Physics with exclusive dilepton photoproduction

C. Weiss (JLab), Nucleon and nuclear structure through dilepton production, ECT* Trento, 24–28 Oct 2016

$$\gamma + T \to (l^+ l^-) + T'$$

quasi two-body

$$T = N, A, \quad l = e, \mu$$

- Crossing, BH-TCS interference, kinematic regions
- Vector meson region $M_{l^+l^-} \sim M_V$: Re/Im amplitude
- High-mass region $M_{l^+l^-} \gg 1$ GeV: QCD description, GPDs
- J/ψ region $M_{l^+l^-} \sim M_{c\bar{c}}$: Gluon GPDs, J/ψ -N bound states
- Related processes: Electro- and hadroproduction of dileptons

Dileptons: Crossing

Bethe-Heitler radiation

Pair production

- Crossing: Relativity & analyticity
- Measure form factors F(t < 0) with photon beam

QED pair production process as "radiator/source"

• Advantages of pair production channel

Lepton charge asymmetry $l^+ \leftrightarrow l^-$

Different lepton species $l=e,\mu$ Lepton universality in elastic scattering: Pauk, Vanderhaeghen 15

Dileptons: BH and TCS amplitudes

• Exclusive dilepton production

 $\gamma + T \to (l^+ l^-) + T'$

Quasi two-body

Kinematic variables M^2 , s, t

• BH amplitude

Strong kinematic variation because lepton virtuality becomes small in collinear configurations $p_{l+} \mid\mid q$ or $p_{l-} \mid\mid q$

Leading-order amplitude real, higher-order corrections give $Im(BH) \neq 0$

• BH and TCS amplitudes interfere

Interference effect depends on relative size of amplitudes, width of M^2 window, polarization states

Use as tool for nucleonic and nuclear structure!

Dileptons: TCS kinematic regions

- Pair mass $M_{l^+l^-}$
 - $\begin{array}{ll} M_{l^+l^-} \sim M_V & \mbox{hadronic} \\ M_{l^+l^-} \gg 1 \ {\rm GeV} & \mbox{QCD, quarks/gluons} \\ M_{l^+l^-} \approx M_{c\bar{c}} & \mbox{QCD, gluons} \end{array}$
- CM energy squared s
 Reggeon ↔ pomeron exchange (hadronic)
 Quark ↔ gluon GPDs (QCD)
- Momentum transfer t $t < t_{\min}(s, M^2)$ kinematic limit

VM region: Re/Im of ϕ amplitude 0

- Charge asymmetry $l^+ \leftrightarrow l^-$ gives direct access to $\operatorname{Re}\mathcal{M}_{\phi}/\operatorname{Im}\mathcal{M}_{\phi} \equiv \beta$
- Method demonstrated

DESY71: ¹²C nucleus, $\beta = -0.48^{+0.33}_{-0.45}$

Precise measurements possible with JLab12 $_{\mbox{CLAS12, GlueX?}}$

- N₊-N_ (EVENTS) N++ N_ (EVENTS) DATA BH CONTRIBUTION BEST FIT BH+ 0+0 **DESY 1971** 30 Alvensleben et al. $\gamma C \rightarrow e_+ e_- C$ $E_{\gamma} = 6.0 - 7.4 \, \text{GeV}$ 20-Mee(MeV) 1000 1050 1000 1040 1020 mee (MeV)
- Re/Im important information on production mechanism

Exchange mechanisms?

$$\frac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-} = \frac{4\mathcal{M}_{\rm BH} \text{Re}\mathcal{M}_{\phi}}{|\mathcal{M}_{\rm BH} + \mathcal{M}_{\phi}|^2}$$

VM region: ϕ **photoproduction mechanism**

• Energy dependence puzzle

Non-uniform energy dependence of $d\sigma/dt(t=0)$ observed near threshold $_{\rm LEPS05,\ CLAS\ 6\ GeV}$

Important to correct for t_{\min} effect!

Exchange mechanisms: η vs. Pomeron?

