Unpolarized and polarized PDFs from the JLab perspective

Alberto Accardi

Hampton U. and Jefferson Lab

PDFLattice2017

Oxford, UK – March 22^{nd} – 24^{th} , 2017

Why PDFs ?

Accardi – PoS (DIS2015) 001 Jimenez-Delgado, Melnitchouk, Owens, JPG 40 (2013) 093102 Forte and Watt – Ann.Rev.Nucl.Part.Sci. 63 (2013) 291

High-energy (large to small x)

- Beyond the Standard Model searches
- Precision (Higgs) physics
- Gluonic "matter" at small x

Hadron structure (large to medium x)

- Effects of confinement on valence quarks
- q qbar asymmetries isospin asymmetry
- Strageness, intrinsic charm $\rightarrow Olness$

Nuclear physics

- Bound nucleons, EMC effect, SRC
- p+A and A+A collisions at RHIC / LHC
- Color propagation in nuclear matter

PDFLattice2017 - 23 March 2017

Needs the betrothal of HEP and NUCL

A global approach across subfields

Nuclear HEP data data New physics pQCD pQCD Hadron structure In-medium q & g Global Global QCD fits **QCD** fits pQCD Nuclear, hadron, lattice theory

PDFs

JAM - Iterative Monte Carlo approach

N.Sato et al [JAM], PRD93 (2016) 074005 and PRD94 (2016) 114004

- Provides control over large number of parameters
- Maximizes extraction of physics information from data
- Statistically robust uncertainties

Proton and neutron PDFs - the CJ15 global fit -"CTEQ-JLab"

Accardi, Brady, Melnitchouk, Owens, Sato PRD93 (2016) 114017

A PDF landscape

Pert. order

Example 1: Tevatron as NUCL facility (!) Accardi, Brady, Melnitchouk, Owens, Sato, PRD93 (2016) 114017

Reconstructed W \rightarrow constrain *d***-quark** at largest x on proton targets

Example 1: Tevatron as NUCL facility (!)

Accardi, Brady, Melnitchouk, Owens, Sato, PRD93 (2016) 114017

Two results in 1:

- \rightarrow confinement at large x (using flexible large-x d-quark)
- \rightarrow bound nucleon corrections in deuteron PDFs

Opens novel possibilities: test theory ideas against <u>other</u> data:

Test "EMC effect" models (of course)

On the lattice: "nucleon response to external color field"

 \rightarrow for discussion

Accardi, Ent, Keppel, Park, Yoshida – in progress Example 2: EIC and BSM searches

Include EIC projected data

- The *d* quark precision will become comparable to current *u* !!
- 20% better g(x) through evolution

JLab12 & BONuS12 → not much worse!

Can impact BSM searches,

e.g., heavy W' boson production at LHC

Accardi, Ent, Keppel, Park, Yoshida – in progress Example 2: EIC and BSM searches

Into the sea: dbar/ubar

SeaQuest: no sign change at large x !

– Does db/ub stays positive all the way?

Sepittel mort equebind 🔲

- What are the challenges?
- Are quasi-PDF calcs already robust enough?
- How many moments can be calculated?

Bryan Kerns

PDFLattice2017 - 23 March 2017

Interlude

Strange strange quarks

Strange strange quarks

What next?

- Use data on proton targets to fix s \rightarrow CJ17, in progress

	Observable	x	Q ² [GeV ²]
LHC	W, Z, W+c	10 ⁻⁴ - 10 ⁻¹	> 6400
JLab 12 [M.Dalton]	PVDIS	0.1-0.4	1-4
EIC [Y.Zhao, Aschenauer]	PVDIS, CC	10 ⁻³ – 0.5	1 – 5000

 Use dimuons on nuclear targets to study charm quark propagation in nuclear matter

Strange strange kaons

- Possibly, large Hadron Mass effects *Guerrero, Accardi, in preparation*
- Extraction of s(x) strongly affected
 by kaon FF systematic uncertainty

Lattice guidance? (does not need precision)

- $\Box \Delta s$: positive or negative?
 - Depends on kaon FF used in SIDIS calculations!
 - What about the unpol s ?

Need combined fits!

