributions are universal (process-independent)

→ established formally through factorization theorems (*e.g.* collinear, TMD, ...)

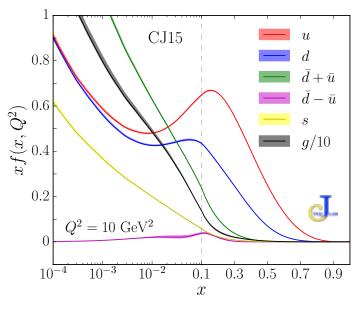
Collins, Soper, Sterman ("CSS"), 1980s

 → allows high-energy cross sections to be factorized into "hard scattering partonic cross sections" (calculated from QCD using perturbation theory), and "soft" matrix elements (parametrized via PDFs)

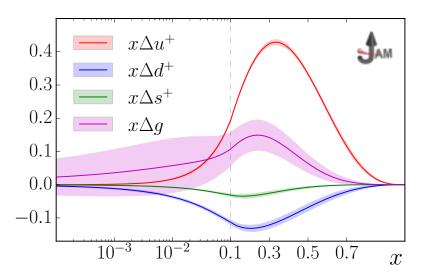


$$\sigma_{AB\to CX}(p_A, p_B) = \sum_{a,b} \int dx_a \, dx_b \, f_{a/A}(x_a, \mu) \, f_{b/B}(x_b, \mu) \\ \times \, \hat{\sigma}_{ab\to CX}(x_a p_A, x_b p_B, Q/\mu)$$

- Universality of PDFs allows data from many different processes (DIS, SIDIS, weak boson/jet production in *pp*, Drell-Yan, ...) to be analyzed simultaneously
 - → global QCD analyses of spin-averaged $(f = f^{\uparrow} + f^{\downarrow})$ and spin-dependent $(\Delta f = f^{\uparrow} - f^{\downarrow})$ PDFs
 - \rightarrow e.g. CTEQ-JLab (CJ), JLab Angular Momentum (JAM) Collaborations



CJ (Owens, Accardi, Keppel, WM...)



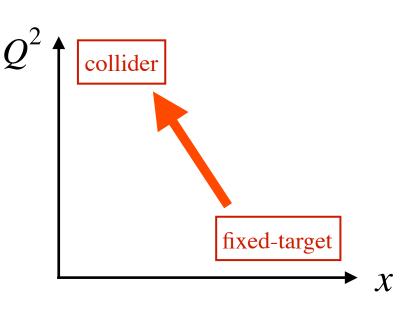
JAM (Sato, Ethier, WM...)

- Universality of PDFs allows data from many different processes (DIS, SIDIS, weak boson/jet production in *pp*, Drell-Yan, ...) to be analyzed simultaneously
 - → global QCD analyses of spin-averaged $(f = f^{\uparrow} + f^{\downarrow})$ and spin-dependent $(\Delta f = f^{\uparrow} - f^{\downarrow})$ PDFs
- *

Precision PDFs needed to

(1) understand basic structure of QCD bound states(2) compute backgrounds in searches for BSM physics

→ Q^2 evolution feeds low x, high Q^2 ("LHC") from high x, low Q^2 ("JLab")



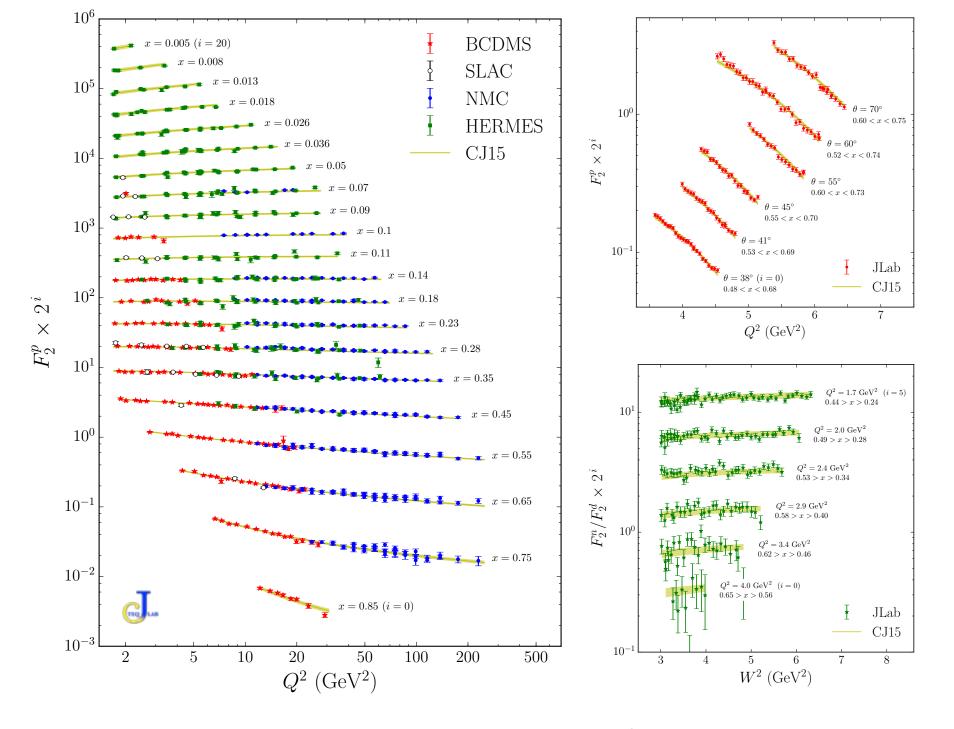
CJ15 global PDF analysis

- NLO analysis of expanded set of proton & deuterium data → include high-x region (x > 0.5)
- High-x region requires use of data at lower $W \& Q^2$
- Analysis of high-x data requires careful treatment of subleading $1/Q^2$ corrections
 - \rightarrow target mass corrections, higher twist effects
- □ Correct for nuclear effects in deuteron (binding + off-shell)
 - → binding + Fermi motion (well known), nucleon off-shell (less well known)
 - \rightarrow impact on d/u ratio in large-x region