• Nuclear targets

Helicity–flip suppressed in coherent production $\gamma + A \rightarrow \phi + A$: Nucleus has to stay intact! Strikman

Nuclear FSI: Glauber approximation

• $\ensuremath{\phi}$ electroproduction at $Q^2 \gg 1 \ {\rm GeV}^2$ \rightarrow ${\rm Talk \ Kroll}$

Strange quark vs. gluon GPD?

Intrinsic strangeness?

VM region: ρ^0 photoproduction

• ρ^0 reconstruction using e^+e^- mode

Complement/test reconstruction in $\pi^+\pi^-$ mode

Wide resonance, pedestal subtraction specific to decay mode

• Re/Im from BH– ρ^0 interference

DESY 70 measurement, $\beta=0.2\pm0.1$

Precise measurements possible with JLab12 CLAS12, GlueX?

• ρ^0 electroproduction puzzle \rightarrow Talk Kroll

What causes rise of cross section at $W<{\rm 4~GeV?}$ CLAS 6 GeV data. Guidal, Morrow 08

Re/Im can give new insight

High-mass region: Factorization, GPDs

• Factorization (cf. DVCS) Berger, Diehl, Pire 02

 ${\cal M}^2$ as large scale, collinear approximation

Quark-gluon process \times GPD

Crossing of quark-gluon process

Observables

Differential cross section (BH dominant)

Photon SSA linear pol A_{LU} , circular pol $A_{\circ U}$ (BH = 0) Goritschnig, Pire, Wagner 14

Target SSA linear pol $A_{Ux,y,z}$ (BH = 0)

Double spin asymmetries

• Use for GPD analysis

ightarrow Talk Boer

Sensitive to Re(TCS), D-term Boer, Guidal, Vanderhaeghen 15+

High-mass region: Questions

• NLO QCD corrections

Apparently large in Re(TCS): Effective scale? Quark \leftrightarrow gluon GPDs? Pire, Szymanowski, Wagner 11; Moutarde, Sabatie, Szymanowski, Pire 13

Crossing of partonic amplitudes Müller, Pire, Szymanowski, Wagner 12

• Dispersion relations for TCS amplitude

s-channel dispersion relation (cf. DVCS)?

Analyticity in M^2 : Rich structure, Landau singularities

• Higher-order QED corrections

Two-photon exchange makes $Im(BH) \neq 0$

Soft-photon emission from BH and TCS amplitudes can generate asymmetries

J/ψ region: Probing gluonic structure

- Charmonium production using l^+l^- mode
- Charmonium size small on hadronic scale

LQCD, potential models: $\langle r^2
angle^{1/2} \sim$ 0.2–0.3 fm

EFT approach: Non-relativistic QCD, $v\ll 1$ Lepage et al 92; Manohar 97; Brambilla 2000; Kniehl et al. 2002

• $\bar{Q}Q$ couples to gluon field in nucleon/nucleus Multipole expansion: Dipole + ...

Fields change with energy s, momentum transfer t

• Related process: Charmonium–nucleon scattering Theoretically simpler, difficult to realize in exp

J/ψ region: Photoproduction kinematics

- Light–cone variables

11

 Δ_T Transverse momentum transfer

$$t = -(\zeta^2 m_N^2 + \Delta_T^2)/(1-\zeta)$$

- Invariant momentum transfer grows near threshold: $|t_{\min,th}| = 2.2 \,\mathrm{GeV}^2$
- Two regimes
 - $W \approx W_{
 m th}$ $t_{
 m min} = 1-2~{
 m GeV}^2$, ζ large cf. nucleon elastic form factors Cornell, SLAC, JLab 12 GeV
 - $W \gg W_{
 m th}$ $t_{
 m min}$ negligible, $\zeta \ll 1$ cf. diffractive processes FNAL, COMPASS, HERA, EIC

J/ψ region: Photoproduction at high W

• Collinear factorization Collins, Frankfurt, Strikman 96

Space-time picture in rest frame: $l_{\rm coh} \gg 1 ~{\rm fm}$ Brodsky et al. 94

