Physics with exclusive dilepton photoproduction

C. Weiss (JLab), Nucleon and nuclear structure through dilepton production, ECT* Trento, 24–28 Oct 2016

\[\gamma + T \rightarrow (l^+ l^-) + T' \]

quasi two-body

\[T = N, A, \quad l = e, \mu \]

- Crossing, BH-TCS interference, kinematic regions
- Vector meson region \(M_{l+l^-} \sim M_V \): Re/Im amplitude
- High-mass region \(M_{l+l^-} \gg 1 \text{ GeV} \): QCD description, GPDs
- \(J/\psi \) region \(M_{l+l^-} \sim M_{c\bar{c}} \): Gluon GPDs, \(J/\psi-N \) bound states
- Related processes: Electro- and hadroproduction of dileptons
Dileptons: Crossing

- Crossing: Relativity & analyticity

- Measure form factors $F(t < 0)$ with photon beam

 QED pair production process as “radiator/source”

- Advantages of pair production channel

 Lepton charge asymmetry $l^+ \leftrightarrow l^-$

 Different lepton species $l = e, \mu$

 Lepton universality in elastic scattering: Pauk, Vanderhaeghen 15
Dileptons: BH and TCS amplitudes

Exclusive dilepton production

\[\gamma + T \rightarrow (l^+l^-) + T' \]

Quasi two-body

Kinematic variables \(M^2, s, t \)

- BH amplitude

Strong kinematic variation because lepton virtuality becomes small in collinear configurations \(p_{l+} \parallel q \) or \(p_{l-} \parallel q \)

Leading-order amplitude real, higher-order corrections give \(\text{Im}(\text{BH}) \neq 0 \)

- BH and TCS amplitudes interfere

Interference effect depends on relative size of amplitudes, width of \(M^2 \) window, polarization states

Use as tool for nucleonic and nuclear structure!
Dileptons: TCS kinematic regions

- Pair mass $M_{l^+ l^-}$
 - $M_{l^+ l^-} \sim M_V$ hadronic
 - $M_{l^+ l^-} \gg 1$ GeV QCD, quarks/gluons
 - $M_{l^+ l^-} \approx M_{c \bar{c}}$ QCD, gluons

- CM energy squared s
 - Reggeon ↔ pomeron exchange (hadronic)
 - Quark ↔ gluon GPDs (QCD)

- Momentum transfer t
 - $t < t_{\text{min}}(s, M^2)$ kinematic limit
VM region: Re/Im of ϕ amplitude

$+ \quad \quad \quad +$

- Charge asymmetry $l^+ \leftrightarrow l^-$ gives direct access to $\text{Re}M_\phi/\text{Im}M_\phi \equiv \beta$

- Method demonstrated

DESY71: ^{12}C nucleus, $\beta = -0.48^{+0.33}_{-0.45}$

Precise measurements possible with JLab12

CLAS12, GlueX?

- Re/Im important information on production mechanism

Exchange mechanisms?

- **Energy dependence puzzle**

 Non-uniform energy dependence of $d\sigma/dt(t = 0)$ observed near threshold LEPS05, CLAS 6 GeV

 Important to correct for t_{min} effect!

 Exchange mechanisms: η vs. Pomeron?

- **Nuclear targets**

 Helicity–flip suppressed in coherent production $\gamma + A \rightarrow \phi + A$:

 Nucleus has to stay intact! [Strikman]

 Nuclear FSI: Glauber approximation

- **ϕ electroproduction at $Q^2 \gg 1 \text{ GeV}^2$**

 Strange quark vs. gluon GPD?

 Intrinsic strangeness?
VM region: ρ^0 photoproduction

- ρ^0 reconstruction using e^+e^- mode

 Complement/test reconstruction in $\pi^+\pi^-$ mode

 Wide resonance, pedestal subtraction specific to decay mode

- Re/Im from BH–ρ^0 interference

 DESY 70 measurement, $\beta = 0.2 \pm 0.1$

 Precise measurements possible with JLab12

 CLAS12, GlueX?