data setsused in fit

Observable	Experiment	$\#\ {\rm points}$	χ^2					
			LO	NLO	NLO	NLO	NLO	
					(OCS)	(no nucl)	(no nucl/D0)	
DIS F ₂	BCDMS (p) [81]	351	430	438	436	440	427	
	BCDMS (d) [81]	254	297	292	289	301	301	
	SLAC (p) [82]	564	488	434	435	441	440	
	SLAC (d) [82]	582	396	376	380	507	466	
	NMC (p) [83]	275	431	405	404	405	403	
	NMC (d/p) [84]	189	179	172	173	174	173	
	HERMES (p) [86]	37	56	42	43	44	44	
	HERMES (d) [86]	37	51	37	38	36	37	
	Jefferson Lab $\left(p\right)$ [87]	136	166	166	167	177	166	
	Jefferson Lab (d) [87]	136	131	123	124	126	130	
DIS F_2 tagged	Jefferson Lab $\left(n/d\right)$ [21]	191	218	214	213	219	219 🗲	- BONuS F_2^n/F_2^d
DIS σ	HERA (NC e^-p) [85]	159	325	241	240	247	244	
	HERA (NC e^+p 1) [85]	402	966	580	579	588	585	
	HERA (NC e^+p 2) [85]	75	184	94	94	94	93	
	HERA (NC e^+p 3) [85]	259	307	249	249	248	248	
	HERA (NC e^+p 4) [85]	209	348	228	228	228	228	
	HERA (CC e^-p) [85]	42	44	48	48	45	49	
	HERA (CC e^+p) [85]	39	56	50	50	51	51	
Drell-Yan	$E866 \ (pp) \ [29]$	121	148	139	139	145	143	
	$E866 \ (pd) \ [29]$	129	207	145	143	158	157	
W/charge asymmetry	CDF (e) [88]	11	11	12	12	13	14	
	DØ (μ) [17]	10	37	20	19	29	28	- D0 A
	DØ(e) [18]	13	20	29	29	14	14	$=$ D0 A_l
	CDF(W)[89]	13	16	16	16	14	14	
	DØ(W)[19]	14	39	14	15	82	_ ←	$- D0 A_l$ $- D0 A_W$
Z rapidity	CDF(Z)[90]	28	100	27	27	26	26	
	DO(Z) [91]	28	25	16	16	16	16	
jet	CDF (run 2) [92]	72	33	15	15	23	25	
	DØ (run 2) [93]	110	23	21	21	14	14	
γ +jet	DØ 1 [94]	16	17	7	7	7	7	
	DØ 2 [94]	16	34	16	16	17	17	
	DØ 3 [94]	12	34	25	25	24	25	
	DØ 4 [94]	12	76	13	13	13	13	
total		4542	5894	4700	4702	4964	4817	
total + norm			6022	4708	4710	4972	4826	
χ^2/datum			1.33	1.04	1.04	1.09	1.07	

~ 4500 data points, with χ^2 per datum = 1.04

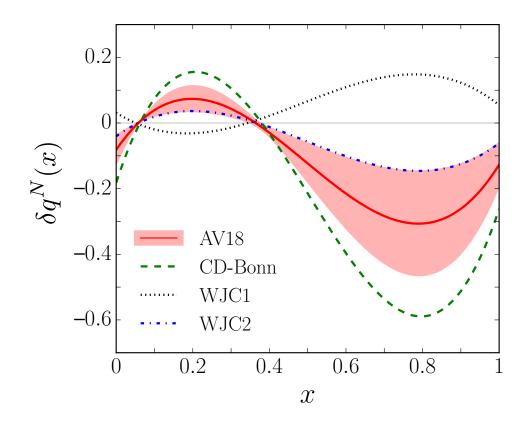


 \rightarrow excellent description over orders of magnitude in x and Q^2

Nuclear corrections

Nucleon off-shell correction parametrized phenomenologically

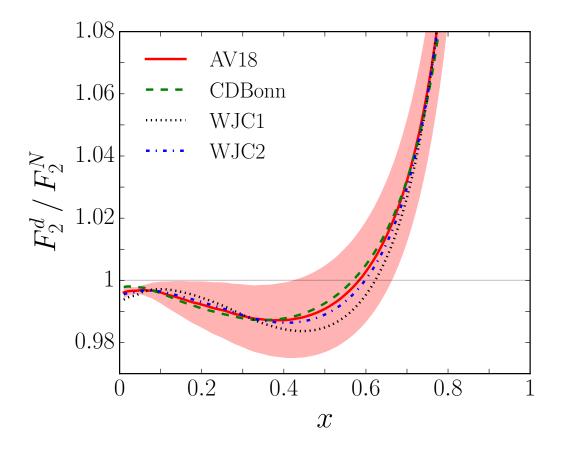
$$\delta q^N = C_N (x - x_0) (x - x_1) (1 + x - x_0)$$



→ fitted off-shell corrections weakly dependent on deuteron wave function, except for WJC-1 (hardest momentum distribution – largest tail)