GPD as gluonic dipole moment of target

- HERA exp: Kinematic dependences, absolute cross secns, comparison of diffractive channels $J/\psi \leftrightarrow \rho^0, \phi(Q^2)$ More data: Ultraperipheral pA at LHC \rightarrow Talk Guzey
- Transverse spatial distribution of gluons

Fourier $oldsymbol{\Delta}_{\mathrm{T}}
ightarrow oldsymbol{b}$ impact parameter

Distribution changes with x and scale μ^2 : Parton diffusion, DGLAP evolution

Fundamental gluonic size of nucleon in QCD: Gluon vs. quark radii, non-pert. dynamics

Needed for small-x physics, pp@LHC underlying event, multiparton processes, diffraction Frankfurt, Strikman, CW 04/11; Frankfurt, Hyde, Strikman, CW 07

EIC: Gluon imaging"

12

J/ψ region: Photoproduction near threshold 13

• Kinematics near threshold ightarrow Talk Meziani Large $|t_{\min}|$, up to 2.2 ${
m GeV}^2$

Large longit. momentum transfer $x_1 - x_2 = \zeta$

• Reaction mechanism near threshold

GPD-based description at $t\sim$ 1–2 ${\rm GeV^2}$ and large skewness: Two-gluon form factor $_{\rm Frankfurt,\ Strikman\ 02}$

Hard scattering mechanism, cf. high-t FFs Brodsky, Chudakov, Hoyer, Laget 01

Can be tested with JLab 12 GeV!

• Theoretical questions

Behavior of two-gluon form factor?

Correlations in nucleon LCWF?

J/ψ region: Bound states and nuclei

- J/ψ nucleon bound states Hints seen in LHCb experiments, great interest Can be studied in dilepton photoproduction J/ψ and N fast in lab frame
- J/ψ photoproduction on nuclei

 J/ψ fast in nucleus rest frame

Study $J/\psi\text{-}N$ interaction at $p_\psi\sim$ few GeV

• Low-energy $J/\psi - N$ interaction

Theoretical interest: Operator expansion, QCD Van–der–Waals force, nuclear bound states Fuji, Kharzeev 99; Brodsky, Miller 97; Brodsky, de Teramond 90; Luke, Manohar, Savage 92

How to study it experimentally?

Dileptons: Related processes

• Exclusive dilepton electroproduction $e + T \rightarrow e' + (l^+l^-) + T'$

L/T amplitudes, Q^2 dependence

Antisymmetrization if l = e; effect minor if kinematically separated; absent if $l = \mu$

Vector meson region: Re/Im in ρ^0, ϕ electroproduction

High-mass region: DDVCS for GPD analysis, very challenging JLab12 \rightarrow Talks Guidal, Baltzel, Camsonne

 J/ψ region: Electroproduction near threshold JLab12 SOLID \rightarrow Talk Meziani

• Inclusive dilepton photoproduction on nuclei $\gamma + A \rightarrow (l^+ l^-) + X$

Vector mesons "in medium:" Mass shift, broadening, optical potential CBELSA/TAPS, CLAS. Overview see V. Metag, Workshop Nuclear photoproduction with GlueX, JLab, April 28-29, 2016.

• Exclusive hadronproduction $\pi + T \rightarrow (l^+ l^-) + T' \rightarrow {\rm Talk\ Chang}$

Timelike meson photoproduction, exclusive version of Drell-Yan JPARC, COMPASS?

Dileptons: Summary

• Interesting physics in exclusive dilepton photo/electroproduction

Vector meson region: Re/Im in ρ^0 , ϕ , test of universality High-mass region: Re/Im in GPD analysis, D-term Gluonic structure, J/ψ -N bound states

- Much can be covered by approved JLab12 experiments or extensions Discuss need for $\mu^+\mu^-$ vs. e^+e^-
- Accurate treatment of QED radiative corrections essential Im(BH) ≠ 0 in higher orders; real emissions change charge parity
- Photoproduction capabilities at EIC \rightarrow Talk Hyde

Small-angle electron tagger for photoproduction in JLEIC design What dilepton capabilities will be needed in central detector?