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Eternal Questions 

Where did we come from? 

People have long asked  

The Big Bang theory? 

What is the world made of? 

Basic building blocks? 

What holds it together? 

Fundamental forces? 

Where are we going to? 
The future? 



Where did we come from? 

Can we go back in time or recreate the condition of  early universe? 



Going back in time? 

BNL - RHIC 

Gold - Gold 

CERN - LHC 

Lead - Lead 

Create a matter (QGP) with similar temperature and energy density 
Little Bang in the Laboratory 

Expansion of  the universe 



Relativistic heavy-ion collisions – the little bang 

q A virtual Journey of  Visible Matter: 

Lorentz 
contraction 

Near 
collision 

Quark-gluon 
plasma Hadronization Freeze-out 

Seen 
in the detector 

²  How the observed particles were emerged (after collision)? 

²  Does the initial condition matter (before collision)? 

Properties  
of   

visible matter 

q Questions: 

q Discoveries – Properties of  QGP: 

²  A nearly perfect quantum fluid – NOT a gas! 

at 4 trillion degrees Celsius, Not, at 10-5 K like 6Li 



What the world is made of? 

Human is only  
a tiny part of  
the universe 

But, human is  
exploring the  

whole universe! 



What hold it together? 

q  Science and technology: 

Particle & Nuclear Physics 

Nucleon: 

Proton, or 

Neutron 



Nucleon – building block of  all atomic matter 

q  Our understanding of  the nucleon evolves 

Nucleon is a strongly interacting, relativistic bound state 
of  quarks and gluons 

q Quantum Chromodynamics (QCD) bound states: 

²  Neither quarks nor gluons appear in isolation! 
²  Understanding such systems completely is still beyond the 

capability of  the best minds in the world 

q  The great intellectual challenge: 

Probe nucleon structure without “seeing” quarks and gluons? 

1970s 1980s/2000s Now 



Why the EIC? 

To understand the role of  gluons in binding 
Quarks and Gluons into Nucleons and Nuclei 

q  21st Century Nuclear Science 

q  “Big” questions/puzzles about QCD, … 

q  The Electron-Ion Collider  

q Key deliverables & opportunities, … 

q Summary 

Outline of  the rest of  my talk 



21st Century Nuclear Science 

q How does QCD make up the properties of  hadrons? 

q What is the QCD landscape of  nucleon and nuclei? 

Probing 
momentum 

Q (GeV)

200 MeV (1 fm) 2 GeV (1/10 fm) 

Color Confinement Asymptotic freedom 

Their mass, spin, magnetic moment, … 

q What is the role of  QCD in the evolution of  the universe? 

q How hadrons are emerged from quarks and gluons? 

q How do the nuclear force arise from QCD? 

q  ... 



The next QCD frontier 

q  Understanding the glue that binds us all – the Next QCD Frontier! 

q  Gluons are weird particles!  

² Massless, yet, responsible for nearly all visible mass 

Bhagwat & Tandy/Roberts et al 

“Mass without mass!” 



q  Gluons are weird particles!  

² Massless, yet, responsible for nearly all visible mass 

² Carry color charge, responsible for color confinement and strong force 

The next QCD frontier 

q  Understanding the glue that binds us all – the Next QCD Frontier! 



q  Gluons are weird particles!  

² Massless, yet, responsible for nearly all visible mass 

² Carry color charge, responsible for color confinement and strong force 

but, also for asymptotic freedom 

The next QCD frontier 

q  Understanding the glue that binds us all – the Next QCD Frontier! 

QCD perturbation theory 

Nobel Prize, 2004 



q  Gluons are weird particles!  

² Massless, yet, responsible for nearly all visible mass 

² Carry color charge, responsible for color confinement and strong force 

but, also for asymptotic freedom, 

as well as the abundance of  glue 

The next QCD frontier 

q  Understanding the glue that binds us all – the Next QCD Frontier! 



q  Gluons are wired particles!  

² Massless, yet, responsible for nearly all visible mass 

² Carry color charge, responsible for color confinement and strong force 

but, also for asymptotic freedom, 

as well as the abundance of  glue 

Without gluons, there would be  
NO nucleons, NO atomic nuclei…  

NO visible world! 

