New approaches to global PDF analysis

Wally Melnitchouk Jefferson Lab

with Nobuo Sato

Outline

- Motivation - why the need for a new paradigm?
- Bayesian approach to fitting
\longrightarrow single-fit (Hessian) vs. Monte Carlo approaches
\longrightarrow shortcomings of Hessian (Gaussian) approach
- Incompatible data sets
\longrightarrow "tolerance" factors (uncertainties should not depend on \# of parameters!)
- Monte Carlo methods
\longrightarrow iterative MC, nested sampling, ...
- Generalization to non-Gaussian likelihoods
\longrightarrow disjoint probabilities, empirical Bayes, ...
■ Outlook

Motivation

- With limited number of observables and finite statistics, need a robust analysis framework to extract meaningful parton information from experiment
- Over the first ~2-3 decades of global PDF analysis efforts, χ^{2} minimization (single-fit) analysis (with Hessian error propagation) has generally been sufficient to map out global characteristics of partonic structure
$\rightarrow e . g$. shapes of quark PDFs from DIS, where data are plentiful
- A major challenge has been to characterize PDF uncertainties - in a statistically meaningful way - in the presence of tensions among data sets

Motivation

- Previous attempts sought to address tensions in data sets by introducing
\longrightarrow "tolerance" factors (artificially inflating PDF errors)
\longrightarrow "neural net" parametrization (instead of polynomial parametrization), together with MC techniques
- However, to address the problem in a more statistically rigorous way, one requires going beyond the standard χ^{2} minimization paradigm
\rightarrow utilize modern techniques based on Bayesian statistics!

Motivation

- In the near future, standard χ^{2} minimization techniques will be unsuitable - even in the absence of tensions e.g. for
\rightarrow simultaneous analysis of collinear distributions (unpolarized \& polarized PDFs, fragmentation functions)

$$
\longrightarrow \text { "JAM17": Jake Ethier (Tuesday) }
$$

\rightarrow new types of observables - TMDs or GPDs that will involve $>\mathcal{O}\left(10^{5}\right)$ data points, with $\mathcal{O}\left(10^{3}\right)$ parameters

Motivation

- Typically PDF parametrizations are nonlinear functions of the PDF parameters, e.g.

$$
x f(x, \mu)=N x^{\alpha}(1-x)^{\beta} P(x)
$$

where P is a polynomial e.g. $P(x)=1+\epsilon \sqrt{x}+\eta x$, or Chebyshev, neural net, ...
\rightarrow have multiple local minima present in the χ^{2} function

- Robust parameter estimation that thoroughly scans over a realistic parameter space, including multiple local minima, is only possible using MC methods!
- Need more reliable algorithms - "PDFs beyond the LHC"!

Bayesian approach to fitting

Bayesian approach to fitting

- Analysis of data requires estimating expectation values E and variances V of "observables" \mathcal{O} (= PDFs, FFs) which are functions of parameters \vec{a}

$$
\begin{aligned}
& E[\mathcal{O}]=\int d^{n} a \mathcal{P}(\vec{a} \mid \text { data }) \mathcal{O}(\vec{a}) \\
& V[\mathcal{O}]=\int d^{n} a \mathcal{P}(\vec{a} \mid \text { data })[\mathcal{O}(\vec{a})-E[\mathcal{O}]]^{2}
\end{aligned}
$$

"Bayesian master formulas"

- Using Bayes' theorem, probability distribution \mathcal{P} given by

$$
\mathcal{P}(\vec{a} \mid \text { data })=\frac{1}{Z} \mathcal{L}(\text { data } \mid \vec{a}) \pi(\vec{a})
$$

in terms of the likelihood function \mathcal{L}

Bayesian approach to fitting

- Likelihood function

$$
\mathcal{L}(\text { data } \mid \vec{a})=\exp \left(-\frac{1}{2} \chi^{2}(\vec{a})\right)
$$

is a Gaussian form in the data, with χ^{2} function

$$
\chi^{2}(\vec{a})=\sum_{i}\left(\frac{\operatorname{data}_{i}-\text { theory }_{i}(\vec{a})}{\delta(\text { data })}\right)^{2}
$$

with priors $\pi(\vec{a})$ and "evidence" Z

$$
Z=\int d^{n} a \mathcal{L}(\operatorname{data} \mid \vec{a}) \pi(\vec{a})
$$

$\rightarrow \quad Z$ tests if e.g. an n-parameter fit is statistically different from ($n+1$)-parameter fit