Nuclear corrections

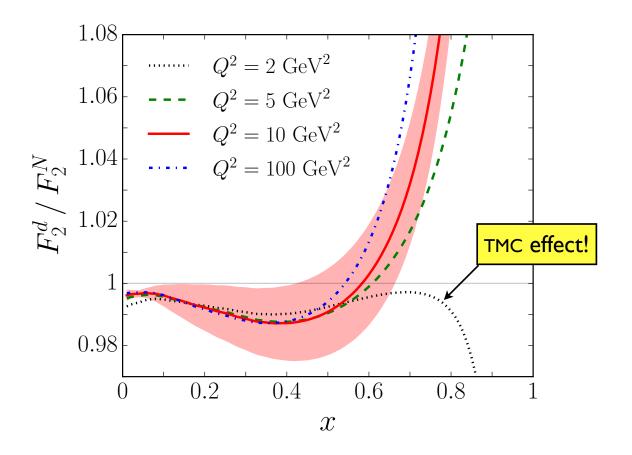
■ Nuclear "EMC ratio" in deuterium



- → observables sensitive only to combined smearing (wave function) and off-shell corrections
- \rightarrow no evidence for "antishadowing" at $x \sim 0.1$

Nuclear corrections

■ Nuclear "EMC ratio" in deuterium



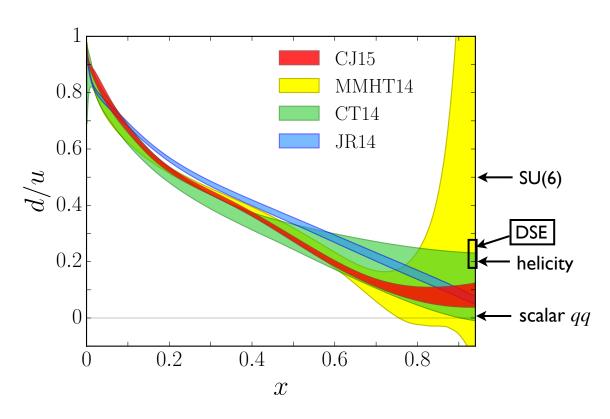
→ ratio has significant Q^2 dependence at low Q^2 from target mass effects – problematic to use universal ratio $R = F_2^d/F_2^N$ for all kinematics

Valence quark PDFs

- Valence d/u ratio at high x of particular interest
 - \rightarrow testing ground for nucleon models in $x \rightarrow 1$ limit
 - $d/u \rightarrow 1/2$ SU(6) symmetry
 - $d/u \rightarrow 0$ $S = 0 \ qq$ dominance (color-hyperfine interaction)
 - $d/u \rightarrow 1/5$

 $S_z = 0$ qq dominance (perturbative gluon exchange)

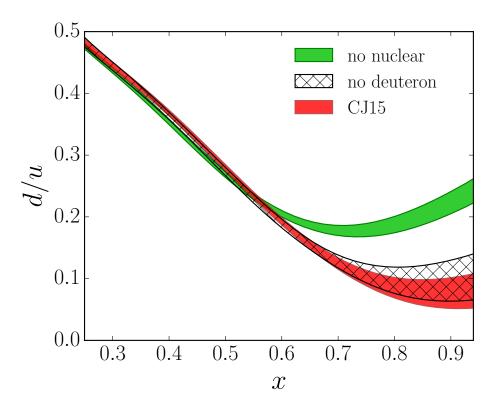
• $d/u \rightarrow 0.18 - 0.28$ DSE with qq correlations



considerable uncertainty
 at high x from deuterium
 corrections (no free neutrons!)

Valence quark PDFs

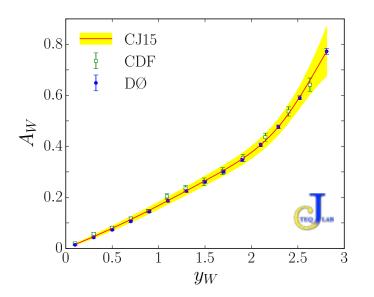
- Valence *d/u* ratio at high *x* of particular interest
 - nuclear corrections
 vital at large x
 - → omission would lead to significant overestimate of d/u at x > 0.6
 - \rightarrow deuterium data reduces uncertainties (at all x)

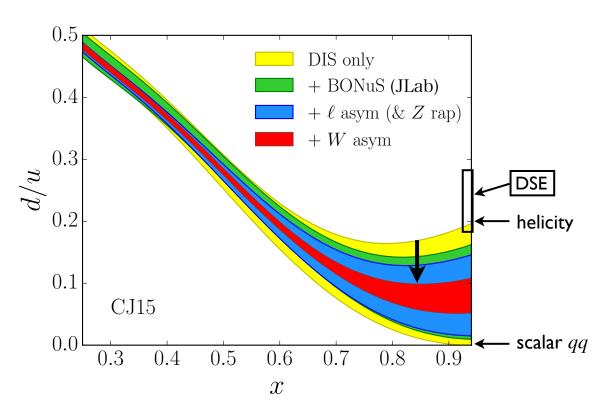


→ <u>note</u>: errors are 90% CL with no "tolerance" factor

Valence quark PDFs

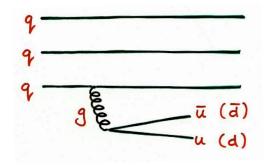
- Valence d/u ratio at high x of particular interest
 - → significant reduction of PDF errors with new JLab tagged neutron & FNAL W-asymmetry data





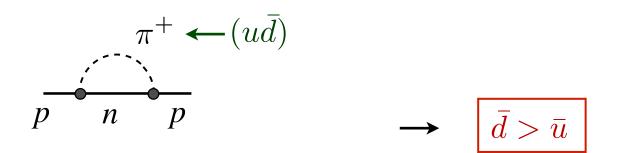
- → extrapolated ratio at x = 1 $d/u \rightarrow 0.09 \pm 0.03$ does not match any model!
- → upcoming experiments at JLab (MARATHON, BONUS, SoLID) will determine d/u up to $x \sim 0.85$

From perturbative QCD expect symmetric $q\bar{q}$ sea generated by gluon radiation into $q\bar{q}$ pairs (if quark masses are the same)