- ρ^0 electroproduction puzzle \rightarrow Talk Kroll

 What causes rise of cross section at $W < 4$ GeV?

 CLAS 6 GeV data. Guidal, Morrow 08

 Re/Im can give new insight
High-mass region: Factorization, GPDs

- **Factorization (cf. DVCS)**
 Berger, Diehl, Pire 02

 M^2 as large scale, collinear approximation

 Quark-gluon process \times GPD

 Crossing of quark-gluon process

- **Observables**

 Differential cross section (BH dominant)

 Photon SSA linear pol A_{LU}, circular pol $A_{\sigma U}$ ($BH = 0$)

 Target SSA linear pol $A_{Ux,y,z}$ ($BH = 0$)

 Double spin asymmetries

- **Use for GPD analysis**

 Sensitive to $\text{Re}(\text{TCS})$, D–term

 Boer, Guidal, Vanderhaeghen 15+
High-mass region: Questions

- **NLO QCD corrections**

 Apparently large in Re(TCS): Effective scale? Quark ↔ gluon GPDs?
 Pire, Szymanowski, Wagner 11; Moutarde, Sabatie, Szymanowski, Pire 13

 Crossing of partonic amplitudes
 Müller, Pire, Szymanowski, Wagner 12

- **Dispersion relations for TCS amplitude**

 s–channel dispersion relation (cf. DVCS)?
 Analyticity in M^2: Rich structure, Landau singularities

- **Higher-order QED corrections**

 Two-photon exchange makes $\text{Im}(BH) \neq 0$
 Soft-photon emission from BH and TCS amplitudes can generate asymmetries
- Charmonium production using l^+l^- mode

- Charmonium size small on hadronic scale

 LQCD, potential models: $\langle r^2 \rangle^{1/2} \sim 0.2–0.3 \text{ fm}$

 EFT approach: Non–relativistic QCD, $\nu \ll 1$

 Lepage et al 92; Manohar 97; Brambilla 2000; Kniehl et al. 2002

 \[
 m \gg mv \gg mv^2
 \]

 mass \quad momentum, inverse size \quad binding energy

 “intermediate”

- $\bar{Q}Q$ couples to gluon field in nucleon/nucleus

 Multipole expansion: Dipole + ...

 Fields change with energy s, momentum transfer t

- Related process: Charmonium–nucleon scattering

 Theoretically simpler, difficult to realize in exp
• Light–cone variables

\[\zeta \quad \text{"Plus" momentum transfer, cf. } x_B \]
large near threshold, but not \(\zeta \to 1! \)

\[\Delta_T \quad \text{Transverse momentum transfer} \]

\[t = -\left(\zeta^2 m_N^2 + \Delta_T^2\right)/(1 - \zeta) \]

• Invariant momentum transfer grows near threshold: \(|t_{\text{min,th}}| = 2.2 \text{ GeV}^2 \)

• Two regimes

\[W \approx W_{\text{th}} \quad t_{\text{min}} = 1\text{–}2 \text{ GeV}^2, \zeta \text{ large} \]
cf. nucleon elastic form factors
Cornell, SLAC, JLab 12 GeV

\[W \gg W_{\text{th}} \quad t_{\text{min}} \text{ negligible, } \zeta \ll 1 \]
cf. diffractive processes
FNAL, COMPASS, HERA, EIC
J/ψ region: Photoproduction at high W

- **Collinear factorization** \cite{Collins, Frankfurt, Strikman 96}

 Space-time picture in rest frame: $l_{\text{coh}} \gg 1 \text{ fm}$

 Brodsky et al. 94

- **GPD as gluonic dipole moment of target**

- **HERA exp:** Kinematic dependences, absolute cross secns, comparison of diffractive channels $J/\psi \leftrightarrow \rho^0, \phi(Q^2)$

