Few-body systems in QCD

from spectroscopy to structure

Raúl Briceño

Jefferson Lab

12 GeV is now!

the Roper
\& Excited state of the nucleon

the Roper

\& Excited state of the nucleon
Dynamical enhancement in amps.
\& Complex pole
\& Fairly broad
\& Strongly coupled to:
\& $N \pi$

the Roper

\& Excited state of the nucleon
Dynamical enhancement in amps.
\& Complex pole
\& Fairly broad
\& Strongly coupled to:
\& $N \pi$
\& $N \pi \pi$
Vanishing coupling to $N \eta$?

the Roper

\& Excited state of the nucleon
Dynamical enhancement in amps.
\& Complex pole
\& Fairly broad
\& Strongly coupled to:
\& $N \pi$
\& $N \pi \pi$
F Vanishing coupling to $N \eta$?
\& Photo-,electro-produced

the Roper

\& Excited state of the nucleon
Dynamical enhancement in amps.
\& Complex pole
\& Fairly broad
\& Strongly coupled to:
\& $N \pi$
\& $N \pi \pi$
Vanishing coupling to $N \eta$?
\& Photo-,electro-produced
\& Elastic form factors?

the Roper

\& Excited state of the nucleon
Dynamical enhancement in amps.
© Complex pole
\& Fairly broad
\& Strongly coupled to:
\& $N \pi$
\& $N \pi \pi$
Vanishing coupling to $N \eta$?
\& Photo-,electro-produced
\& Elastic form factors?

demand for lattice:

\& Stable states generated "exactly"
\& Resonant/non-resonant amplitudes are generated "exactly"
QED / weak can be introduced perturb. or non-perturb.

Broad goals

\& Strongly coupled 2-body
\& Strongly coupled 2, 3-body
Spin-dependent amps.
\& Narrow resonances
\& Broad resonances
\& Photo-, electro-production
\& Transition form factors
\& Elastic form factors

Broad goals

\& Strongly coupled 2-body
\& Strongly coupled 2, 3-body
\& Spin-dependent amps.
\& Narrow resonances
\& Broad resonances
\& Photo-, electro-production
\% Transition form factors
\& Elastic form factors

A pseudo-quantitative definition

(bump in cross sections/amplitude - e.g., $\pi \pi$ scattering in ϱ-channel)

A pseudo-quantitative definition

(bump in cross sections/amplitude - e.g., $\pi \pi$ scattering in ϱ-channel)

A counter example

(Isoscalar, scalar $\pi \pi$ scattering)

A counter example

(Isoscalar, scalar $\pi \pi$ scattering)

Quantitative definition

scattering amplitude:

...near bound state or resonance:

Lattice QCD

\& Wick rotation [Euclidean spacetime]: $t_{M} \rightarrow-i t_{E}$

- Monter Carlo sampling

$$
\int \mathcal{D} U \mathcal{D} q \mathcal{D} \bar{q} e^{i S_{M}} \rightarrow \int \mathcal{D} U \mathcal{D} q \mathcal{D} \bar{q} e^{-S_{E}}
$$

Lattice QCD

\& Wick rotation [Euclidean spacetime]: $t_{M} \rightarrow-i t_{E}$

- Monter Carlo sampling
\& lattice spacing: $a \sim 0.03-0.15 \mathrm{fm}$
\& finite volume

$$
D_{\mu}=(\quad) \uparrow(L / a)^{3} \times(T / a)
$$

Lattice QCD

\& Wick rotation [Euclidean spacetime]: $t_{M} \rightarrow-i t_{E}$

- Monter Carlo sampling
\& lattice spacing: $a \sim 0.03-0.15 \mathrm{fm}$
- finite volume
\& quark masses: $m_{q} \rightarrow m_{q}^{\text {phys. }}$

Lattice QCD

\& Wick rotation [Euclidean spacetime]: $t_{M} \rightarrow-i t_{E}$

- Monter Carlo sampling
\& lattice spacing: $a \sim 0.03-0.15 \mathrm{fm}$
\& finite volume
\& quark masses: $m_{q} \rightarrow m_{q}^{\text {phys. }}$
\& Correlation functions: spectrum, matrix elements