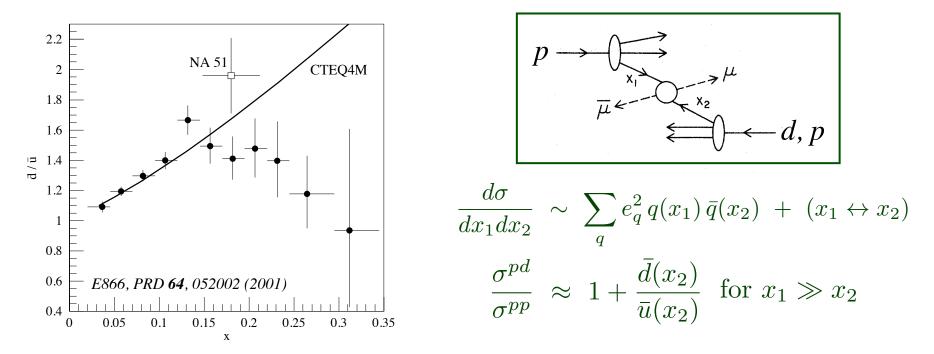


→ since u and d quarks nearly degenerate, expect flavor-symmetric light-quark sea $\bar{d} \approx \bar{u}$

In 1980s Thomas argued that chiral symmetry of QCD (important at low energies) should have consequences for antiquark PDFs in the nucleon (at high energies)



Asymmetry spectacularly confirmed in high-precision DIS and Drell-Yan experiments

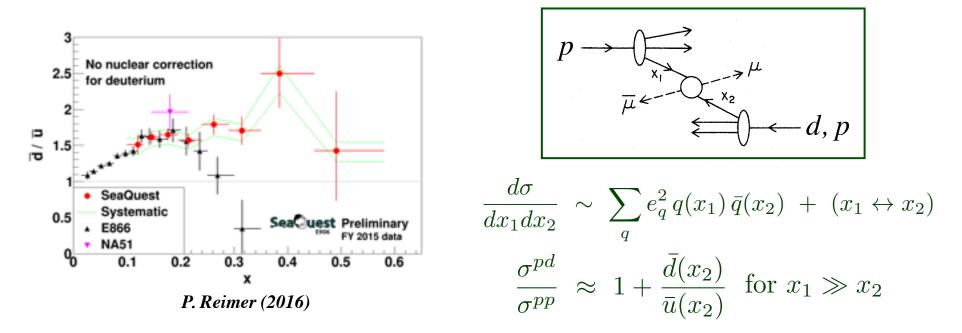


 strongly suggested role of chiral symmetry and pion cloud as central to understanding of nucleon's quark structure

$$(\bar{d} - \bar{u})(x) = (f_{\pi} \otimes \bar{q}_{\pi})(x)$$

pion distribution pion PDF in nucleon

Asymmetry spectacularly confirmed in high-precision DIS and Drell-Yan experiments

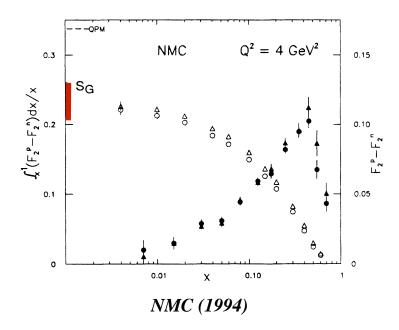


 strongly suggested role of chiral symmetry and pion cloud as central to understanding of nucleon's quark structure

$$(\bar{d} - \bar{u})(x) = (f_{\pi} \otimes \bar{q}_{\pi})(x)$$

pion distribution pion PDF in nucleon

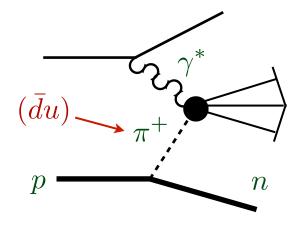
Asymmetry spectacularly confirmed in high-precision DIS and Drell-Yan experiments



$$\int_0^1 \frac{dx}{x} (F_2^p - F_2^n) = \frac{1}{3} - \frac{2}{3} \int_0^1 dx \, (\bar{d} - \bar{u})$$
$$= 0.235(26)$$

violation of Gottfried sum rule!

Sullivan process —
 DIS from pion cloud
 of the nucleon



Sullivan (1972)

Chiral effective theory

Early calculations used phenomenological models
 — more recently rigorous connection with QCD established via effective chiral field theory

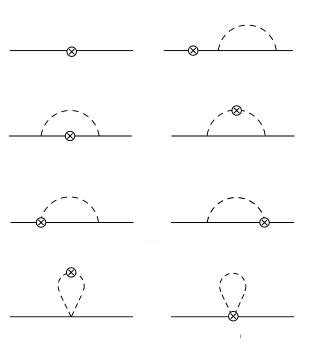
$$\mathcal{L}_{\text{eff}} = \frac{g_A}{2f_\pi} \, \bar{\psi}_N \gamma^\mu \gamma_5 \, \vec{\tau} \cdot \partial_\mu \vec{\pi} \, \psi_N - \frac{1}{(2f_\pi)^2} \, \bar{\psi}_N \gamma^\mu \, \vec{\tau} \cdot (\vec{\pi} \times \partial_\mu \vec{\pi}) \, \psi_N \qquad \text{Weinberg (1967)}$$

- \rightarrow lowest order πN interaction includes pion rainbow and tadpole contributions
- matching quark- and hadron-level operators

$$\mathcal{O}_q^{\mu_1\cdots\mu_n} = \sum_h c_{q/h}^{(n)} \ \mathcal{O}_h^{\mu_1\cdots\mu_n}$$

yields convolution representation

$$q(x) = \sum_{h} \int_{x}^{1} \frac{dy}{y} f_h(y) q_v^h(x/y)$$



Chiral effective theory

Early calculations used phenomenological models
 — more recently rigorous connection with QCD established via effective chiral field theory

$$\mathcal{L}_{\text{eff}} = \frac{g_A}{2f_\pi} \, \bar{\psi}_N \gamma^\mu \gamma_5 \, \vec{\tau} \cdot \partial_\mu \vec{\pi} \, \psi_N - \frac{1}{(2f_\pi)^2} \, \bar{\psi}_N \gamma^\mu \, \vec{\tau} \cdot (\vec{\pi} \times \partial_\mu \vec{\pi}) \, \psi_N \qquad \text{Weinberg (1967)}$$

→ expanding PDF moments in powers of m_{π} , coefficients of leading nonanalytic (LNA) terms are model-independent!