 More data: Ultraperipheral pA at LHC \rightarrow Talk Guzey

- **Transverse spatial distribution of gluons**

 Fourier $\Delta_T \rightarrow b$ impact parameter

 Distribution changes with x and scale μ^2:

 Parton diffusion, DGLAP evolution

 Fundamental gluonic size of nucleon in QCD:

 Gluon vs. quark radii, non–pert. dynamics

 Needed for small–x physics, pp@LHC underlying event, multiparton processes, diffraction

 Frankfurt, Strikman, CW 04/11; Frankfurt, Hyde, Strikman, CW 07

 EIC: Gluon imaging’’
J/ψ region: Photoproduction near threshold

- **Kinematics near threshold**

 Large $|t_{\text{min}}|$, up to 2.2 GeV2

 Large longit. momentum transfer $x_1 - x_2 = \zeta$

- **Reaction mechanism near threshold**

 GPD-based description at $t \sim 1–2$ GeV2 and large skewness: Two-gluon form factor

 Frankfurt, Strikman 02

 Hard scattering mechanism, cf. high–t FFs

 Brodsky, Chudakov, Hoyer, Laget 01

 Can be tested with JLab 12 GeV!

- **Theoretical questions**

 Behavior of two–gluon form factor?

 Correlations in nucleon LCWF?
J/ψ region: Bound states and nuclei

- **J/ψ nucleon bound states**
 - Hints seen in LHCb experiments, great interest
 - Can be studied in dilepton photoproduction
 - J/ψ and N fast in lab frame

- **J/ψ photoproduction on nuclei**
 - J/ψ fast in nucleus rest frame
 - Study J/ψ–N interaction at $p_\psi \sim$ few GeV

- **Low-energy J/ψ–N interaction**
 - Theoretical interest: Operator expansion, QCD Van–der–Waals force, nuclear bound states
 - Fuji, Kharzeev 99; Brodsky, Miller 97; Brodsky, de Teramond 90; Luke, Manohar, Savage 92
 - How to study it experimentally?

Diagram:
- Lab momenta p_ψ, p_N at $\Delta T = 0$ [GeV]
- E_γ [GeV]
Dileptons: Related processes

- Exclusive dilepton electroproduction $e + T \rightarrow e' + (l^+l^-) + T'$

 - L/T amplitudes, Q^2 dependence

 - Antisymmetrization if $l = e$; effect minor if kinematically separated; absent if $l = \mu$

- Vector meson region: Re/Im in ρ^0, ϕ electroproduction

- High-mass region: DDVCS for GPD analysis, very challenging

 - JLab12 → Talks Guidal, Baltzel, Camsonne

- J/ψ region: Electroproduction near threshold

 - JLab12 SOLID → Talk Meziani

- Inclusive dilepton photoproduction on nuclei $\gamma + A \rightarrow (l^+l^-) + X$

 - Vector mesons “in medium:” Mass shift, broadening, optical potential

 - CBELSA/TAPS, CLAS. Overview see V. Metag, Workshop Nuclear photoproduction with GlueX, JLab, April 28-29, 2016.

- Exclusive hadron production $\pi + T \rightarrow (l^+l^-) + T' \rightarrow$ Talk Chang

 - Timelike meson photoproduction, exclusive version of Drell-Yan

 - JPARC, COMPASS?
Dileptons: Summary

- Interesting physics in exclusive dilepton photo/electroproduction

 Vector meson region: Re/Im in ρ^0, ϕ, test of universality

 High-mass region: Re/Im in GPD analysis, D–term

 Gluonic structure, $J/\psi-N$ bound states

- Much can be covered by approved JLab12 experiments or extensions

 Discuss need for $\mu^+\mu^-$ vs. e^+e^-

- Accurate treatment of QED radiative corrections essential

 Im(BH) \neq 0 in higher orders; real emissions change charge parity

- Photoproduction capabilities at EIC → Talk Hyde

 Small-angle electron tagger for photoproduction in JLEIC design

 What dilepton capabilities will be needed in central detector?