Status of LQCD

\& Simple properties of QCD stable states [non-composite states] £physical or lighter quark masses [down to $\mathrm{m}_{\pi} \sim 120 \mathrm{MeV}$]
\& non-degenerate light-quark masses: $\mathrm{N}_{\mathrm{f}}=1+1+1+1$
\& dynamical QED

Status of LQCD

\& Simple properties of QCD stable states [non-composite states] \&physical or lighter quark masses [down to $\mathrm{m}_{\pi} \sim 120 \mathrm{MeV}$]
\& non-degenerate light-quark masses: $\mathrm{N}_{\mathrm{f}}=1+1+1+1$
\& dynamical QED
\& Frontier of lattice: multi-particle physics
\% scattering/reactions
q composite states
$\%$ bound states
\& hadronic resonances

Formal development:
\& under way
\& more needed
Benchmark calculations:
\& exploratory
proof of principle
\%unphysical quark masses $\left[\mathrm{m}_{\pi}=236,391 \mathrm{MeV}\right]$
\&...

RB, Hansen, Sharpe - arXiv:1701.07465 [hep-lat] (2017)
RB - Phys.Rev. D89 (2014) no.7, 074507.
RB, Davoudi - Phys.Rev. D87 (2013) no.9, 094507.
RB, Davoudi - Phys.Rev. D88 (2013) no.9, 094507.

Two-point functions

$$
C_{L}(t, \mathbf{P}) \equiv \int_{L} d \mathbf{x} \int_{L} d \mathbf{y} e^{-i \mathbf{P} \cdot(\mathbf{x}-\mathbf{y})}\langle 0| T \mathcal{A}(t, \mathbf{x}) \mathcal{B}^{\dagger}(0, \mathbf{y})|0\rangle
$$

Dispersive representation:

$$
\begin{aligned}
C_{L}(t, \mathbf{P}) & =\int_{L} d \mathbf{x} \int_{L} d \mathbf{y} e^{-i \mathbf{P} \cdot(\mathbf{x}-\mathbf{y})} \sum_{n}\langle 0| \mathcal{A}(t, \mathbf{x})|n, L\rangle\langle n, L| \mathcal{B}^{\dagger}(0, \mathbf{y})|0\rangle \\
& =L^{6} \sum_{n} e^{-E_{n} t}\langle 0| \mathcal{A}(0)|n, L\rangle\langle n, L| \mathcal{B}^{\dagger}(0)|0\rangle
\end{aligned}
$$

Diagrammatic representation:

$$
C_{L}(t, \mathbf{P}) \equiv L^{3} \int \frac{d P_{4}}{2 \pi} e^{i P_{4} t} C_{L}(P)
$$

$C_{L}(P)=$ sum over all finite volume, momentum space Feynman diagram

Diagrammatic representation

$$
C_{L}(t, \mathbf{P}) \equiv L^{3} \int \frac{d P_{4}}{2 \pi} e^{i P_{4} t} C_{L}(P)
$$

1. Euclidean
2. Tower of poles
3. Importance of diagram depends on P_{4}
4. On-shell states:

Propagate
§Infinite-volume: imaginary contribution

\&Finite-volume: power-law effects
$P_{4} \sim i m$

One-particle systems

Consider $P_{4} \sim$ im:

$$
\begin{aligned}
C_{L}(t, \mathbf{P}) & \equiv L^{3} \int \frac{d P_{0}}{2 \pi} e^{i P_{0} t}(\mathcal{A}-\cdots) \\
& =L^{3} \int \frac{d P_{0}}{2 \pi} e^{i P_{0} t} \frac{A z(P) B^{\dagger}}{p^{2}+m^{2}}+\cdots \\
& =\frac{L^{3} A B^{\dagger}}{2 \sqrt{\mathbf{P}^{2}+m^{2}}} e^{-t \sqrt{\mathbf{P}^{2}+m^{2}}}+\cdots
\end{aligned}
$$

Equating this to the dispersive representation:

$$
\begin{aligned}
E_{0} & =\sqrt{\mathbf{P}^{2}+m^{2}} \\
\langle 0| \mathcal{A}(0)\left|E_{0}, L\right\rangle\left\langle E_{0}, L\right| \mathcal{B}^{\dagger}(0)|0\rangle & =\frac{A B^{\dagger}}{2 L^{3} E_{0}}
\end{aligned}
$$

Conclusion: masses and decay constants of stable states can be reliably extracted!