> Thomas, WM, Steffens (2000) Chueng Ji, WM, Thomas (2012)

→ nonanalytic behavior vital for chiral extrapolation of lattice data on PDF moments $\langle x \rangle_{u=d}^{\text{LNA}} \sim m_{\pi}^2 \log m_{\pi}^2$ Detmold et al. (2001)

Pion splitting functions

Spitting functions for various diagrams computed in chiral theory *e.g.* pion rainbow diagram

$$\frac{k}{p} \qquad \qquad f_{\pi}(y) = f^{(\mathrm{on})}(y) + f^{(\delta)}(y)$$

has on-shell $(y = k^+/p^+ > 0)$ and $\delta(y)$ contributions!

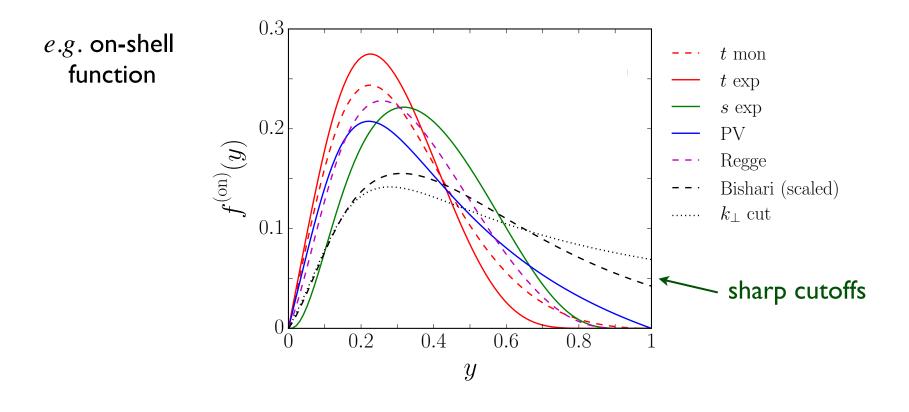
$$f^{(\text{on})}(y) = \frac{g_A^2 M^2}{(4\pi f_\pi)^2} \int dk_\perp^2 \frac{y(k_\perp^2 + y^2 M^2)}{\left[k_\perp^2 + y^2 M^2 + (1-y)m_\pi^2\right]^2}$$
$$f^{(\delta)}(y) = \frac{g_A^2}{4(4\pi f_\pi)^2} \int dk_\perp^2 \log\left(\frac{k_\perp^2 + m_\pi^2}{\mu^2}\right) \delta(y)$$

- For point-like nucleons and pions, integrals divergent
- → finite size of nucleon provides natural regularization scale (but does not prescribe form of regularization)

$$\mathcal{F} = \Theta(\Lambda^2 - k_{\perp}^2) \quad k_{\perp} \text{ cutoff} \qquad \qquad \mathcal{F} = \exp\left[(M^2 - s)/\Lambda^2\right] \quad s\text{-dep. exponential}$$
$$\mathcal{F} = \left(\frac{\Lambda^2 - m_{\pi}^2}{\Lambda^2 - t}\right) \quad t \text{ monopole} \qquad \qquad \mathcal{F} = \left[1 - \frac{(t - m_{\pi}^2)^2}{(t - \Lambda^2)^2}\right]^{1/2} \quad \text{Pauli-Villars}$$
$$\mathcal{F} = \exp\left[(t - m_{\pi}^2)/\Lambda^2\right] \quad t \text{ exponential} \qquad \qquad \mathcal{F} = y^{-\alpha_{\pi}(t)} \exp\left[(t - m_{\pi}^2)/\Lambda^2\right] \quad \text{Regge}$$

Pion splitting functions

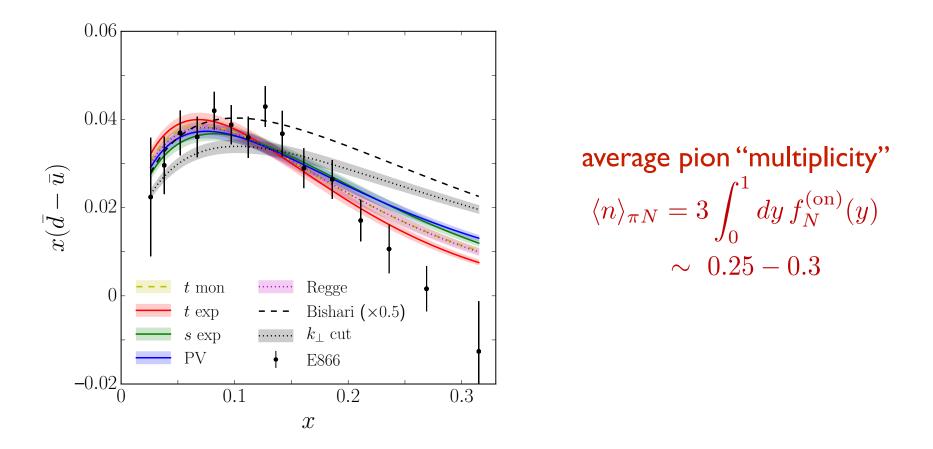
Detailed shape of splitting function depends on regularization, but common general features



