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the big picture
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¢ the lightest of all nuclei
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¢ made of quarks and gluons
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Particle accelerators

(from a theorist’s perspective)

Step #0: write down theory / make a prediction / build accelerator

Step #1: accelerate particles to speeds close to the speed of light!

Step #2: smash them against each other

this can create a smattering of particles

Step #3: detect the debris

isolate individual particles

Step #4: compare the outcome with theory

without theory, there’s no meaning to experiments!
without experiments we do not know which theory is right!
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JLab’s particle accelerator

electrons are accelerate to speeds close
to the speed of light




JLab’s particle accelerator

the new GlueEx

s
these are smashed against a target,
the debris is detected in particle detectors

David Wilson (ex-ODU postdoc) ":‘ ~
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The forces of nature

L Gravitational force [GR] j

Earth

[ Strong nuclear force [QCD]j
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The standard model

of particle/nuclear physics

LElectromagnetic force [QED] ]
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Quantum Chromodynamics

“The fundamental theory of the strong nuclear force”

(Strong nuclear force [QCD]j

\_

e neutron ]
[
““G nuclei

\L proton J

atomic nuclei are composed of
protons and neutrons

[

example: 12C, the basis of life, is made
of 6 protons and 6 neutrons

J

7

these interact and are bound together
by the strong nuclear force

D

7

N
quarks and gluons, which also interact

via the strong nuclear force

nuclear physics = physics of the
strong nuclear force




Quantum Chromodynamics

“The fundamental theory of the strong nuclear force”
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Quantum Chromodynamics
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¢ quarks & gluons carry “color S — &
¢ quarks come in six different “flavors” S - € o
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WARNING!

Different flavors have wildly

different caloric content!
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“confinement” I
@

confined to color neutral bound states:
¢ red+blue+green %00

¢ red-+anti-red
proton} pion q




Quantum Chromodynamics
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Quantum Chromodynamics
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No hierarchy at low-energies
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non-perturbative....

( B
¢ confinement?

¢ origin of mass?
¢ formation of matter
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Quantum Chromodynamics

Jose Rodriguez (Skype /Microsoft)




Hadrons

QCD'’s rich spectrum
conventional states ]\
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Hadrons
QCD'’s rich spectrum

pentaquarks - LHCb (2015 )] &lueballs} E‘etmquarks - Belle (2003 )]
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( exotics & hybrids l: molecules

JLab searches: @4_—AS ] 2 GL%




Hadrons
QCD'’s rich spectrum
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...but perhaps there is a hierarchy [.e.g. co>c1>c2>c3]




Questions?




Lattice QCD

In summary:

-

-

QCD is non-perturbative

Solution: be smart and let computers do the hard work!
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the emergence
of nature




Lattice QCD

¢ lattice spacing: a ~ 0.03 — 0.15 fm

more familiar lattices




Lattice QCD

¢ lattice spacing: a ~ 0.03 — 0.15 fm

¢ finite volume: [, ~ 4 — 10 fm

L Never free!

No reactions!




Lattice QCD

¢ lattice spacing: a ~ 0.03 — 0.15 fm
¢ finite volume: [, ~ 4 — 10 fm

¢ quark masses
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L Advantage over experiment!




the origin of mass
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Higgs is responsible for giving
leptons and quarks mass.




the origin of mass
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the origin of mass

MN/ MeV
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Only gluodynamics matter!
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the origin of mass
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Searches for glue at JLab
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Searches for glue at JLab
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resonant, short-lived state
lifetime ~ 1023 sec




Searches for glue at JLab
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Searches for glue at JLab

deduce its existence
and properties from

those of its byproducts

e.g. the presence of
glue is tied to its
quantum numbers
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Reactions from QCD

(~ )
¢ Puzzle:
¢ Need to use LQCD @
¢ Particles cannot be separated @
g ¢ No scattering or reactions in a finite-volume! y

¢ (Observation #1:

< / >
l interacting potential I Qy l reactions/scattering

¢ QObservation #2: A

¢ Energies are “easily” A ETL p— <n | V | n>

determined in LQCD




Reactions from QCD

¢ Conclusion:

1= ] @3 o
interacting free particles gy

particles in a box in a box

the devil is in the details...