Two-particle systems

Consider $P_{4} \sim i 2 m$:

$$
L^{3} \int \frac{d P_{0}}{2 \pi} e^{i P_{0} t}(\mathcal{A} \sim \mathrm{~B}
$$

$$
\begin{aligned}
& \zeta=X+X+\varnothing Q+\lambda+\lambda \alpha+\ldots \\
& \sigma=O+C \sigma=i M
\end{aligned}
$$

Kim, Sachrajda, \& Sharpe (2005)

Two-particle systems

Consider $P_{4} \sim i 2 m$:

$$
L^{3} \int \frac{d P_{0}}{2 \pi} e^{i P_{0} t}(\mathbb{A}
$$

$$
\gamma
$$

Two-particle systems

Consider $P_{4} \sim i 2 m:$

$$
L^{3} \int \frac{d P_{0}}{2 \pi} e^{i P_{0} t}(A) \mathrm{V}
$$

Two-particle systems

Consider $P_{4} \sim i 2 m$:

$$
L^{3} \int \frac{d P_{0}}{2 \pi} e^{i P_{0} t}(\mathcal{A} \mathrm{~V}
$$

After some massaging:
$=L^{3} \int \frac{d P_{0}}{2 \pi} e^{i P_{0} t}\left(C_{\infty}(P)+(A) B^{\dagger}+(A):-\cdots\right)$
Where,

$$
C_{\infty}(P) \supset \text { AC }
$$

Two-particle systems

Consider $P_{4} \sim i 2 m$:

$$
L^{3} \int \frac{d P_{0}}{2 \pi} e^{i P_{0} t}(\mathcal{A} \mathrm{~V}
$$

After some massaging:

$$
\begin{aligned}
& =L^{3} \int \frac{d P_{0}}{2 \pi} e^{i P_{0} t}\left(C_{\infty}(P)+A\right) \\
& =L^{3} \int \frac{d P_{0}}{2 \pi} e^{i P_{0} t}\left(C_{\infty}(P)-A(P) \frac{1}{F_{2}^{-1}(P, L)+\mathcal{M}(P)} B^{\dagger}(P)\right) \\
& =L^{3} \sum_{n} e^{-E_{n} t} A_{n} \mathcal{R}_{n} B_{n}^{\dagger}
\end{aligned}
$$

poles satisfy: $\operatorname{det}\left[F_{2}^{-1}(P, L)+\mathcal{M}(P)\right]=0$

We will come back to the residues later...

Lüscher formalism

$$
\operatorname{det}\left[F_{2}^{-1}\left(E_{L}, L\right)+\mathcal{M}\left(E_{L}\right)\right]=0
$$

finite volume spectrum
$E_{L}=$ finite volume spectrum
$L=$ finite volume
$F_{2}=$ known function

scattering amplitude $\mathcal{M}=$ scattering amplitude

Lüscher formalism

$$
\operatorname{det}\left[F_{2}^{-1}\left(E_{L}, L\right)+\mathcal{M}\left(E_{L}\right)\right]=0
$$

§ Lüscher $(1986,1991)$ [elastic scalar bosons]
\& Rummukainen \& Gottlieb (1995) [moving elastic scalar bosons]
\& Kim, Sachrajda, \& Sharpe / Christ, Kim \& Yamazaki (2005) [QFT derivation]
\& Bernard, Lage, Meißner \& Rusetsky (2008) [$N \pi$ systems]
\& Gockeler, Horsley, et al. (2012) [N π systems]
\& RB, Davoudi, Luu \& Savage (2013) [generic spinning systems]
\& Feng, Li, \& Liu (2004) [inelastic scalar bosons]
\& Hansen \& Sharpe / RB \& Davoudi (2012) [moving inelastic scalar bosons]
£ RB (2014) [Most general 2-body result: inelastic, spinning particles]