 $\mathcal{F} = \Theta(\Lambda^2 - k_{\perp}^2) \quad k_{\perp} \text{ cutoff} \qquad \qquad \mathcal{F} = \exp\left[(M^2 - s)/\Lambda^2\right] \quad s\text{-dep. exponential}$ $\mathcal{F} = \left(\frac{\Lambda^2 - m_{\pi}^2}{\Lambda^2 - t}\right) \quad t \text{ monopole} \qquad \qquad \mathcal{F} = \left[1 - \frac{(t - m_{\pi}^2)^2}{(t - \Lambda^2)^2}\right]^{1/2} \quad \text{Pauli-Villars}$ $\mathcal{F} = \exp\left[(t - m_{\pi}^2)/\Lambda^2\right] \quad t \text{ exponential} \qquad \qquad \mathcal{F} = y^{-\alpha_{\pi}(t)} \exp\left[(t - m_{\pi}^2)/\Lambda^2\right] \quad \text{Regge}$

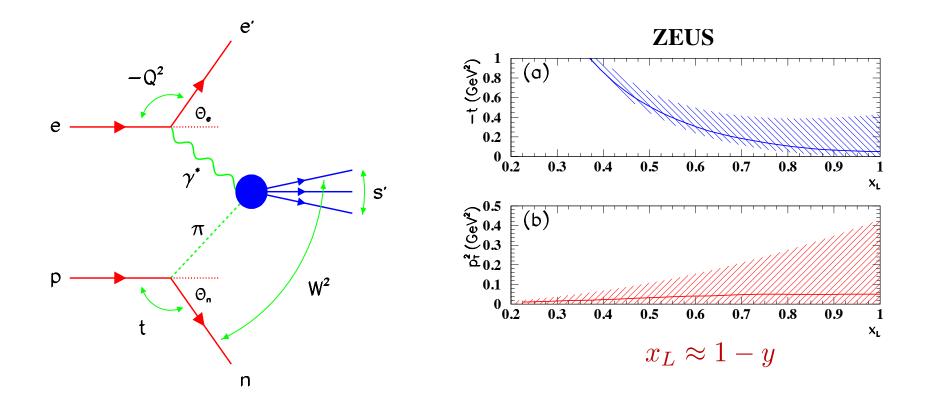
Pion splitting functions

E866 $d - \bar{u}$ data can be fitted with range of regulators



- \rightarrow with exception of k_{\perp} cutoff and Bishari models, all others give reasonable fits, $\chi^2 \lesssim 1.5$
- → are there other data that can be more discriminating?

■ ZEUS & H1 collaborations measured spectra of neutrons produced at very forward angles, $\theta_n < 0.8 \text{ mrad}$

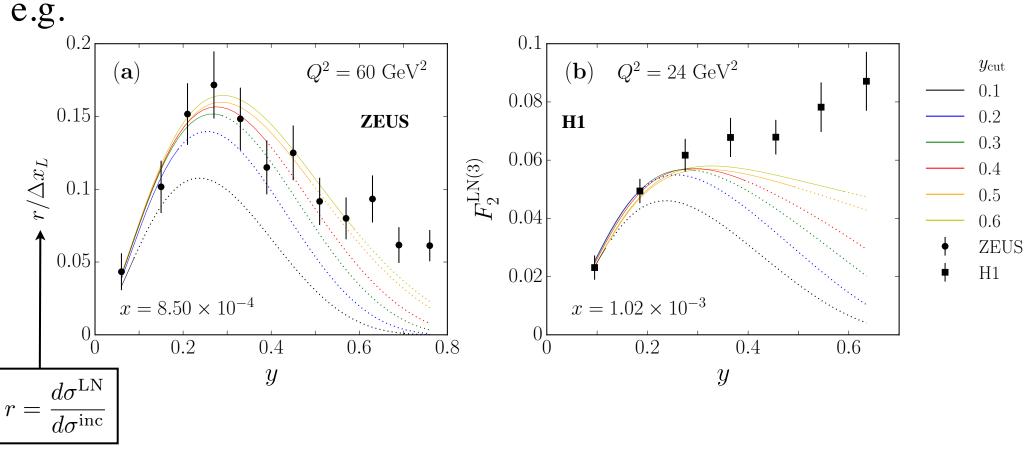


- \rightarrow can data be described within same framework as E866 asymmetry?
- \rightarrow simultaneous fit never previously been performed!

 \blacksquare Measured LN differential cross section (integrated over p_{\perp})

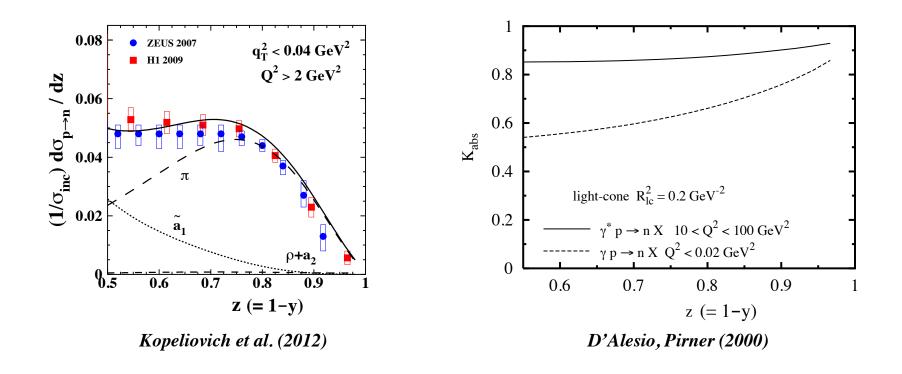
$$\frac{d^3 \sigma^{\text{LN}}}{dx \, dQ^2 \, dy} \sim F_2^{\text{LN}(3)}(x, Q^2, y)$$