Bayesian approach to fitting

- Two methods generally used for computing Bayesian master formulas:

Maximum Likelihood
Monte Carlo
(χ^{2} minimization)

Bayesian approach to fitting

- Two methods generally used for computing Bayesian master formulas:

Maximum Likelihood (χ^{2} minimization)

\rightarrow maximize probability distribution \mathcal{P} by minimizing χ^{2} for a set of best-fit parameters \vec{a}_{0}

$$
E[\vec{a}]=\vec{a}_{0}
$$

Bayesian approach to fitting

- Two methods generally used for computing Bayesian master formulas:

Maximum Likelihood

(χ^{2} minimization)
\longrightarrow maximize probability distribution \mathcal{P} by minimizing χ^{2} for a set of best-fit parameters \vec{a}_{0}

$$
E[\vec{a}]=\vec{a}_{0}
$$

\longrightarrow if \mathcal{O} is \approx linear in the parameters, and if probability is symmetric in all parameters

$$
E[\mathcal{O}(\vec{a})] \approx \mathcal{O}\left(\vec{a}_{0}\right)
$$

Bayesian approach to fitting

- Two methods generally used for computing Bayesian master formulas:

Maximum Likelihood

$$
\left(\chi^{2} \text { minimization }\right)
$$

\longrightarrow variance computed by expanding $\mathcal{O}(\vec{a})$ about \vec{a}_{0} $e . g$. in 1 dimension have "master formula"

$$
V[\mathcal{O}] \approx \frac{1}{4}[\mathcal{O}(a+\delta a)-\mathcal{O}(a-\delta a)]^{2}
$$

where

$$
\delta a^{2}=V[a]
$$

Bayesian approach to fitting

- Two methods generally used for computing Bayesian master formulas:

Maximum Likelihood

(χ^{2} minimization)
\longrightarrow generalization to multiple dimensions via Hessian approach: find set of (orthogonal) contours in parameter space around \vec{a}_{0} such that \mathcal{L} along each contour is parametrized by statistically independent parameters - directions of contours given by eigenvectors \hat{e}_{k} of Hessian matrix H, with elements

$$
H_{i j}=\left.\frac{1}{2} \frac{\partial^{2} \chi^{2}(\vec{a})}{\partial a_{i} \partial a_{j}}\right|_{\vec{a}=\vec{a}_{0}}
$$

and contours parametrized as $\Delta a^{(k)}=a^{(k)}-a_{0}=t_{k} \frac{\hat{e}_{k}}{\sqrt{v_{k}}}$,
with v_{k} eigenvectors of H with v_{k} eigenvectors of H

Bayesian approach to fitting

- Two methods generally used for computing Bayesian master formulas:

Maximum Likelihood

(χ^{2} minimization)
\longrightarrow basic assumption: \mathcal{P} factorizes along each eigendirection

$$
\mathcal{P}(\Delta a) \approx \prod_{k} \mathcal{P}_{k}\left(t_{k}\right)
$$

where

$$
\mathcal{P}_{k}\left(t_{k}\right)=\mathcal{N}_{k} \exp \left[-\frac{1}{2} \chi^{2}\left(a_{0}+t_{k} \frac{\hat{e}_{k}}{\sqrt{v_{k}}}\right)\right]
$$

note: in quadratic approximation for χ^{2}, this becomes a normal distribution

Bayesian approach to fitting

- Two methods generally used for computing Bayesian master formulas:

Maximum Likelihood

$$
\left(\chi^{2} \text { minimization }\right)
$$

\longrightarrow uncertainties on \mathcal{O} along each eigendirection (assuming linear approximation)

$$
\left(\Delta \mathcal{O}_{k}\right)^{2} \approx \frac{1}{4}\left[\mathcal{O}\left(a_{0}+T_{k} \frac{\hat{e}_{k}}{\sqrt{v_{k}}}\right)-\mathcal{O}\left(a_{0}-T_{k} \frac{\hat{e}_{k}}{\sqrt{v_{k}}}\right)\right]^{2}
$$

where T_{k} is finite step size in t_{k}, with total variance

$$
V[\mathcal{O}]=\sum_{k}\left(\Delta \mathcal{O}_{k}\right)^{2}
$$

Bayesian approach to fitting

- Two methods generally used for computing Bayesian master formulas:

Monte Carlo

\rightarrow in practice, generally one has $E[\mathcal{O}(\vec{a})] \neq \mathcal{O}(E[\vec{a}])$ so the maximal likelihood method will sometimes fail
\rightarrow Monte Carlo approach samples parameter space and assigns weights w_{k} to each set of parameters a_{k}
\rightarrow expectation value and variance are then weighted averages

$$
E[\mathcal{O}(\vec{a})]=\sum_{k} w_{k} \mathcal{O}\left(\vec{a}_{k}\right), \quad V[\mathcal{O}(\vec{a})]=\sum_{k} w_{k}\left(\mathcal{O}\left(\vec{a}_{k}\right)-E[\mathcal{O}]\right)^{2}
$$

Bayesian approach to fitting

- Two methods generally used for computing Bayesian master formulas:

Maximum Likelihood
 (χ^{2} minimization)

O fast

- assumes Gaussianity

O no guarantee that global minimum has been found

O errors only characterize local geometry of χ^{2} function

Monte Carlo

O slow
O does not rely on
Gaussian assumptions
o includes all possible solutions

O accurate

Incompatible data sets

Incompatible data sets

- Incompatible data sets can arise because of errors in determining central values, or underestimation of systematic experimental uncertainties
\rightarrow requires some sort of modification to standard statistics
- Often one modifies the master formula by introducing a "tolerance" factor T

$$
V[\mathcal{O}] \rightarrow T^{2} V[\mathcal{O}]
$$

e.g. for one dimension

$$
V[\mathcal{O}]=\frac{T^{2}}{4}[\mathcal{O}(a+\delta a)-\mathcal{O}(a-\delta a)]^{2}
$$

\rightarrow effectively modifies the likelihood function

Incompatible data sets

■ Simple example: consider observable m, and two measurements

$$
\left(m_{1}, \delta m_{1}\right), \quad\left(m_{2}, \delta m_{2}\right)
$$

\rightarrow compute exactly the χ^{2} function

$$
\chi^{2}=\left(\frac{m-m_{1}}{\delta m_{1}}\right)^{2}+\left(\frac{m-m_{2}}{\delta m_{2}}\right)^{2}
$$

and, from Bayesian master formula, the mean value

$$
E[m]=\frac{m_{1} \delta m_{2}^{2}+m_{2} \delta m_{1}^{2}}{\delta m_{1}^{2}+\delta m_{2}^{2}}
$$

and variance

$$
V[m]=H^{-1}=\frac{\delta m_{1}^{2} \delta m_{2}^{2}}{\delta m_{1}^{2}+\delta m_{2}^{2}} \leadsto \begin{array}{r}
\text { does not } \\
\text { depend on } \\
m_{1}-m_{2}!
\end{array}
$$

Incompatible data sets

■ Simple example: consider observable m, and two measurements

$$
\left(m_{1}, \delta m_{1}\right), \quad\left(m_{2}, \delta m_{2}\right)
$$

\longrightarrow total uncertainty remains independent of degree of (in)compatibility of data
\rightarrow Gaussian likelihood gives unrealistic representation of true uncertainty

Incompatible data sets

\square Realistic example: recent CJ (CTEQ-JLab) global PDF analysis

\longrightarrow data sets compatible along this e-direction
$\longrightarrow 24$ parameters, 33 data sets

Incompatible data sets

- Realistic example: recent CJ (CTEQ-JLab) global PDF analysis

$\longrightarrow 24$ parameters, 33 data sets
\longrightarrow data sets not compatible along this e-direction

Incompatible data sets

\square Realistic example: recent CJ (CTEQ-JLab) global PDF analysis

$\rightarrow 24$ parameters,
33 data sets
\longrightarrow data sets not compatible along this e-direction
\longrightarrow standard Gaussian likelihood incapable of accounting for underestimated individual errors (leading to incompatible data sets) - not designed for such scenarios!