Extracting the spectrum

Two-point correlation functions:

$$
C_{a b}^{2 p t .}(t, \mathbf{P}) \equiv\langle 0| \mathcal{O}_{b}(t, \mathbf{P}) \mathcal{O}_{a}^{\dagger}(0, \mathbf{P})|0\rangle=\sum_{n} Z_{b, n} Z_{a, n}^{\dagger} e^{-E_{n} t}
$$

Evaluate all Wick contraction
e.g. isoscalar: $\pi_{[000]} \pi_{[110]}, m_{\pi}=236 \mathrm{MeV}$

RB, Dudek, Edwards, Wilson - PRL (2017)

Extracting the spectrum

Two-point correlation functions:

$$
C_{a b}^{2 p t .}(t, \mathbf{P}) \equiv\langle 0| \mathcal{O}_{b}(t, \mathbf{P}) \mathcal{O}_{a}^{\dagger}(0, \mathbf{P})|0\rangle=\sum_{n} Z_{b, n} Z_{a, n}^{\dagger} e^{-E_{n} t}
$$

© Evaluate all Wick contraction e.g. isoscalar: $\pi_{[000]} \pi_{[110]}, m_{\pi}=236 \mathrm{MeV}$

RB, Dudek, Edwards, Wilson - PRL (2017)

Extracting the spectrum

Two-point correlation functions:

$$
C_{a b}^{2 p t .}(t, \mathbf{P}) \equiv\langle 0| \mathcal{O}_{b}(t, \mathbf{P}) \mathcal{O}_{a}^{\dagger}(0, \mathbf{P})|0\rangle=\sum_{n} Z_{b, n} Z_{a, n}^{\dagger} e^{-E_{n} t}
$$

\& Evaluate all Wick contraction
\& Use a large basis of operators...

RB, Dudek, Edwards, Wilson - PRL (2017)

Extracting the spectrum

RB, Dudek, Edwards, Wilson - PRL (2017)

Isoscalar $\pi \pi$ scattering

Isoscalar $\pi \pi$ scattering

Isovector $\pi \pi$ scattering

Comparison with experiment

Bolton, RB \& Wilson (2016)

The ϱ vs m_{π}

The @ vs m_{π}

The $\sigma / f_{0}(500)$ vs m_{π}

RB, Dudek, Edwards, Wilson - PRL (2017)

Going higher in energy

§ Coupled channels: e.g., $\pi \eta, K \bar{K}$

Going higher in energy

© Coupled channels

§ Beyond two particles:

$$
\operatorname{det}\left[1+\left(\begin{array}{cc}
F_{2} & 0 \\
0 & F_{3}
\end{array}\right)\left(\begin{array}{cc}
\mathcal{K}_{2} & \mathcal{K}_{23} \\
\mathcal{K}_{32} & \mathcal{K}_{\mathrm{df}, 3}
\end{array}\right)\right]=0
$$

[^0]
"could be used to extract $3 N$

 forces, the Roper and much more"

Two,three-particle systems

Consider $P_{4} \sim i 3 m$:

After substantial massaging:

$$
\text { poles satisfy: } \operatorname{det}\left[1+\left(\begin{array}{cc}
F_{2} & 0 \\
0 & F_{3}
\end{array}\right)\left(\begin{array}{cc}
\mathcal{K}_{2} & \mathcal{K}_{23} \\
\mathcal{K}_{32} & \mathcal{K}_{\mathrm{df}, 3}
\end{array}\right)\right]=0
$$

Not the final result! Does not accommodate for resonant processes...underway!

Beyond spectroscopy

$$
|\langle\mathbf{2}| \mathcal{J}| \mathbf{0}\rangle_{L} \mid=\sqrt{L^{3}} \sqrt{\mathcal{V R V}}
$$

$$
|\langle\mathbf{2}| \mathcal{J}| \mathbf{1}\rangle_{L} \mid=\sqrt{\mathcal{H} \mathcal{R H}}
$$

$$
|\langle\mathbf{2}| \mathcal{J}| \mathbf{2}\rangle_{L} \left\lvert\,=\frac{1}{\sqrt{L^{3}}} \sqrt{\operatorname{Tr}\left[\mathcal{R} \mathcal{W}_{L, \mathrm{df}} \mathcal{R} \mathcal{W}_{L, \mathrm{df}]}\right.}\right.
$$