$$2f_N^{(\text{on})}(y) F_2^{\pi}(x/y, Q^2) \text{ for } \pi \text{ exchange}$$



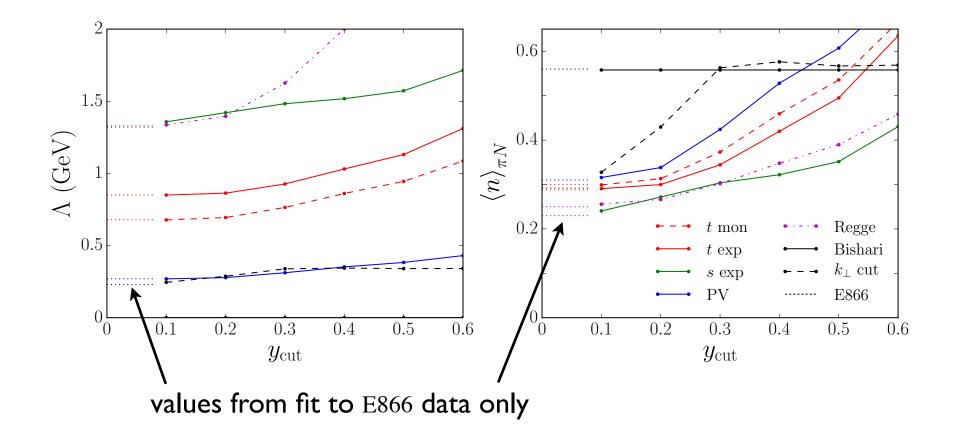
 \rightarrow quality of fit depends on range of y fitted

At large y non-pionic mechanisms contribute (e.g. heavier mesons, absorption)



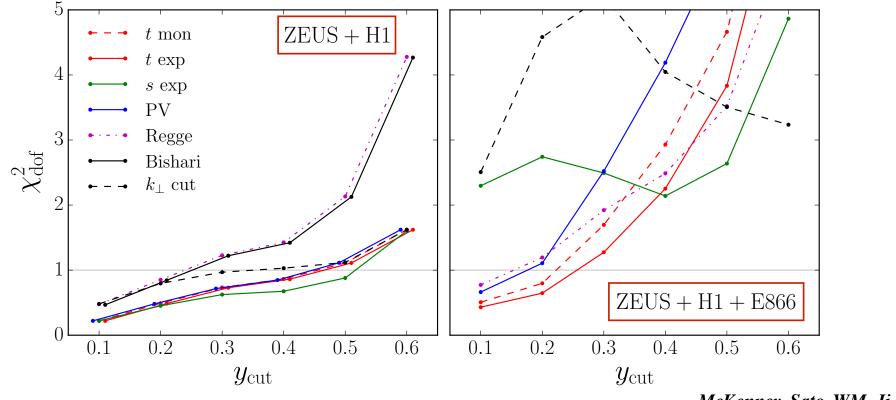
To reduce model dependence, fit the value of y_{cut} up to which data can be described in terms of π exchange

Fit requires higher momentum pions with increasing y_{cut}



 \rightarrow larger values of y_{cut} more in conflict with E866 data

■ Combined fit to HERA LN and E866 Drell-Yan data



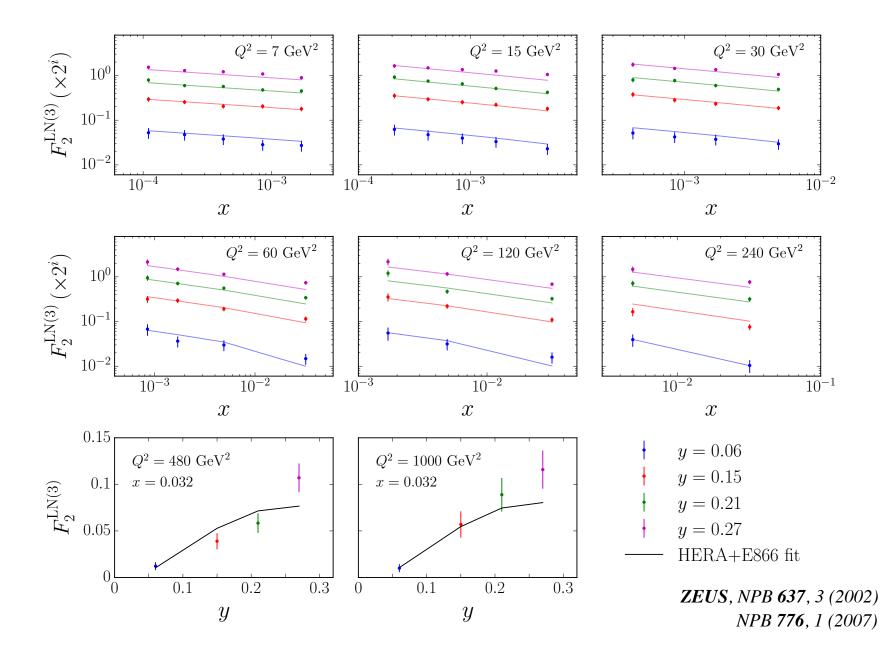
McKenney, Sato, WM, Ji (2016)