Iterative Monte Carlo: the JAM approach

Sato, Ethier, Melnitchouk, Kuhn, Accardi, Hirai, Kumano

PRD93 (2016) 074005 and PRD94 (2016) 114004

Iterative Monte Carlo (IMC) analysis

The JAM15 polarized PDFs

moment	truncated	full
Δu^+	0.82 ± 0.01	0.83 ± 0.01
Δd^+	-0.42 ± 0.01	-0.44 ± 0.01
Δs^+	-0.10 ± 0.01	-0.10 ± 0.01
$\Delta\Sigma$	0.31 ± 0.03	0.28 ± 0.04
ΔG	0.5 ± 0.4	1 ± 15
d_2^p	0.005 ± 0.002	0.005 ± 0.002
d_2^n	-0.001 ± 0.001	-0.001 ± 0.001
h_p	-0.000 ± 0.001	0.000 ± 0.001
h_n	0.001 ± 0.002	0.001 ± 0.003

- Significant constraints on Δs^+ and Δg
- Non zero T3 quark distributions
- T4 contribution to g₁ consistent with zero
- Negative Δs^+
- JAM15 ∆g compatible with recent DSSV fits.

accardi@jlab.org

The JAM FF 2016 fit

Kaon FF too uncertain, correlated to strange PDF in SIDIS

- Cannot take kaon FF off the shelf
- Need in-house extraction
- Iterative MC approach
 - Only SIA data used : npts=245, χ2 = 305.2

Strange-to-kaon FF:

- Between HKNS and DSS
- Will it give a negative Δs ??

IMC method in action

Higher twist and color polarizability

$$d_2(Q^2) \equiv \int_0^1 dx x^2 \left[2g_1^{\mathrm{T3}}(x,Q^2) + 3g_2^{\mathrm{T3}}(x,Q^2) \right]$$

 d₂ is related to "color polarizability" or the "transverse color force" acting on quarks.

Lattice calcs from Goeckele et al. 2005 – time to revist? (needs about 10 x precision, see next)

Transversity from inclusive DIS

Accardi, Bacchetta – in preparation

Jet correlator needed: quarks are not asymptotic states

$$\Xi(l) = F.T.\langle 0|\bar{\psi}(z^{-})\psi(0)|0\rangle$$
$$= \int d\mu^2 \left[J_1(\mu^2)\mu + J_2(\mu^2)\mu\right] \delta(l^2 - \mu^2)$$

Novel non-perturbative sum rules

. 1

Accardi, Bacchetta – in preparation

Burkardt-Cottingham

$$\int_0^1 g_2(x) = M_{"jet"} \int_0^1 h_1(x)/x$$

Efremov-Teryaev-Leader

$$\int_{0}^{1} x g_{2}^{q-\bar{q}}(x) = 2 M_{"jet"} \int_{0}^{1} h_{1}^{q-\bar{q}}(x)$$

Color polarizability

$$\int_{0}^{1} \left[3x^{2}g_{2}(x) - 2x^{2}g_{1}(x) \right] = d_{2} + 3 M_{"jet"} \underbrace{\int_{0}^{1} xh_{1}(x)}_{\text{Lattice ?}}$$

. 1

Novel non-perturbative sum rules

Accardi, Bacchetta – in preparation

"Universal" PDF fits:

- Interplay of q, ∆q, δq
- Can measure chiral condensate
- Novel handles on $\boldsymbol{g}_{_{\rm T}}$

Lattice:

calculate M_{"jet"}
 (matching, renormalization, evolution?)
 ... ?

Final thoughts

Entering a new PDF precision era:

- 2 ways toward high precision:
 - NⁿLO & nucl/power/resum corrections
- New combined fitting approaches
 - Hadronic, nuclear physics output
 - Improved PDF accuracy and precision
- Entering the Jlab12 & LHC era
 - With the complicity of RHIC... and crowned by the EIC !
- Conquering the world:
 - towards unified PDF+pPDF+FF fits
- Interplay with lattice QCD:
 - Precision: (should we) use "lattice QCD" data points in a fit?
 - Guidance where experimental info lacking
 - Exploring the unexplored: nuclear embedding of PDFs

Impact of JLab data

- \blacksquare JLab data $\rightarrow~0.1 < x < 0.7$
- Constraints on small x from large x → weak baryon decay constraints
- Large uncertainties in Δs⁺,
 Δg removed by JLab data
- Non vanishing T3 quark distributions
- T4 distributions consistent with zero