RB, Hansen (2016)
RB, Hansen (2015)
RB, Hansen, Walker-Loud (2014)

Two-particle systems

Consider $P_{4} \sim i 2 m:$

$$
L^{3} \int \frac{d P_{0}}{2 \pi} e^{i P_{0} t}(\mathcal{A} \mathrm{~V}
$$

After some massaging:

$$
\begin{aligned}
& =L^{3} \int \frac{d P_{0}}{2 \pi} e^{i P_{0} t}\left(C_{\infty}(P)+A\right) \\
& =L^{3} \int \frac{d P_{0}}{2 \pi} e^{i P_{0} t}\left(C_{\infty}(P)-A(P) \frac{1}{F_{2}^{-1}(P, L)+\mathcal{M}(P)} B^{\dagger}(P)\right) \\
& =L^{3} \sum_{n} e^{-E_{n} t} A_{n} \mathcal{R}_{n} B_{n}^{\dagger}
\end{aligned}
$$

\mathcal{R}_{n} : F.V. residue for 2-particle states. Explains how infinite-volume and F.V. states are mapped onto each other.

One-to-two transition

$$
||\mathbf{2}| \mathcal{J}| \mathbf{1}\rangle_{L} \mid=\sqrt{\mathcal{A R} \mathcal{A}}
$$

finite volume matrix element
$\langle\mathbf{2}| \mathcal{J}|\mathbf{1}\rangle_{L}=$ finite matrix element
$\mathcal{R}=$ known function

electroweak amplitude
$\mathcal{A}=$ electroweak amplitude

One-to-two transition

One-to-two transition

Φ Q-to- π form factor
\& chiral anomaly
anomalous magnetic moment of the muon [g-2]
\& first resonant 1-to-2 process
proof of principle

$\pi \gamma^{*}$-to- $\pi \pi$ amplitude

Explanation
$\pi \pi-t o-\pi \pi$ amplitude:

$\pi \gamma^{*}-t o-\pi \pi$ amplitude:

Form factor at Q pole

Shultz, Dudek, \& Edwards (2014)
RB, Dudek, Edwards, Shultz, Thomas \& Wilson (2015)

The future of spectroscopy

\% Formalism: complete and tested
\& Only a handful of channels considered
\% Much more underway
\% No systems with intrinsic spin to date

© Formalism: incomplete [1-2yrs]
2-body resonances
Multichannel, asymmetric masses, spin
\% Untested [3-5yrs]

Complimentary to experiment!

The future of structure

§ Formalism: complete and tested
Only one calculation to date
\&uark-mass exploration [~1-3yrs]
© Baryons to come...

\& Formalism: incomplete [~1-2yrs]
\& Untested
\% First calculation:
$\AA \pi \pi \gamma^{*}$-to- $\pi \pi$ [$\sim 2-4 \mathrm{yrs}$]
\% First elastic f.f. of a composite state

Broad goals

\& Strongly coupled 2-body
© Strongly coupled 2, 3-body
\& Spin-dependent amps.
\& Narrow resonances
\& Broad resonances
\& Photo-, electro-production
\% Transition form factors
\& Elastic form factors

Broad goals

\& Strongly coupled 2-body
\& Strongly coupled 2, 3-body
\& Spin-dependent amps.
\& Narrow resonances
\& Broad resonances
\& Photo-, electro-production
\% Transition form factors
Elastic form factors

Broad goals

\& Strongly coupled 2-body
\& Strongly coupled 2, 3-body
© Spin-dependent amps.
\& Narrow resonances
\& Broad resonances
\& Photo-, electro-production
\& Transition form factors
\& Elastic form factors

Broad goals

\& Strongly coupled 2-body
\& Strongly coupled 2, 3-body
\& Spin-dependent amps.
\& Narrow resonances
\& Broad resonances
\& Photo-, electro-production
\% Transition form factors
\& Elastic form factors

The big picture!

Collaborators \& references

Wilson

Dudek

Shultz

Thomas

HadSpec Collaboration

RB, Hansen, Sharpe - arXiv:1609.09805 [hep-lat] (2016)
RB, Hansen - Phys.Rev. D94 (2016) no.1, 013008 .
RB, Hansen - Phys.Rev. D92 (2015) no.7, 074509.
RB, Hansen, Walker-Loud - Phys.Rev. D91 (2015) no.3, 034501.
RB - Phys.Rev. D89 (2014) no.7, 074507.

RB, Dudek, Edwards, Wilson - Phys.Rev.Lett. 118 (2017) no.2, 022002.
RB, Dudek, Edwards, Thomas, Shultz, Wilson - Phys.Rev. D93 (2016) 114508.
RB, Dudek, Edwards, Thomas, Shultz, Wilson - Phys.Rev.Lett. 115 (2015) 242001
Wilson, RB, Dudek, Edwards, Thomas - Phys.Rev. D92 (2015) no.9, 094502

The $\sigma / f_{0}(500)$ vs m_{π}

$$
s_{0}=\left(E_{\sigma}-\frac{i}{2} \Gamma_{\sigma}\right)^{2}, \quad g_{\sigma \pi \pi}^{2}=\lim _{s \rightarrow s_{0}}\left(s_{0}-s\right) t(s)
$$

disp. +exp. = Peláez (2015), Caprini, et al. (2006), \& Garcia-Martin et al. (2011)

The $\sigma / f_{0}(500)$ vs m_{π}

$$
s_{0}=\left(E_{\sigma}-\frac{i}{2} \Gamma_{\sigma}\right)^{2}, \quad g_{\sigma \pi \pi}^{2}=\lim _{s \rightarrow s_{0}}\left(s_{0}-s\right) t(s)
$$

Unitarized $\chi \mathrm{PT}$

$$
\mathcal{M}_{\mathrm{U}_{\mathrm{XPT}}}=\mathcal{M}_{\mathrm{LO}} \frac{1}{\mathcal{M}_{\mathrm{LO}}-\mathcal{M}_{\mathrm{NLO}}} \mathcal{M}_{\mathrm{LO}}
$$

$$
\begin{aligned}
S & =1+2 i \sigma \mathcal{M} \\
\mathcal{M} & =\left(\operatorname{Re}\left(\mathcal{M}^{-1}\right)-i \sigma\right)^{-1} \\
\mathcal{M}^{-1} & =\mathcal{M}_{\mathrm{LO}}^{-1} \frac{1}{1+\mathcal{M}_{\mathrm{LO}}^{-1} \mathcal{M}_{\mathrm{NLO}}+\ldots}=\mathcal{M}_{\mathrm{LO}}^{-1}\left(1-\mathcal{M}_{\mathrm{LO}}^{-1} \mathcal{M}_{\mathrm{NLO}}+\ldots\right) \\
\operatorname{Re}\left(\mathcal{M}^{-1}\right) & =\mathcal{M}_{\mathrm{LO}}^{-1}\left(1-\mathcal{M}_{\mathrm{LO}}^{-1} \operatorname{Re}\left(\mathcal{M}_{\mathrm{NLO}}\right)+\ldots\right)
\end{aligned}
$$

Dobado and Pelaez (1997)
Oller, Oset, and Pelaez (1998)
Oller, Oset, and Pelaez (1999)

Chiral fit

$$
\begin{gathered}
\alpha_{1} \equiv-2 \ell_{1}^{r}+\ell_{2}^{r}, \alpha_{2} \equiv \ell_{4}^{r} \\
\hline \alpha_{1}(770 \mathrm{MeV})=14.7(4)(2)(1) \times 10^{-3} \\
\alpha_{2}(770 \mathrm{MeV})=-28(6)(3)\binom{01}{11} \times 10^{-3}
\end{gathered}
$$

previos results:

$$
\begin{aligned}
& \alpha_{1}(770 \mathrm{MeV}) \in[9,13] \times 10^{-3} \\
& \alpha_{2}(770 \mathrm{MeV}) \in[1,12] \times 10^{-3}
\end{aligned}
$$

m_{π} dependence

$\sigma / f_{0}(500)$ vs m_{π}

[^0]: RB, Hansen \& Sharpe (2017)

