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Outline

Leading neutron DIS — implications for pion models
and pion PDF extraction

Outlook

Strange quark asymmetries

d̄� ūMotivation:           asymmetry

PDF constraints from chiral symmetry in QCD / chiral EFT



Light quark sea
From perturbative QCD expect symmetric      sea generated
by gluon radiation into      pairs (if quark masses are the same)

qq̄
qq̄

Thomas suggested that chiral symmetry of QCD (important at low energy) 

should have consequences for antiquark PDFs in nucleon
(measured at high energy)
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since u and d quarks nearly degenerate,
expect flavor-symmetric light-quark sea

d̄ ⇡ ū Ross, Sachrajda (1979)

A.W. Thomas (1984)



Light quark sea
First clear experimental support for           came from violation
of Gottfried sum rule observed by NMC
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clear evidence for                (or at least integrated value)d̄� ū > 0



Light quark sea

strong enhancement of     at x ~ 0.1 – 0.2,  but intriguing
behavior at large x hinting at possible sign change of 
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x dependence of           asymmetry established in Fermilab 
E866 pp/pd  Drell-Yan experiment
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Light quark sea
General agreement with pion loop model calculations
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                    splitting function
                 (“flux factor”)
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shape qualitatively reproduced by
many models (except at high x),
— but is there a direct connection
     with QCD?-0.2
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coefficients of leading nonanalytic (LNA) terms,
reflecting infrared behavior,  are model-independent!

Thomas, WM, Steffens (2000)

Expand moments of PDFs in powers of m⇡

nonzero LNA term implies nonzero asymmetry from     loops⇡

Chiral EFT
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Extraction of parton distributions from lattice QCD 5
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Fig. 1. Moments of the unpolarized u − d distribution in the proton, for n = 1, 2 and 3. Lattice
data10 include both quenched (solid symbols) and unquenched (open symbols) results. The solid
line represents the full chiral extrapolation, while the inner (darkly shaded) error band shows
variation of µ by ± 20%, with the outer band (lightly shaded) showing the additional effects of
shifting the lattice data within the extent of their error bars. Linear extrapolations are indicated
by dashed lines, and the phenomenological values20 are shown as large stars at the physical pion
mass.

bn is simply bnm2
π) and bn is a third fitting parameter,7 are indistinguishable from

those in Fig. 1.
Note that the majority of the data points (filled symbols) are obtained from

simulations employing the quenched approximation (in which background quark
loops are neglected) whereas Eq. (4) is based on full QCD with quark loop effects
included. On the other hand, recent calculations with dynamical quarks suggest that
at the relatively large pion masses (mπ > 0.5–0.6 GeV) where the full simulations
are currently performed, the effects of quark loops are largely suppressed, as the data
in Fig. 1 (small open symbols) indicate. Further details of the lattice data,2,3,4,5

and a more extensive discussion of the fit parameters, can be found elsewhere.10

A similar analysis leads to analogous lowest order LNA parameterizations of the
mass dependence of the spin-dependent moments17
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Fig. 1. Moments of the unpolarized u − d distribution in the proton, for n = 1, 2 and 3. Lattice
data10 include both quenched (solid symbols) and unquenched (open symbols) results. The solid
line represents the full chiral extrapolation, while the inner (darkly shaded) error band shows
variation of µ by ± 20%, with the outer band (lightly shaded) showing the additional effects of
shifting the lattice data within the extent of their error bars. Linear extrapolations are indicated
by dashed lines, and the phenomenological values20 are shown as large stars at the physical pion
mass.

bn is simply bnm2
π) and bn is a third fitting parameter,7 are indistinguishable from

those in Fig. 1.
Note that the majority of the data points (filled symbols) are obtained from

simulations employing the quenched approximation (in which background quark
loops are neglected) whereas Eq. (4) is based on full QCD with quark loop effects
included. On the other hand, recent calculations with dynamical quarks suggest that
at the relatively large pion masses (mπ > 0.5–0.6 GeV) where the full simulations
are currently performed, the effects of quark loops are largely suppressed, as the data
in Fig. 1 (small open symbols) indicate. Further details of the lattice data,2,3,4,5

and a more extensive discussion of the fit parameters, can be found elsewhere.10

A similar analysis leads to analogous lowest order LNA parameterizations of the
mass dependence of the spin-dependent moments17
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chiral nonanalytic behavior provided a way to reconcile (early) 
lattice data on (u-d) momentum fraction with experiment



coefficients of leading nonanalytic (LNA) terms,
reflecting infrared behavior,  are model-independent!