Combined fit to HERA LN and E866 Drell-Yan data

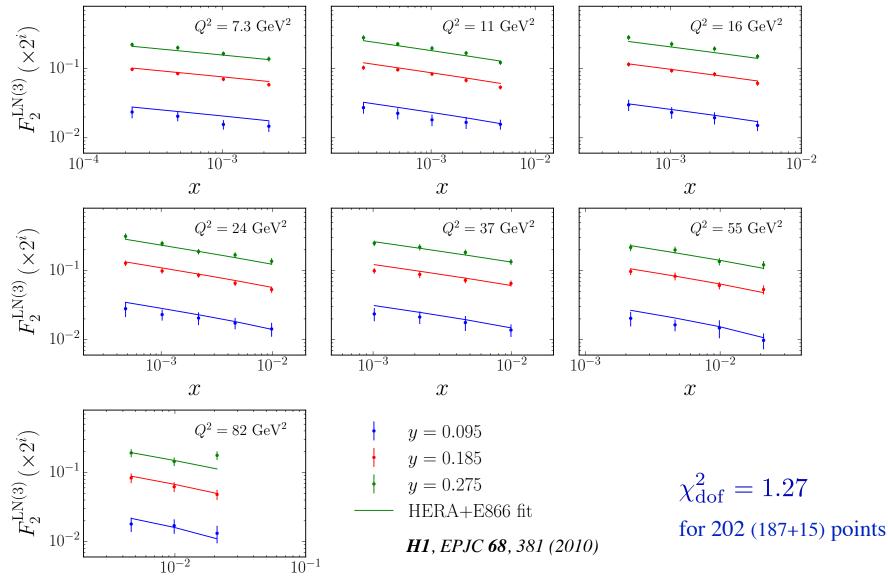


best fits for largest number of points afforded by
 t-dependent exponential (and t monopole) regulators

Fit to ZEUS LN spectra for $y_{cut} = 0.3$ (*t*-dependent exponential)

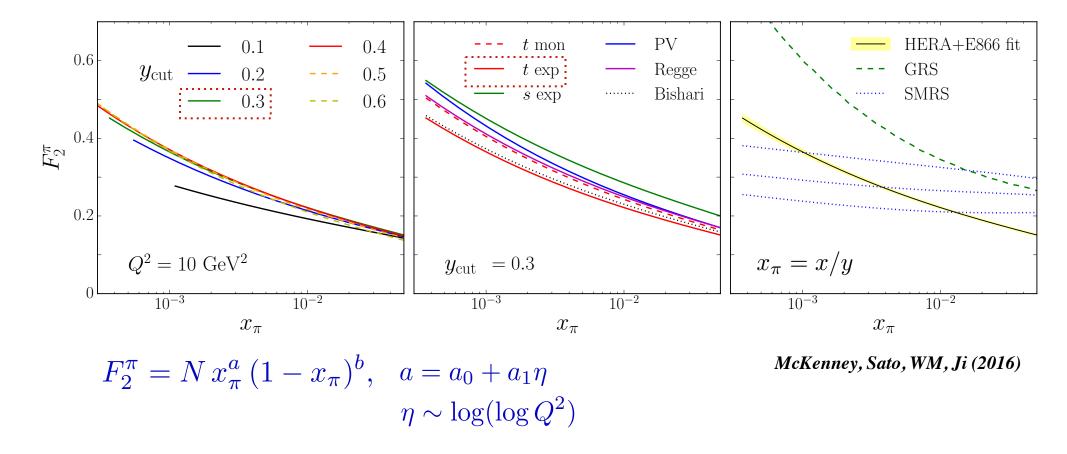


Fit to H1 LN spectra for $y_{cut} = 0.3$ (*t*-dependent exponential)



x

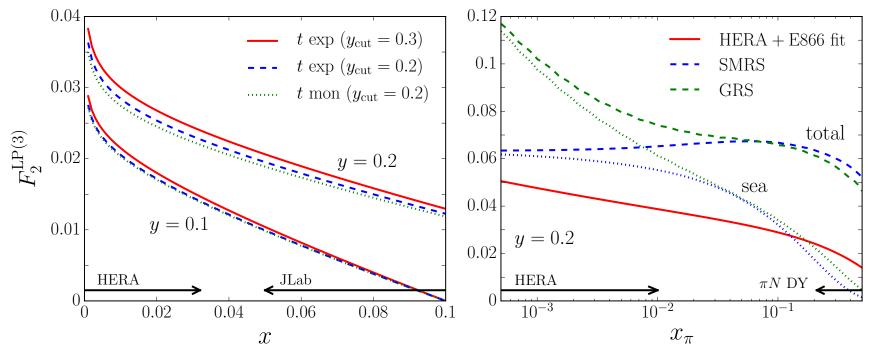
Extracted pion structure function



→ stable values of F_2^{π} at $4 \times 10^{-4} \lesssim x_{\pi} \lesssim 0.03$ from combined fit

→ shape similar to GRS fit to πN Drell-Yan data (for $x_{\pi} \gtrsim 0.2$), but smaller magnitude

Predictions at TDIS kinematics



McKenney, Sato, WM, Ji (2016)

 \rightarrow JLab TDIS experiment can fill gap in x_{π} coverage between HERA and πN Drell-Yan kinematics

Outlook

Combined analysis can be extended by including πN DY data

 \rightarrow constrain large- x_{π} region $(x_{\pi} \gtrsim 0.2)$

Generalize parametrization by fitting individual pion valence and sea quark PDFs, rather than F_2^{π}

Medium-term goal is to use all data sensitive to pion structure (including TDIS, EIC) to constrain pion PDFs over full range $10^{-4} \leq x_{\pi} \leq 1$

→ global analysis under way of HERA LN, Drell-Yan $\pi N + pd/pp$ (+ future JLab TDIS data) to determine pion PDFs at all x

Patrick Barry, Chueng Ji, Nobuo Sato, WM (2016)

Longer-term goal is to *simultaneously* fit nucleon and pion PDFs!