RB, Hansen, Sharpe - (2016)
RB, Hansen - PRD (2016)

¢ Intuitive example: RB, Hansen - PRD (2015)

RB, Hansen, Walker-Loud - PRD (2015)
<~
E repulsive system ] ‘

RB - PRD (2014)

‘ RB, Davoudi - PRD (2013)

bound state }




Questions?




Isovector Tttt cross section
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Isovector Tttt cross section

modeled
extrapolation...
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Dudek, Edwards & Thomas (2012)
Wilson, RB, Dudek, Edwards & Thomas (2015)
Bolton, RB & Wilson (2015)




Isovector Tttt cross section
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Dudek, Edwards & Thomas (2012)
Wilson, RB, Dudek, Edwards & Thomas (2015)
Bolton, RB & Wilson (2015)




Isovector Tttt cross section
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0




Electromagnetic reactions

m,=391 MeV

radiative transitions

elastic mm amplitude |

2.5 E;w/mw

RB, Dudek, Edwards, Thomas, Shultz, Wilson - PRL (2015)




Electromagnetic reactions

Q*=0
Q? = 0.803 GeV*?

24 2.5

elastic mmt amplitude |

2.5 E;;?T/m7T

m=391 MeV RB, Dudek, Edwards, Thomas, Shultz, Wilson - PRL (2015)




Electromagnetic reactions

Shultz Carrillo

24 2.5

elastic mm amplitude |

2.5 E;W/mw

m=391 MeV RB, Dudek, Edwards, Thomas, Shultz, Wilson - PRL (2015)




The isoscalar, scalar sector

li.e., the quantum numbers of the vacuum]
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The isoscalar, scalar sector

li.e., the quantum numbers of the vacuum]
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The isoscalar, scalar sector

li.e., the quantum numbers of the vacuum]
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The isoscalar, scalar sector

li.e., the quantum numbers of the vacuum]
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The isoscalar, scalar sector

li.e., the quantum numbers of the vacuum]
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The isoscalar, scalar sector

li.e., the quantum numbers of the vacuum]
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The isoscalar, scalar sector

li.e., the quantum numbers of the vacuum]
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Isoscalar 7tmt cross section
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only showing the
low-enerqy region!
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300 90 F_ /MeV

RB, Dudek, Edwards, Wilson - PRL (2017)




Isoscalar 7tmt cross section
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300 90 F_ /MeV

RB, Dudek, Edwards, Wilson - PRL (2017)




Isoscalar 7tmt cross section

the o resonance
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300 90 F_ /MeV

RB, Dudek, Edwards, Wilson - PRL (2017)
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RB, Dudek, Edwards, Wilson - PRL (2017)




The isoscalar, scalar sector

li.e., the quantum numbers of the vacuum]

PHYSICAL H
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RB, Dudek, Edwards, Wilson - PRL (2017)
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On QCD:
“...what we have to do is to calculate the consequences of
the theory...The mathematics needed to figures what the

The Pleasure

f F 1 . consequences of this theory are have turned out to be, at
OL U'INAING SUEER 110 present time, insuperably difficult...my problem is to

Tl] 11] o‘ S OUt try to develop a way of getting numbers out of this

theory, to test it really carefully...l can’t stand it, I have

to figure it out. Someday, maybe.”
-Richard Feynman (1981)

== RICHARD P FEYNMAN

Jose Rodriguez (Skype /Microsoft)
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The o vs mx
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800 900 1000 1100
0 o &
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E—| m, = 140 MeV, Lattice QCD + UxPT
l—( m, =140 MeV, Roy Equation

Lin et al. (2009)

Dudek, Edwards, Guo & Thomas (2013)
Dudek, Edwards & Thomas (2012)

Wilson, RB, Dudek, Edwards & Thomas (2015)
Bolton, RB & Wilson (2015)




The o vs mx
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m, =Re(E,)/MeV
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| E_l m, =140 MeV, Lattice QCD + UyPT ﬁz g(mz), so = So(mw)J

l—( m, =140 MeV, Roy Equation

Advantage over experiment:
¢ heavy quarks make broad resonances bound

¢ unambiguously track poles in complex plane




The o/£y(500) vs my
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