Thomas, WM, Steffens (2000)

Expand moments of PDFs in powers of m⇡

nonzero LNA term implies nonzero asymmetry from     loops⇡

Chiral EFT
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chiral nonanalytic behavior provided a way to reconcile (early) 
lattice data on (u-d) momentum fraction with experiment

Bali et al. (2014)
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is there a problem with application of EFT or
“Sullivan process” to DIS?

consider simple test case:  nucleon self-energy

Chiral EFT

Direct calculation of matrix elements of twist-2 operators in EFT

is light-front treatment of pion loops problematic
(vs. covariant/instant form)?

4g2ASullivan:
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disagrees with  “Sullivan” result!



Self-energy
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From lowest order chiral (pseudovector) Lagrangian
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Covariant (dimensional regularization)
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Self-energy
Equal time (rest frame)
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Self-energy
Equal time (infinite momentum frame)
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Self-energy
Light front
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Self-energy
Light front

1/DN
+
- +          “tadpole” term has k   pole that depends on k

and moves to infinity as k       0
(“treacherous” in LF dynamics) 



Pseudoscalar interaction

contains additional (“treacherous”) pion “tadpole” term
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Vertex corrections

(d)(c)

(e)

(g)(f)

(a) (b)

wave function renormalization (b),  
N rainbow (c),      rainbow (d),
Kroll-Ruderman (e), 
bubble (f),  tadpole (g)

⇡

(Z�1
1 � 1) ū(p) �µ u(p) = ū(p)�µ u(p)

Z�1
1 � 1 ⇡ 1� Z1 =

M

p+
ū(p)�+ u(p)

taking “+” components:

e.g. for N rainbow contribution, �N
µ = � �⇥̂

�pµ

Pion cloud corrections to e.m. coupling to nucleon

Vertex renormalization



Vertex corrections
Nonanalytic behavior of vertex renormalization factors

cancellation of                 terms in KR contributionm2
⇡ logm

2
⇡

demonstration of gauge invariance condition
(in fact, to all orders!) 
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* also in PS

origin of EFT vs. Sullivan process difference!

in units of
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Vertex corrections
Nonanalytic behavior of vertex renormalization factors
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    -function part reduces on-shell pion contribution�

almost complete cancellation between on-shell
& off-shell parts of nucleon contribution

Vertex corrections
Pion & nucleon rainbow contributions
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PDF moments related to nucleon matrix elements of local 
twist-2 operators 

�N | bOµ1···µn
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Lowest (n=1) moment                           given by 
vertex renormalization factors
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Moments of PDFs



For couplings involving nucleons

wave function renormalization
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no pion corrections to isoscalar moments

Nonanalytic behavior
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Parton distributions
Vertex renormalization related to lowest y-moment of 
splitting function (light cone momentum distribution)

1� Zi
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Z
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i = rainbow, KR, bubble, tadpole

y =
k+

p+

k

p p-k
Matching quark- and hadron-level operators

yields convolution representation

Oµ1···µn
q =

X

h

c(n)q/h Oµ1···µn

h

q(x) =
X

h

Z 1

x

dy

y

f

h

(y) qh
v

(x/y)

Chen, X. Ji (2001)
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q(x) = Z2 q0(x) + ([fN + ftad]⌦ q0) (x)

Parton distributions
Contributions to PDFs related to matrix elements of nonlocal 
operators, in terms of convolutions

depends on  N
helicity PDF!

+ ([f⇡ + fbub]⌦ q⇡(x) + (fKR ⌦�q0)(x)



Parton distributions
Contributions to PDFs related to matrix elements of nonlocal 
operators, in terms of convolutions
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(g)(f)

(a) (b)

(d)(c)

(e)

(g)(f)

(a) (b)if  “bare” nucleon has symmetric sea,
then only “pion” term contributes 

d̄ = ū



Parton distributions
Splitting function for pion rainbow diagram itself has on-shell
and   -function contributions!�

f⇡(y) = f (on)(y) + f (�)(y)

f (bub)(y) =
8

g2A
f (�)(y)

Bubble diagram contributes only at    = 0  (hence x = 0)y

contributes to lowest moment, but not at x > 0

f (on)(y) =
g2AM

2

(4⇡f⇡)2

Z
dk2?

y(k2? + y2M2)

[k2? + y2M2 + (1� y)m2

⇡]
2

F2

f (�)
(y) =

g2A
4(4⇡f⇡)2

Z
dk2? log

✓
k2? +m2

⇡

µ2

◆
�(y)F2

Burkardt, Hendricks,
C. Ji, WM, Thomas (2013)