The next QCD frontier 

q  Understanding the glue that binds us all – the Next QCD Frontier! 



q How quarks and gluons are confined 
inside the hadrons – 3D structure? 

“Big” questions/puzzles about QCD, … 

² Can we develop analytical tools to connect 
hadron structure and properties at low energy 
to their parton descriptions at high energy?! 

Hadron mass, spin, confined parton motion, …   
Proton radius: EM charge, quarks, gluons, … 
Nuclear force from QCD, …  

² Can lattice QCD and EFT help? 

Static   High Energy 



q How quarks and gluons are confined 
inside the hadrons – 3D structure? 

“Big” questions/puzzles about QCD, … 

² Can we develop analytical tools to connect 
hadron structure and properties at low energy 
to their parton descriptions at high energy?! 

Hadron mass, spin, confined parton motion, …   
Proton radius: EM charge, quarks, gluons, … 
Nuclear force from QCD, …  

² Can lattice QCD and EFT help? 

q How does the glue fill out hadron’s 
inner space – 3D glue distribution? 

Glue distribution in proton, and in ions,  
 Color confinement radius, … 
 Initial condition for HI collision,  

The physics and role of  the momentum “x”, …  

² Can we develop better probes to go 
beyond the current accuracy?! 

Glue tomography 
toward small-x 

How far does glue  
density spread? 

How fast does  
glue density fall? 

Only possible at EIC 



“Big” questions/puzzles about QCD, … 

q How hadrons are emerged from the 
color charge(s)? 

Nucleus as a “vertex detector”  
at a femtometer scale 

² Can we develop analytical tools to 
“see” the evolution of  the color/jet 
and to predict the jet structure and 
the emergence of  hadrons?!  

Control of  the partonic kinematics? 
Hadronization mechanism? 

Jet 
structure 

q How to understand the family 
of  hadrons? 

² Can we see gluonic excitations in 
hadron spectrum? 

² Can we understand the newly 
observed hadronic particles, XYZ, …? 

²  XYZ particles at future ep + eA, … 

A new particle explosion? 

Pentaquarks? 

Not covered here! 



Electron-Ion Collider (EIC) 

q  A giant “Microscope”  – “see” quarks and gluons by breaking the hadron  

q  Why now? 

Exp:  advances in luminosity, energy reach, detection capability, …    

Thy:  breakthrough in factorization – “see” confined quarks and gluons, … 

e p 
γ*, Z0, .. 

1/Q 
< 1/10 fm Q 

“see” the non-linear dynamics of  the glue! 

q  A sharpest “CT” – “imagine” quark/gluon  
                                            without breaking the hadron 

– “cat-scan” the nucleon and nuclei  
    with better than 1/10 fm resolution 

– “see” the proton “radius” of  gluon density 



Many complementary probes at one facility 

Q2 àMeasure of  resolution 

 y à Measure of  inelasticity 

 x à Measure of  momentum fraction 

         of  the struck quark in a proton 
 Q2 = S x y 

Exclusive events:  e+p/A à e’+ p’/A’+ h(π,K,p,jet) 
Detect every things including scattered proton/nucleus (or its fragments) 

Inclusive events:  e+p/A à e’+X 
Detect only the scattered lepton in the detector 

Semi-Inclusive events:  e+p/A à e’+h(π,K,p,jet)+X 
Detect the scattered lepton in coincidence with identified hadrons/jets 

q  Lepton-hadron facility:  



EIC:  the World Wide Interest 

HERA@DESY LHeC@CERN eRHIC@BNL JLEIC@JLab HIAF@CAS ENC@GSI 

ECM (GeV) 320 800-1300 45-175 12-140 12 à 65 14 

proton xmin 1 x 10-5 5 x 10-7 3 x 10-5 5 x 10-5 7 x10-3 à3x10-4 5 x 10-3 

ion p p to Pb p to U p to Pb p to U p to ~ 40Ca 

polarization - - p, 3He p, d, 3He (6Li) p, d, 3He p,d 

L [cm-2 s-1] 2 x 1031 1033 1033-34 1033-34 1032-33 à 1035 1032 

IP 2 1 2+ 2+ 1 1 

Year 1992-2007 2022 (?) 2022 Post-12 GeV 2019 à 2030 upgrade to FAIR 

Possible future The past 



US EIC – two options of realization 
The White Paper 
A.  Accardi et al 

Eur. Phys. J.  
A52 (2016) 268  

AGS BNL-eRHIC 

JLab-JLEIC 



US EIC – Kinematic reach & properties 

For e-N collisions at the EIC: 
ü  Polarized beams: e, p, d/3He 
ü  Variable center of mass energy 
ü  Wide Q2 range à evolution  
ü  Wide x range à spanning from  
     valence to low-x physics 
ü  100-1K times of  HERA Luminosity 