Incompatible data sets

- Two ways in which tolerance factors usually implemented

\rightarrow CTEQ "tolerance criteria" (variations adopted by other groups, e.g., MMHT, CJ)

Pumplin, Stump, Huston, Lai, Nadolsky, Tung
JHEP 07 (2002) 012

\longrightarrow scaling of $\Delta \chi^{2}$ with number of parameters (or number of degrees of freedom)

e.g. Brodsky, Gardner

PRL (Comment) 116, 019101 (2016)

> JDHLM assess their PDF errors using a tolerance criteria of $\Delta \chi^{2}=1$ at 1σ; however, the actual value of $\Delta \chi^{2}$ to be employed depends on the number of parameters to be simultaneously determined in the fit. This is illustrated in Table 38.2 of Ref. [15] and is used broadly, noting, e.g., Refs. [16-19]. Ref. [7] employs the CT10 PDF analysis [20], so that it contains 25 parameters, plus one for intrinsic charm. Figure 38.2 of Ref. [15] then shows that $\Delta \chi^{2} \approx 29$ at $1 \sigma\left(68 \%\right.$ CL), whereas $\Delta \chi^{2} \approx 36$ at 90% CL. Ref. [7] uses the criterion $\Delta \chi^{2}>100$, determined on empirical grounds, to indicate a poor fit. JDHLM employs the framework of Ref. [21] which contains 25 parameters for the PDFs and 12 for the higher-twist contributions, so that a much larger tolerance than $\Delta \chi^{2}=1$ is warranted.

Incompatible data sets

- CTEQ tolerance criteria

- for each experiment, find minimum χ^{2} along given e-direction
- from χ^{2} distribution determine $90 \% \mathrm{CL}$ for each experiment
- along each side of e-direction, determine maximum range $d_{k}^{ \pm}$ allowed by the most constraining experiment
- T computed by averaging over all $d_{k}^{ \pm}$(typically $T \sim 5-10$)

Incompatible data sets

- CTEQ tolerance criteria

\square This approach is not consistent with Gaussian likelihood
\longrightarrow no clear Bayesian interpretation of uncertainties (ultimately, a prescription...)

Incompatible data sets

- Scaling of $\Delta \chi^{2}$ with \# of parameters: " $\Delta \chi^{2}$ paradox"
- Simple example: two parameters $\theta_{i} \quad(i=1,2)$ with mean values μ_{i} and standard deviation σ_{i}
\rightarrow joint probability distribution

$$
\mathcal{P}\left(\theta_{1}, \theta_{2}\right)=\prod_{i=1,2} \frac{1}{\sqrt{2 \pi \sigma_{i}^{2}}} \exp \left[-\frac{1}{2}\left(\frac{\theta_{i}-\mu_{i}}{\sigma_{i}}\right)^{2}\right]
$$

\rightarrow change variables $\theta_{i} \rightarrow t_{i}=\left(\theta_{i}-\mu_{i}\right) / \sigma_{i}$ and use polar coordinates $r^{2}=t_{1}^{2}+t_{2}^{2}, \quad \phi=\tan ^{-1}\left(t_{2} / t_{1}\right)$

$$
d \theta_{1} d \theta_{2} \mathcal{P}\left(\theta_{1}, \theta_{2}\right)=\frac{d \phi}{2 \pi} r d r \exp \left[-\frac{1}{2} r^{2}\right]
$$

Incompatible data sets

- Scaling of $\Delta \chi^{2}$ with \# of parameters: " $\Delta \chi^{2}$ paradox"
\rightarrow confidence volume

$$
\begin{aligned}
\mathrm{CV} & \equiv \int d \theta_{1} d \theta_{2} \mathcal{P}\left(\theta_{1}, \theta_{2}\right)=\int_{0}^{R} d r r \exp \left[-\frac{1}{2} r^{2}\right] \\
& =68 \% \text { for } R=2.279
\end{aligned}
$$

\longrightarrow note that $R^{2}=t_{1}^{2}+t_{2}^{2} \equiv \chi^{2}$, so that confidence region for parameters max $\left[t_{i}\right]=R$
\longrightarrow implies that $\theta_{i}=\mu_{i} \pm \sigma_{i} R$, which contradicts
 original premise that $\theta_{i}=\mu_{i} \pm \sigma_{i}$!

- Scaling of $\Delta \chi^{2}$ with \# of parameters: " $\Delta \chi^{2}$ paradox"
\rightarrow to resolve paradox, use Bayesian master formulas

$$
\begin{aligned}
E\left[\theta_{i}\right] & =\int_{0}^{2 \pi} \frac{d \phi}{2 \pi} \int_{0}^{\infty} d r \mathcal{P}(r, \phi) \theta_{i} \\
& =\int_{0}^{2 \pi} \frac{d \phi}{2 \pi} \int_{0}^{\infty} d r r e^{-r^{2} / 2}\left(\mu_{i}+t_{i} \sigma_{i}\right)=\mu_{i}
\end{aligned}
$$

Incompatible data sets

- Scaling of $\Delta \chi^{2}$ with \# of parameters: " $\Delta \chi^{2}$ paradox"
\rightarrow to resolve paradox, use Bayesian master formulas

$$
\begin{aligned}
E\left[\theta_{i}\right] & =\int_{0}^{2 \pi} \frac{d \phi}{2 \pi} \int_{0}^{\infty} d r \mathcal{P}(r, \phi) \theta_{i} \\
& =\int_{0}^{2 \pi} \frac{d \phi}{2 \pi} \int_{0}^{\infty} d r r e^{-r^{2} / 2}\left(\mu_{i}+t_{i} \sigma_{i}\right)=\mu_{i} \\
V\left[\theta_{i}\right] & =\int_{0}^{2 \pi} \frac{d \phi}{2 \pi} \int_{0}^{\infty} d r \mathcal{P}(r, \phi)\left(\theta_{i}-\mu_{i}\right)^{2} \\
& =\int_{0}^{2 \pi} \frac{d \phi}{2 \pi} \int_{0}^{\infty} d r r e^{-r^{2} / 2}\left(t_{i} \sigma_{i}\right)^{2}=\sigma_{i}^{2} \sqrt{ }
\end{aligned}
$$

Incompatible data sets

- Scaling of $\Delta \chi^{2}$ with \# of parameters: " $\Delta \chi^{2}$ paradox"
\rightarrow no paradox if use $\Delta \chi^{2}=1$ for any number of parameters to characterize the $1 \sigma \mathrm{CL}$
\longrightarrow only consistent tolerance for Gaussian likelihood is $T=1$

To summarize standard maximum likelihood method...

- Gradient search (in parameter space) depends how "good" the starting point is
\rightarrow for ~ 30 parameters trying different starting points is impractical, if do not have some information about shape
- Common to free parameters initially, then freeze those not sensitive to data (χ^{2} flat locally)
\rightarrow introduces bias, does not guarantee that flat χ^{2} globally
- Cannot guarantee solution is unique
- Error propagation characterized by quadratic χ^{2} near minimum \longrightarrow no guarantee this is quadratic globally (e.g. Student t-distribution?)
- Introduction of tolerance modifies Gaussian statistics

Monte Carlo methods

Monte Carlo

ㅁ Designed to faithfully compute Bayesian master formulas
\square Do not assume a single minimum, include all possible solutions (with appropriate weightings)
\square Do not assume likelihood is Gaussian in parameters
\square Allows likelihood analysis to be extended to address tensions among data sets via Bayesian inference
\square More computationally demanding compared with Hessian method

Monte Carlo

- First group to use MC for global PDF analysis was NNPDF, using neural network to parametrize $P(x)$ in

$$
f(x)=N x^{\alpha}(1-x)^{\beta} P(x)
$$

$-\alpha, \beta$ are fitted "preprocessing coefficients"

- Iterative Monte Carlo (IMC), developed by JAM Collaboration, variant of NNPDF, tailored to non-neutral net parametrizations
\rightarrow J.Ethier
- Markov Chain MC (MCMC) / Hybid MC (HMC)
- recent "proof of principle" analysis, ideas from lattice QCD

Gbedo, Mangin-Brinet,
PRD 96, 014015 (2017)

- Nested sampling (NS) - computes integrals in Bayesian master formulas (for E, V, Z) explicitly

Iterative Monte Carlo (IMC)

ㅁ Use traditional functional form for input distribution shape, but sample significantly larger parameter space than possible in single-fit analyses

```
Iterative Monte Carlo (IMC)
```


\rightarrow no assumptions for exponents

\rightarrow cross-validation to avoid overfitting
\rightarrow iterate until convergence criteria satisfied

Iterative Monte Carlo (IMC)

$\square e . g$. of convergence (for fragmentation functions) in IMC

Sato et al.
PRD 94, 114004

Nested Sampling

ㅁ Basic idea: transform n-dimensional integral to 1-D integral

$$
Z=\int d^{n} a \mathcal{L}(\text { data } \mid \vec{a}) \pi(\vec{a})=\int_{0}^{1} d X \mathcal{L}(X)
$$

where prior volume $d X=\pi(\vec{a}) d^{n} a$

such that $0<\cdots<X_{2}<X_{1}<X_{0}=1$

Feroz et al.
arXiv:1306.2144 [astro-ph]

Nested Sampling

- Approximate evidence by a weighted sum

$$
Z \approx \sum_{i} \mathcal{L}_{i} w_{i} \quad \text { with weights } w_{i}=\frac{1}{2}\left(X_{i-1}-X_{i+1}\right)
$$

- Algorithm:
\rightarrow randomly select samples from full prior s.t. initial volume $X_{0}=1$
\rightarrow for each iteration, remove point with lowest \mathcal{L}_{i}, replacing it with point from prior with constraint that its $\mathcal{L}>\mathcal{L}_{i}$
\rightarrow repeat until entire prior volume has been traversed
- can be parallelized
- performs better than VEGAS for large dimensions

O increasingly used in fields outside of (nuclear) analysis

Nested Sampling

- Recent application

 in global analysis of transversity TMD PDF$$
\longrightarrow \text { H.-W.Lin }
$$

Lin, WM, Prokudin,
Sato, Shows (2017)

MC Error Analysis

\square Assuming a single minimum, a Hessian or MC analysis must give same results, if using same likelihood function
\rightarrow analysis of pseudodata, generated using Gaussian distribution

MC Error Analysis

\square Assuming a single minimum, a Hessian or MC analysis must give same results, if using same likelihood function
\rightarrow also for discrepant data

\rightarrow almost identical uncertainty bands for Hessian and for MC!

MC Error Analysis

ㅁ Assuming a single minimum, a Hessian or MC analysis must give same results, if using same likelihood function

ㅁ Approaches that use Hessian + tolerance factor not consistent with Gaussian likelihood function
\square NNPDF group claim that within their neural net MC methodology, no need for a tolerance factor, since uncertainties similar to other groups who use Hessian + tolerance
\rightarrow how can this be?
\square Assuming sufficient observables to determine PDFs, then PDF uncertainties cannot depend on parametrization!

Non-Gaussian likelihood

Incompatible data sets

\square Rigorous (Bayesian) way to address incompatible data sets is to use generalization of Gaussian likelihood

- joint vs. disjoint distributions
- empirical Bayes
- hierarchical Bayes
o others, used in different fields

Disjoint distributions

- Instead of using total likelihood that is a product ("and") of individual likelihoods, e.g. for simple example of two measurements

$$
\mathcal{L}\left(m_{1} m_{2} \mid m ; \delta m_{1} \delta m_{2}\right)=\mathcal{L}\left(m_{1} \mid m ; \delta m_{1}\right) \times \mathcal{L}\left(m_{2} \mid m ; \delta m_{2}\right)
$$

use instead sum ("or") of individual likelihoods

$$
\mathcal{L}\left(m_{1} m_{2} \mid m ; \delta m_{1} \delta m_{2}\right)=\frac{1}{2}\left[\mathcal{L}\left(m_{1} \mid m ; \delta m_{1}\right)+\mathcal{L}\left(m_{2} \mid m ; \delta m_{2}\right)\right]
$$

\rightarrow gives rather different expectation value and variance

$$
\begin{aligned}
E[m] & =\frac{1}{2}\left(m_{1}+m_{2}\right) \\
V[m] & =\frac{1}{2}\left(\delta m_{1}^{2}+\delta m_{2}^{2}\right)+\left(\frac{m_{1}-m_{2}}{2}\right)^{2}
\end{aligned}
$$

Disjoint distributions

\square Symmetric uncertainties $\delta m_{1}=\delta m_{2}$

disjoint: $\quad V[m]=\frac{1}{2}\left(\delta m_{1}^{2}+\delta m_{2}^{2}\right)+\left(\frac{m_{1}-m_{2}}{2}\right)^{2}$
joint: $\quad V[m]=\frac{\delta m_{1}^{2} \delta m_{2}^{2}}{\delta m_{1}^{2}+\delta m_{2}^{2}}$

Disjoint distributions

- Asymmetric uncertainties $\delta m_{1} \neq \delta m_{2}$

\rightarrow disjoint likelihood gives broader overall uncertainty, overlapping individual (discrepant) data

Empirical Bayes

- Shortcoming of conventional Bayesian — still assume prior distribution follows specific form (e.g. Gaussian)
- Extend approach to more fully represent prior uncertainties, with final uncertainties that do not depend on initial choices
- In generalized approach, data uncertainties modified by distortion parameters, whose probability distributions given in terms of "hyperparameters" (or "nuisance parameters")
\square Hyperparameters determined from data
\rightarrow give posteriors for both PDF and hyperparameters

Empirical Bayes

- Standard mean and variance that characterize data

$$
\theta=\mu+\sigma \longrightarrow f(\mu)+g(\sigma)
$$

where $f(\mu), g(\sigma)$ are unknown functions that account for faulty measurements

- Simple choice is

$$
(\mu, \sigma) \rightarrow\left(\zeta_{1} \mu+\zeta_{2}, \zeta_{3} \sigma\right)
$$

where $\zeta_{1,2,3}$ are distortion parameters, with prob. dists. described by hyperparameters $\phi_{1,2,3}$

- Likelihood function is then

$$
\mathcal{L}\left(\text { data } \mid \vec{a}, \zeta_{1,2,3}\right) \sim \exp \left[-\frac{1}{2} \sum_{i}\left(\frac{d_{1}-f\left(\mu_{i}\left(\vec{a}, \zeta_{1,2}\right)\right)}{g\left(\sigma, \zeta_{3}\right)}\right)^{2}\right] \pi_{1}\left(\zeta_{1} \mid \phi_{1}\right) \pi_{2}\left(\zeta_{1} \mid \phi_{2}\right) \pi_{3}\left(\zeta_{1} \mid \phi_{3}\right)
$$

Empirical Bayes

- Simple example of EB for symmetric \& asymmetric errors

Outlook

- New paradigm needed in global QCD analysis
- simultaneous determination of collinear distributions (also TMDs) using Monte Carlo sampling of parameter space
- Treatment of discrepant data sets needs serious attention - Bayesian perspective has clear merits
- Necessary to benchmark MC extractions (not just NNPDF)
- Near-term future: "universal" QCD analysis of all observables sensitive to collinear (unpolarized \& polarized) PDFs and FFs
- Longer-term: apply MC technology to global QCD analysis of transverse momentum dependent (TMD) PDFs and FFs