For point-like nucleons and pions, integrals divergent

finite size of nucleon provides natural regularization scale

F = exp

⇥
(t�m2

⇡)/⇤
2
⇤

F =

✓
⇤2 �m2

⇡

⇤2 � t

◆
F = ⇥(⇤2 � k2?) cutoffk? F = exp

⇥
(M2 � s)/⇤2

⇤

F =


1� (t�m2

⇡)
2

(t� ⇤2)2

�1/2
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2
⇤
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Integrated asymmetry
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Parton distributions
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are there other data that can be more discriminating?

Parton distributions
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Leading neutrons at HERA

ZEUS
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xL ⇡ 1� y

ZEUS & H1 collaborations measured spectra of neutrons
produced at very forward angles, ✓n < 0.8 mrad

can data be described within same framework as
E866 asymmetry?
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Leading neutrons at HERA



At large y, non-pionic mechanisms contribute
(e.g. heavier mesons, absorption)
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To reduce model dependence, fit the value of 
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Leading neutrons at HERA



Fit requires higher momentum pions with increasing ycut

values from fit to E866 data only
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Leading neutrons at HERA
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Leading neutrons at HERA

Combined fit to HERA LN and E866 Drell-Yan data
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Pion structure function

stable values of      at                             from combined fitF⇡
2 4⇥10�4 . x⇡ . 0.03

shape similar to GRS fit to       Drell-Yan data (for            ),
but smaller magnitude
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Combine  “leading neutron” data
with        Drell-Yan data to 
constrain pion PDFs at low
and high x

⇡N

aim:  use nested sampling MC
algorithm; first determination
of pion PDF uncertainties

Pion structure function
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Sign change at large x?
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E866 data has driven successful phenomenology through
interplay of PDFs and chiral physics

… but lingering question of possible sign change of           at high xd̄� ū

sign change cannot be accommodated within chiral EFT framework
since (negative)     contribution <<  (positive)  N  contribution�

evidence for other mechanisms?



Sign change at large x?

conclusions based on LO analysis … how robust?

“Independent evidence for           sign change at x ~ 0.3”  from NMC? d̄� ū

Peng et al. (2014)
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Sign change at large x?
At higher order can easily generate zero crossing in
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with no          asymmetry!d̄� ū

“sign change”
for NMC data

no evidence of sign change from DIS data!



Preliminary data from SeaQuest (E906) Drell-Yan experiment
at Fermilab shows no evidence for sign change

SeaQuest data consistent with E866 data up to x ~ 0.2,
remains above unity up to x ~ 0.5

P. Reimer (2016)

Sign change at large x?

Results not significantly affected if
include nuclear corrections
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Sign change at large x?

Bernd Surrow

Results / Status: Cross-section ratio W+/W-

STAR: W cross-section ratio measurements at (Run 11 / 500GeV) (Run 12 / 510GeV)

17

INT Workshop: The Flavor Structure of Nucleon Sea
Seattle, WA, October 03-23, 2017

W boson kinematics can be determined by reconstructing the W kinematics via its recoil  

Combination of data/MC simulations allows W boson rapidity reconstruction 

Critical for transverse single-spin asymmetry result of W production probing Sivers sign change

S. Fazio et al. (STAR Collaboration), DIS 2015.

R
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=
�
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+

�
W

�

yW ⇠ 0.5

=) x1 ⇠ 0.26

not competitive with
SeaQuest for these
kinematics — need
larger rapidity!



asymmetry in 

assuming similar                                     splitting functions 

Ethier, WM, Steffens,
Thomas (2017)

d̄� ū �+ ?

Is there a similar           asymmetry in       as in proton?d̄� ū �+

Simply on the basis of isospin couplings…
p ! ⇡+ n

⇡0 p

2/3
1/3

1/6
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1/2⇡� �++

⇡0 �+

p ! ⇡+ �0

8/15

⇡� �++

⇡0 �+ 1/15
2/5

�+ ! ⇡+ �0 1/3
2/3⇡0 p

�+ ! ⇡+ n

quantitative EFT-based calculation under way;
lattice QCD calculation planned

p ! ⇡N & �+ ! ⇡�

(d̄� ū)p : (d̄� ū)�+ = 5 : 1



but significant uncertainty from nuclear corrections,
semileptonic branching ratio uncertainty

tension with HERMES semi-inclusive K-production data?
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 =
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ū+ d̄
⇠ 0.2� 0.5