For e-A collisions at the EIC: 
ü  Wide range in nuclei 
ü  Variable center of  mass energy  
ü  Wide Q2 range (evolution) 
ü  Wide x region (high gluon densities)  

x

Q
2  (G

eV
2 )

EIC √
s=

 140 GeV, 0.01
≤

 y ≤ 0.95 
 

 

Current polarized DIS data:
CERN DESY JLab SLAC

Current polarized BNL-RHIC pp data:
PHENIX π0 STAR 1-jet
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US EIC – Kinematic reach & properties 

For e-N collisions at the EIC: 
ü  Polarized beams: e, p, d/3He 
ü  Variable center of mass energy 
ü  Wide Q2 range à evolution  
ü  Wide x range à spanning from  
     valence to low-x physics 
ü  100-1K times of  HERA Luminosity 

For e-A collisions at the EIC: 
ü  Wide range in nuclei 
ü  Variable center of  mass energy  
ü  Wide Q2 range (evolution) 
ü  Wide x region (high gluon densities)  

EIC explores the “sea” and the “glue”, 
the “valence” with a huge level arm 

EIC 

JLab 
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Current polarized DIS data:
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Why existing facilities, even with upgrades,  
cannot do the same?   

The key deliverables & opportunities 

US EIC 



“Big” questions to be answered, … 

q How does QCD generate the nucleon mass? 
“… The vast majority of  the nucleon’s mass is due to quantum 
fluctuations of  quark-antiquark pairs, the gluons, and the energy 
associated with quarks moving around at close to the speed of  light. …” 

The 2015 Long Range Plan for Nuclear Science 
REACHING FOR THE HORIZON  

Input 

q Hadron mass from Lattice QCD calculation: 



“Big” questions to be answered, … 

q How does QCD generate the nucleon mass? 
“… The vast majority of  the nucleon’s mass is due to quantum 
fluctuations of  quark-antiquark pairs, the gluons, and the energy 
associated with quarks moving around at close to the speed of  light. …” 

The 2015 Long Range Plan for Nuclear Science 
REACHING FOR THE HORIZON  

q Role of  quarks and gluons? 

²  Trace of  the QCD energy-momentum tensor: 

T↵
↵ =

�(g)

2g
Fµ⌫,aF a

µ⌫ +
X

q=u,d,s

mq(1 + �m) q q

�(g) = �(11� 2nf/3) g
3/(4⇡)2 + ...QCD trace anomaly 

² Mass, trace anomaly, chiral symmetry break, and … 

m2 / hp|T↵
↵ |pi �(g)

2g
hp|F 2|pi

quarkonium production near the threshold, from JLab12 to EIC 

² QCD energy-momentum tensor: 



 

“Big” questions to be answered, … 

https://phys.cst.temple.edu/meziani/proton-mass-workshop-2016/ 

Three-pronged approach to explore the origin of  hadron mass: 
²   lattice QCD 

²   mass decomposition – roles of  the constituents 

²   model calculation – approximated analytical approach 

The Proton Mass: At the Heart of  Most Visible Matter 
Nov. 27 – Dec. 1, 2017 

Z.-E. Meziani, B. Pasquini, J.-W. Qiu, M. Vanderhaeghen 



“Big” questions to be answered, … 

q How does QCD generate the nucleon’s spin? 

Orbital Angular Momentum 
of  quarks and gluons 

Little known 

Gluon helicity 
Start to know 

⇠ 20%(with RHIC data)

Quark helicity  
Best known  

⇠ 30%

Spin “puzzle” 

Proton Spin 

1

2
=

1

2
�⌃+�G+ (Lq + Lg)



“Big” questions to be answered, … 

q How does QCD generate the nucleon’s spin? 

Proton Spin 

1

2
=

1

2
�⌃+�G+ (Lq + Lg)

To understand the proton spin,  
fully, we need to understand  

the confined motion of   
quarks and guons in QCD 

TMDs, GTMDs, … 

q What can EIC do? 

Need “probes” 
for two-scale observables! 



Diffraction sensitive to gluon momentum distributions2:

# $ g(x,Q2)2
γ∗ V = J/ψ,φ, ρ

p p′

z

1 − z

r⃗

b⃗

(1 − z)r⃗

x x′

How does the gluon 
distribution saturate at 

small x?

18

which “glue” the quarks together. But experiments probing proton structure at the HERA
collider at Germany’s DESY laboratory, and the increasing body of evidence from RHIC
and LHC, suggest that this picture is far too simple. Countless other gluons and a “sea” of
quarks and anti-quarks pop in and out of existence within each hadron. These fluctuations
can be probed in high energy scattering experiments: due to Lorentz time dilation, the
more we accelerate a proton and the closer it gets to the speed of light, the longer are the
lifetimes of the gluons that arise from the quantum fluctuations. An outside “observer”
viewing a fast moving proton would see the cascading of gluons last longer and longer the
larger the velocity of the proton. So, in effect, by speeding the proton up, one can slow
down the gluon fluctuations enough to “take snapshots” of them with a probe particle sent
to interact with the high-energy proton.

In DIS experiments one probes the proton wave function with a lepton, which interacts
with the proton by exchanging a (virtual) photon with it (see the Sidebar on page ... ).
The virtuality of the photon Q2 determines the size of the region in the plane transverse
to the beam axis probed by the photon: by uncertainty principle the region’s width is
∆r⊥ ∼ 1/Q. Another relevant variable is Bjorken x, which is the fraction of the proton
momentum carried by the struck quark. At high energy x ≈ Q2/W 2 is small (W 2 is the
center-of-mass energy squared of the photon-proton system): therefore, small x corresponds
to high energy scattering.
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Figure 1.1: Proton parton distribution functions plotted a functions of Bjorken x. Note
that the gluon and sea quark distributions are scaled down by a factor of 20. Clearly gluons
dominate at small-x.

The proton wave function depends on both x and Q2. An example of such dependence
is shown in Fig. 1.1, representing some of the data reported by HERA for DIS on a proton.
Here we plot the x-dependence of the parton (quark or gluon) distribution functions (PDFs).
At the leading order PDFs can be interpreted as providing the number of quarks and gluons
with a certain fraction x of the proton’s momentum. In Fig. 1.1 one can see the PDFs of

4

Why is diffraction so great? Pt. 2
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q  3D boosted partonic structure: 

“Big” questions to be answered, … 

Momentum 
Space 
 
TMDs 

Coordinate 
Space 
 
GPDs 

3D momentum space images 2+1D coordinate space images 

t 

JLab12 – valence quarks, EIC – sea quarks and gluons   

Exclusive DIS 

Semi-inclusive DIS 

Two-scales observables 

Confined 
motion 

Spatial 
distribution 

bT

kT
xp

f(x,kT)


∫d2bT
 ∫  d2kT


f(x,bT)


Q >> PT ~ kT 

Q >> |t| ~ 1/bT 



q  3D boosted partonic structure: 

“Big” questions to be answered, … 

bT

kT
xp

f(x,kT)


∫d2bT
 ∫  d2kT


f(x,bT)


Momentum 
Space 
 
TMDs 

Coordinate 
Space 
 
GPDs 

EIC white paper: arXiv:1212.1701 

Density distribution of  an unpolarized  
quark in a proton moving in z direction  

and polarized in y-direction  

Sivers Function 
Imaging 

Spatial density distributions – “radius” 



q  3D boosted partonic structure: 

“Big” questions to be answered, … 

bT

kT
xp

f(x,kT)


∫d2bT
 ∫  d2kT


f(x,bT)


Momentum 
Space 
 
TMDs 

Coordinate 
Space 
 
GPDs 

EIC white paper: arXiv:1212.1701 
Sivers Function 

Imaging 

Position r x Momentum p à Orbital Motion of  Partons 



q  3D boosted partonic structure: 

“Big” questions to be answered, … 

Momentum 
Space 
 
TMDs 

Coordinate 
Space 
 
GPDs 
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Gluons From EIC white paper: arXiv:1212.1701 

bT

kT
xp

f(x,kT)


∫d2bT
 ∫  d2kT


f(x,bT)


Role of  momentum fraction -“x”, and nature of  pion cloud? 

How far does it  
spread? 



Nuclear landscape, … 

History: 
Electromagnetic 
Elastic electron-nucleus 
scattering à charge 
distribution of  nuclei 

Present/Near-future: 
Electroweak 
Parity-violating elastic 
electron-nucleus 
scattering (or hadronic 
reactions e.g. at FRIB) à 
neutron skin 

Future: at the EIC: 
Color dipole 
φ Production in coherent 
electron-nucleus 
scattering à gluon spatial 
distribution in nuclei 

 
 
 
 
 
 
 
 

k
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Mx



Nuclear landscape, … 

History: 
Electromagnetic 
Elastic electron-nucleus 
scattering à charge 
distribution of  nuclei 

Present/Near-future: 
Electroweak 
Parity-violating elastic 
electron-nucleus 
scattering (or hadronic 
reactions e.g. at FRIB) à 
neutron skin 

Future: at the EIC: 
Color dipole 
φ Production in coherent 
electron-nucleus 
scattering à gluon spatial 
distribution in nuclei 

 
 
 
 
 
 
 
 
Fourier transform gives 
unprecedented info on 
gluon spatial distribution, 
including impact of  gluon 
saturation 

Provide important information for the initial 
conditions in Nucleus-Nucleus Collisions  



Color fluctuation – azimuthal asymmetry at EIC 

q  Preliminary low energy data:  
Hicks,  KEK-JPAC2013 

q Classical expectation: 

Any distribution seen in Carbon should be washed out in heavier nuclei 

q Surprise: 
Azimuthal asymmetry in transverse momentum broadening 

Contain terms in cos(φpq) and cos(2φpq)  
only statistical uncertainties shown  

Fluctuation and vn  at EIC! 



Color fluctuation – azimuthal asymmetry at EIC 

q  Preliminary low energy data:  
Hicks,  KEK-JPAC2013 

q Classical expectation: 

Any distribution seen in Carbon should be washed out in heavier nuclei 

q Surprise: 
Azimuthal asymmetry in transverse momentum broadening 

Contain terms in cos(φpq) and cos(2φpq)  
only statistical uncertainties shown  

Fluctuation and vn  at EIC! 

Provide important information for the initial 
conditions in Nucleus-Nucleus Collisions  



Emergence of  hadrons/Jets – A puzzle 

q  Strong suppression of  heavy flavors in AA collisions: 

How do hadrons emerge from a created quark or gluon? 
How is the color of  quark or gluon neutralized? 

q Emergence of  hadrons: 

q  Need a femtometer detector or “scope”: 

Nucleus, a laboratory for QCD 
A “vertex” detector:  Evolution of  hadronization 

Jet substructure 

Boosted hadronization 



“Big” questions to be answered, … 

⌫ =
Q

2

2mx

q Heavy quark energy loss: 
-  Mass dependence of  fragmentation 

pion 

D0 

Control of  ν and  
medium length! 

Need the collider energy of  EIC 
and its control on parton kinematics 

π 

D0 

q  Emergence of  a hadron?  



What causes the low-x rise? 
    gluon radiation   
    – non-linear gluon interaction 
 
What tames the low-x rise? 
   gluon recombination  
    – non-linear gluon interaction 

“Big” questions to be answered, … 

q  Run away gluon density at small x? 

QS: Matter of Definition and Frame (II)

7

Infinite Momentum Frame:
• BFKL (linear QCD): splitting functions ⇒ gluon density grows
• BK (non-linear): recombination of gluons ⇒ gluon density tamed

BFKL: BK adds:

αs << 1αs ∼ 1 ΛQCD

know how to 
do physics here?

m
ax

. d
en

si
ty

Qs kT

~ 1/kT

k T
 φ

(x
, k

T2 )

• At Qs:   gluon emission balanced by recombination

Unintegrated gluon distribution
depends on kT and x:
the majority of gluons have 
transverse momentum kT ~ QS
(common definition)
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q  QCD vs. QED: 

QCD – gluon in a proton: 

QED – photon in a positronium: 

Q
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²  At very small-x, proton is “black”, 

positronium is still transparent! 

²  Recombination of  large numbers 
of  glue could lead to saturation 
phenomena 
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• At Qs:   gluon emission balanced by recombination

Unintegrated gluon distribution
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q  Particle vs. wave feature: 
Key Topic in eA: Gluon Saturation (I)
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In QCD, the proton is made up 
of quanta that fluctuate in and 
out of existence 
• Boosted proton: 
‣ Fluctuations time dilated on 

strong interaction time 
scales  

‣ Long lived gluons can 
radiate further small x 
gluons! 

‣ Explosion of gluon density 
! violates unitarity
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pQCD  
evolution  
equation

New Approach: Non-Linear Evolution 
• New evolution equations at  low-x & low to moderate Q2 

• Saturation of gluon densities characterized by scale Qs(x) 
• Wave function is Color Glass Condensate

QS: Matter of Definition and Frame (II)
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= at  Qs 

Gluon saturation – Color Glass Condensate 
    Radiation  =  Recombination  

Leading to a collective gluonic system? 

with a universal property of  QCD?  

new effective theory QCD – CGC? 

q  Run away gluon density at small x? 
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An “easiest” measurement at EIC 

q  Ratio of  F2: EMC effect, Shadowing and Saturation:   

q  Questions: 
Will the suppression/shadowing continue fall as x decreases? 
Could nucleus behaves as a large proton at small-x?  
Range of  color correlation – could impact the center of  neutron stars!  

Saturation 
in nucleon 

Color localized 
inside nucleons 



Summary 

q EIC is a ultimate QCD machine:  
     1)  to discover and explore the quark/gluon structure and  

        properties of  hadrons and nuclei, 
     2)  to search for hints and clues of  color confinement, and  
     3)  to measure the color fluctuation and color neutralization 

q EIC@US is sitting at a sweet spot for rich QCD dynamics 
– capable of  taking us to the next QCD frontier 

q  EIC designs explore the polarization and intensity frontier, 
     as well as the frontier of  new accelerator/detector technology 

Thanks! 

q  EIC is a tomographic machine for nucleons and nuclei 
     with a resolution better than 1/10 fm  



U.S. - based Electron-Ion Collider 

q  NSAC 2007 Long-Range Plan: 
“An Electron-Ion Collider (EIC) with polarized beams 

has been embraced by the U.S. nuclear science 
community as embodying the vision for reaching 
the next QCD frontier.” 

q  NSAC Facilities Subcommittee (2013): 
“The Subcommittee ranks an EIC as Absolutely Central 

in its ability to contribute to world-leading science 
in the next decade.” 

q  NSAC 2015 Long-Range Plan: 
“We recommend a high-energy high-luminosity 

polarized EIC as the highest priority for new facility 
construction following the completion of  FRIB.” 

q  EIC User Group Meetings: 
Stony Brook University, NY – June 24-27, 2014 
UC at Berkeley, CA – January 6-9, 2016 
Argonne National Lab, IL – July 7-10, 2016  
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An immediate consequence 

q  Quark GPDs and its orbital contribution to proton’s spin: 

Jq =
1

2
lim
t!0

Z
dx x [Hq(x, ⇠, t) + Eq(x, ⇠, t)] =

1

2
�q + Lq

The first meaningful constraint on quark orbital contribution to proton spin 
by combining the sea from the EIC and valence region from JLab 12 

This could be checked  
by Lattice QCD 

Lu + Ld ~ 0? 
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Electroweak physics at EIC 

q  Running of  weak interaction – high luminosity:  
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²  Fills in the region that has never been measured 

²  have a real impact on testing the running of  weak interaction 
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Why 3D nucleon structure? 

q  Rutherford’s experiment – atomic structure (100 years ago): 

J.J. Thomson’s 
plum-pudding model 

Atom: 

Modern model 
Quantum orbitals 

Discovery of  
Quantum Mechanics,  

and 
the Quantum World!  

q  Completely changed our “view” of  the visible world: 
² Mass by “tiny” nuclei – less than 1 trillionth in volume of  an atom 
² Motion by quantum probability – the quantum world! 

² Gas, Liquid, Solid, Nano materials, Quantum computing, … 

q  Provided infinite opportunities to improve things around us: 

Rutherford’s 
planetary model 

Discovery of  nucleus 
A localized  

charge/force center 
A vast 

“open” space 

1911 