Strange quarks
Traditionally, strange quark PDFs most directly determined 
from          production in            DIS (W+s ! c / W�s̄ ! c̄)⌫(⌫̄)Aµ+µ�

S

� =

Z 1

0
dx x(s� s̄) = (2.0± 1.4)⇥ 10�3 NuTeV  (2007)

Some indication of strange-antistrange asymmetry from 
        DIS data⌫/⌫̄



Strange quarks

f (rbw)
Y K + f (KR)

Y K = f (rbw)
KY

f (tad)
K + f (bub)

K = 0

Chiral SU(3) effective theory analysis suggests natural mechanism
for generating strange asymmetry
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(e) (f)
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gauge invariance requires the relations



Strange quarks

s =
⇣
f̄ (rbw)
Y K ⌦ sY + f̄ (KR) ⌦ s(KR)

Y

⌘
+ f̄ (tad)

K ⌦ s(tad)K

s̄ =
⇣
f (rbw)
KY + f (bub)

K

⌘
⌦ s̄K

Convolution representation

⇠ �u,�d ⇠ u, df̄(y) ⌘ f(1� y)

KY splitting functions regularized using Pauli-Villars regularization

  -function term requires 2 subtractions (parameters          )� µ1, µ2

since                        , tadpole term generates valence-like
strange-quark PDF

f (tad)
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⇠ s

(tad)
K (x)



Strange quarks
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Strange quarks
Breakdown into individual contributions to s(x) 
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sðxÞ ¼ ðsðonÞ þ sðoffÞ þ sðδÞÞrbw þ sðδÞtad þ ðsðoffÞ þ sðδÞÞKR
¼ sðonÞrbw|{z}

on‐shell

þ sðoffÞrbw þ sðoffÞKR|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
off‐shell

þ sðδÞrbw þ sðδÞtad þ sðδÞKR|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
δ-function

; ð93Þ

s̄ðxÞ ¼ ðs̄ðonÞ þ s̄ðδÞÞrbw þ s̄ðδÞbub

¼ s̄ðonÞrbw|{z}
on‐shell

þ s̄ðδÞrbw þ s̄ðδÞbub|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
δ-function

; ð94Þ

where we have suppressed the x dependence in each of the
terms on the right-hand side. For the best fit parameters
ðμ1; μ2Þ ¼ ð545; 600Þ MeV (top panels in Fig. 6), the KR
diagrams in Figs. 1(e)–1(f) give the largest overall con-
tribution to sðxÞ, with the rainbow and tadpole contribu-
tions relatively small. Closer inspection of the various
diagrams shows large cancellations between the off-shell
terms in the rainbow and KR diagrams and between the
δ-function terms arising from the rainbow, KR, and tadpole
diagrams. The net effect is that the total s-quark distribution
is well approximated by the on-shell part of the rainbow
diagram, with the total off-shell and δ-function terms being
relatively small. This illustrates the vital role played by the
tadpole and KR diagrams, which are needed in a consistent
theory along with the rainbow contributions. It also
explains the phenomenological success of earlier calcula-
tions of meson loop corrections to PDFs in terms of on-
shell rainbow contributions only.
For the alternative fit parameters from Sec. VI, namely

ðμ1; μ2Þ ¼ ð526; 894Þ MeV (bottom panels in Fig. 6), the
magnitude of the total strange-quark PDF is slightly
smaller, and the cancellations between the various off-shell
and δ-function terms are not as dramatic. Nevertheless,
even though the on-shell part of the rainbow diagram does
not saturate the total contribution as completely, a similar
qualitative behavior is observed here also.
More quantitatively, the contributions of the various

terms to the moments of the s and s̄ PDFs are listed in

Tables I and II for the Sð0Þ, S̄ð0Þ and Sð1Þ, S̄ð1Þ moments,
respectively. For the lowest (n ¼ 1) moments, the off-shell
parts of the rainbow and KR contributions to Sð0Þ in fact
cancel exactly, leaving the on-shell component as the
dominant term and the remaining contributions distributed
among the δ-function pieces. Strangeness conservation
requires the on-shell contribution to S̄ð0Þ to be identical
to that for Sð0Þ, with equivalent contributions from the
tadpole and bubble diagrams to the strange and antistrange
moments, respectively.
For the second (n ¼ 2) moments in Table II, similarly

large cancellations are observed between the off-shell
contributions to the Sð1Þ moment from the rainbow and
KR diagrams. Cancellations also occur between the pos-
itive δ-function parts of the rainbow and tadpole diagrams
with the negative δ-function component of the KR dia-
grams. In contrast, because of the additional power of x in
the n ¼ 2 moment definition, only the on-shell part of the
rainbow diagram contributes to the s̄ moment. The net
effect is thus a positive difference S− ≡ Sð1Þ − S̄ð1Þ. Note
that, while for the larger μ1 cutoff value both the Sð1Þ and
S̄ð1Þ moments are bigger, the difference S− ¼ 0.42 × 10−3

for μ1 ¼ 545 MeV at Q2 ¼ 1 GeV2 is smaller than for the
lower cutoff μ1 ¼ 526 MeV, for which S− ¼ 1.12 × 10−3,
as is also apparent in Fig. 7. Here, both the sum xðsþ s̄Þ
and difference xðs − s̄Þ are illustrated at Q2 ¼ 1 GeV2 for
both sets of cutoff values. To display the sum and difference
on the same plot, we scale the much larger xðsþ s̄Þ
distribution by a factor 1=4.
For the best fit parameters ðμ1; μ2Þ ¼ ð545; 600Þ MeV,

the xðs − s̄Þ distribution peaks at around x ≈ 0.1 and has a
zero crossing at x ≈ 0.45, resulting in some cancellation of
the positive distribution at low x and negative distribution at
large x. Interestingly, for the ðμ1; μ2Þ ¼ ð526; 894Þ MeV
cutoff values, the asymmetry stays positive for all values of
x, with no zero crossing evident at x > 0. While this would
not have been possible in previous kaon loop calculations

TABLE I. Individual contributions to the first (n ¼ 1) moments
Sð0Þ and S̄ð0Þ of the s and s̄ PDFs from the diagrams in Fig. 1 at
Q2 ¼ 1 GeV2 for the two extreme cases considered, ðμ1; μ2Þ ¼
ð545; 600Þ MeV and (526, 894) MeV. The moments are given in
units of 10−2.

(545, 600) MeV (526, 894) MeV

ðμ1; μ2Þ Sð0Þ Sð0Þ Sð0Þ Sð0Þ

rbw (on) 4.91 4.91 2.97 2.97
rbw (off) −4.86 % % % −2.93 % % %
rbw (δ) 0.20 −0.20 0.47 −0.47
tad (δ) 0.59 % % % 1.36 % % %
bub (δ) % % % 0.59 % % % 1.36
KR (off) 4.86 % % % 2.93 % % %
KR (δ) −0.40 % % % −0.94 % % %
Total 5.30 5.30 3.86 3.86

TABLE II. Contributions to the second (n ¼ 2) moments Sð1Þ

and Sð1Þ of the s and s PDFs from kaon loops atQ2 ¼ 1 GeV2 for
the two extreme cases considered, ðμ1; μ2Þ ¼ ð545; 600Þ MeV
and (526, 894) MeV. The moments are given in units of 10−3.

(545, 600) MeV (526, 894) MeV

ðμ1; μ2Þ Sð1Þ Sð1Þ Sð1Þ Sð1Þ

rbw (on) 4.67 5.68 2.83 3.41
rbw (off) −5.41 % % % −3.28 % % %
rbw (δ) 0.34 0 0.79 0
tad (δ) 0.95 % % % 2.21 % % %
bub (δ) % % % 0 % % % 0
KR (off) 6.35 % % % 3.85 % % %
KR (δ) −0.81 % % % −1.87 % % %
Total 6.10 5.68 4.53 3.41
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Strange quarks
Breakdown into individual contributions to s(x) 
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large cancellations between off-shell terms in rainbow & KR
and between   -function terms in rainbow, KR and tadpole�

total s(x) well approximated by on-shell part of rainbow,
total off-shell &    -function terms small�

explains phenomenological success of earlier loop calculations
in terms of on-shell rainbow only



Strange quarks
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Gives rise to small but (mostly) positive            distributions� s̄

x-weighted difference S� = (0.4� 1.1)⇥ 10�3

X. Wang, C. Ji, WM, Salamu,
Thomas, P. Wang (2016)



Outlook
Discussion of flavor asymmetries in the nucleon now on much
firmer theoretical footing

Ongoing global PDF analysis of  “leading neutron” and Drell-Yan 
data to constrain pion PDFs at low and high x

s� s̄
Simultaneous analysis of other asymmetries, such as  
        ,               …  should help reveal nonperturbative
origin of the sea

(d̄� ū)�


