What are the Low-Q and Large-x Boundaries of Collinear QCD Factorization Theorems?

Presented by Eric Moffat

Paper written in collaboration with Wally Melnitchouk, Ted Rogers, and Nobuo Sato
arXiv:1702.03955
Introduction

- QCD complexities
 - Non-Abelian
 - Confinement
- Can only be solved analytically in the simplest of cases.
- Use Factorization theorems to simplify the calculation.
Introduction

- **Factorization:**
 - Method of disentangling the physics at different space-time scales by taking the asymptotically large limit of some physical energy

- **Useful in QCD:**
 - Asymptotic freedom allows short-distance processes to be calculated using perturbative calculations
 - Factorize to separate perturbative part from non-perturbative part
Introduction

Example: Collinear Factorization in Deep Inelastic Scattering (DIS)

Assume that $Q \gg m$ where $Q = \sqrt{-q^2}$ and m is a generic mass scale on the order of a hadron mass.
Introductions

- Want to explore physics at lower Q (~ a few GeV) and larger x_{bj} ($\gtrsim 0.5$)
 - Interplay of perturbative and nonperturbative
- For example DIS at moderately low momentum transfer ($Q \sim 1 - 2$ GeV)
 - $Q \gg m$ is not an accurate assumption
 - But $\alpha_s/\pi \lesssim 0.1$ so can still use perturbative calculations.
Introduction

- Proposed techniques for extending QCD factorization to lower energies and/or larger x_{bj}:
 - Target mass corrections (Georgi and Politzer, 1976)
 - Large Bjorken-x corrections from re-summation (Sterman, 1987)
 - Higher twist operators (Jaffe and Soldate, 1982)

- Questions arise:
 - Which method would give the most accurate approximation?
 - Are there other corrections that should be included?
Introduction

- What can we do to test how effective these techniques really are?
 - Problem: Non-Abelian nature of QCD leaves “blobs” that cannot be calculated without making approximations

 ![Diagram](image)

- There is no reason these techniques can only be applied to QCD.
- They should work for most re-normalizable Quantum Field Theories (QFT)
Introduction

- Use a simple QFT that requires no approximations
 - Perform an exact calculation in this QFT
 - Perform the same calculation after applying a factorization theorem to the QFT
 - Compare results numerically
Outline

- Define Simple QFT
- Review of standard notation in inclusive DIS
- Exact Calculation of Structure Functions in the Simple QFT
- Collinear Factorization Calculation of Structure Functions in the Simple QFT
- Analyze numerical differences between the Exact and Approximate results
- Summary of findings
Simple Model Definition

Interaction Lagrangian Density:

\[\mathcal{L}_{\text{int}} = -\lambda \bar{\Psi}_N \psi_q \phi + \text{h.c.} \]

- \(\Psi_N \) : Spin-1/2 “Nucleon” Field with mass \(M \)
- \(\psi_q \) : Spin-1/2 “Quark” Field with mass \(m_q \)
- \(\phi \) : Scalar “Diquark” Field with mass \(m_s \)

The nucleon and quark couple to photon while the scalar does not.
Inclusive DIS process

\[e(l) + N(P) \rightarrow e(l') + X(p_x) \]

- \(l \) and \(l' \) are the initial and final lepton four-momenta
- \(P \) is the four-momentum of the nucleon
- \(p_x = p_q + p_s \) is the four-momentum of the inclusive hadronic state
Standard Notation in Inclusive DIS

- Using Breit frame where
 - Nucleon momentum in +z direction
 - Photon momentum in -z direction

- Using light-front coordinates
 - Four-vector:
 \[v^\mu = (v^+, v^-, \mathbf{v}_T) \]
 - “±” components:
 \[v^{\pm} = (v^0 \pm v^z) / \sqrt{2} \]
 - Transverse component:
 \[\mathbf{v}_T \]
Standard Notation in Inclusive DIS

- **Momenta**
 - **Nucleon**
 \[P = \left(\frac{Q}{x_n \sqrt{2}}, \frac{x_n M^2}{Q \sqrt{2}}, 0_T \right) \]
 - **Photon**
 \[q = l - l' \quad q = \left(-\frac{Q}{\sqrt{2}}, \frac{Q}{\sqrt{2}}, 0_T \right) \]
 - **Internal Parton**
 \[k = (k^+, k^-, k_T) \]
 - **Final Parton**
 \[k + q \]

- **Where**
 \[Q \equiv \sqrt{-q^2} \]
 \[x_n \equiv -\frac{q^+}{P^+} = \frac{2x_{\text{bj}}}{1 + \sqrt{1 + 4x_{\text{bj}}^2 M^2/Q^2}} \]
 \[x_{\text{bj}} = \frac{Q^2}{2P \cdot q} \]
The DIS cross section can be written as

\[\frac{d\sigma}{dx_n\, dQ^2} = \frac{4\alpha}{\Phi Q^4} L_{\mu\nu} W^{\mu\nu} \]

Where

- \(\alpha \) is the electromagnetic fine structure constant
- \(\Phi \) is a flux factor
- \(L_{\mu\nu} \) is the leptonic tensor given by
 \[L_{\mu\nu} = 2 (\ell_\mu \ell'_\nu + \ell'_\mu \ell_\nu - g_{\mu\nu} \ell \cdot \ell') \]
- \(W^{\mu\nu} \) is the hadronic tensor, which in terms of structure functions \(F_1 \) and \(F_2 \) is given by

\[W^{\mu\nu}(P, q) = \left(-g^{\mu\nu} + \frac{q^\mu q^\nu}{q^2} \right) F_1 (x_n, Q^2) + \left(P^\mu - q^\mu \frac{P \cdot q}{q^2} \right) \left(P^\nu - q^\nu \frac{P \cdot q}{q^2} \right) \frac{F_2 (x_n, Q^2)}{P \cdot q} \]
Define Projection Tensors for the Structure Functions

\[P_1^{\mu\nu} W_{\mu\nu}(P, q) = F_1(x_n, Q^2), \quad P_2^{\mu\nu} W_{\mu\nu}(P, q) = F_2(x_n, Q^2) \]

\[P_1^{\mu\nu} = -\frac{1}{2} P_g^{\mu\nu} + \frac{2Q^2 x_n^2}{(M_H^2 x_n^2 + Q^2)^2} P_{PP}^{\mu\nu}, \]

\[P_2^{\mu\nu} = \frac{12Q^4 x_n^3 (Q^2 - M_H^2 x_n^2)}{(Q^2 + M_H^2 x_n^2)^4} \left(P_{PP}^{\mu\nu} + \frac{(M_H^2 x_n^2 + Q^2)^2}{12Q^2 x_n^2} P_g^{\mu\nu} \right) \]

Where

\[P_g^{\mu\nu} = g^{\mu\nu}, \quad P_{PP}^{\mu\nu} = P^{\mu} P^{\nu}. \]
Exact Kinematics

- Familiar DIS Handbag Diagram
Exact Kinematics

- For electromagnetic gauge invariance these diagrams must also be included.
To demonstrate the calculations it is convenient to organize the hadronic tensor by separating the integrand into factors as follows:

\[W^{\mu\nu}(P,q) = \sum_{j \in \text{graphs}} \int \frac{dk^+dk^-d^2k_T}{(2\pi)^4} [\text{Jac}] T_j^{\mu\nu} [\text{Prop}]_j \delta(k^- - k_{sol}^-) \delta(k^+ - k_{sol}^+) \]

Where

- \(j \) refers to Figures A, B, and C
- \([\text{Prop}]_j\) is the denominators of the internal propagators in Figure \(j \)
- \(T_j^{\mu\nu} \) is the appropriate Dirac trace for Figure \(j \)
- \([\text{Jac}]\) is the appropriate jacobian factor to isolate \(k^- \) and \(k^+ \) in the arguments of the delta functions
The arguments of the delta functions give the quadratic system
\[(q + k)^2 - m_q^2 = 0,\]
\[(P - k)^2 - m_s^2 = 0.\]
Solving this system for \(k^+ \equiv \xi P^+\) and \(k^-\) yields two solutions for \(k^-\).
Only one solution is physically realistic (0 if \(Q\) is taken to infinity).
The correct solution to the system is
\[k^- = k_{sol}^- \equiv \frac{\sqrt{\Delta} - Q^2(1 - x_n) - x_n(m_s^2 - m_q^2 - M^2(1 - x_n))}{2\sqrt{2} Q (1 - x_n)},\]
\[k^+ = k_{sol}^+ \equiv \frac{k_T^2 + m_s^2 + Q(Q + \sqrt{2}k^-)}{\sqrt{2}(Q + \sqrt{2}k^-)},\]
Where \[\Delta = [Q^2(1 - x_n) - x_n(M_s^2(1 - x_n) + m_q^2 - m_s^2)]^2 - 4x_n(1 - x_n)[k_T^2(Q^2 + x_nM_s^2) - Q^2M^2(1 - x_n) + Q^2m_q^2 + x_nM^2m_q^2].\]
Exact Kinematics

- The Jacobian factor is:

\[
[Jac] = \frac{x_n Q (2k^- + \sqrt{2}Q)}{4(1 - x_n)k^- Q^2(\sqrt{2}k^- + 2Q) + 2\sqrt{2}[Q^4(1 - x_n) - (k_T^2 + m_q^2)x_n(Q^2 + x_n M^2)]}
\]

- The propagator factors are:

\[
[Prop]_A = \frac{1}{(k^2 - m_q^2)^2},
\]

\[
[Prop]_B = \frac{1}{((P + q)^2 - M^2)^2} = \frac{x_n^2}{(Q^2(1 - x_n) - M^2 x_n^2)^2},
\]

\[
[Prop]_C = \frac{x_n}{(k^2 - m_q^2)(Q^2(1 - x_n) - M^2 x_n^2)}.
\]
The Dirac traces are:

\[
T_A^{\mu\nu} = \text{Tr} \left[(\not{p} + M)(\not{k} + m_q)\gamma^\mu(\not{k} + \not{q} + m_q)\gamma^\nu(\not{k} + m_q) \right],
\]

\[
T_B^{\mu\nu} = \text{Tr} \left[(\not{p} + M)\gamma^\mu(\not{p} + \not{q} + M)(\not{k} + \not{q} + m_q)(\not{p} + \not{q} + M)\gamma^\nu \right],
\]

\[
T_C^{\mu\nu} = 2 \text{Tr} \left[(\not{p} + M)(\not{k} + m_q)\gamma^\mu(\not{k} + \not{q} + m_q)(\not{p} + \not{q} + M)\gamma^\nu \right],
\]

- Factor of 2 is for the Hermitian conjugate of Figure C.

Define the projected quantities:

\[
T^g_j = P_{g}^{\mu\nu} T_{j \mu\nu}, \quad T^{PP}_j = P_{PP}^{\mu\nu} T_{j \mu\nu}
\]
Exact Kinematics

The $p_{\mu\nu}^{\mu}$ projections with traces evaluated are:

\[T^g_A = -8 \left[2(P \cdot k + m_q M) k \cdot q + (k^2 - 3m_q^2) P \cdot k - 2Mm_q^3 + (m_q^2 - k^2) P \cdot q \right], \]

\[T^g_B = 8 \left[2M^3m_q + P \cdot k(2M^2 - Q^2) - 2(M^2 + Mm_q)Q^2 \right. \]
\[\left. + 2k \cdot q (M^2 - P \cdot q) + [2(2M^2 + Mm_q) + Q^2] P \cdot q \right], \]

\[T^g_C = -16 \left[-2(P \cdot k)^2 + k^2 M^2 + (M^2 - m_q M) k \cdot q - M^2m_q^2 + 2Mm_qQ^2 \right. \]
\[\left. + (m_q^2 - Mm_q) P \cdot q - 2P \cdot k (k \cdot q + Mm_q - Q^2 + P \cdot q) \right], \]
The $P_{PP}^{\mu\nu}$ projections with traces evaluated are:

$$
T_A^{PP} = 4 \left[4(P \cdot k)^3 + 4(P \cdot k)^2(Mm_q + P \cdot q) \\
- M P \cdot k (3k^2M + 2M k \cdot q - 3Mm_q^2 - 4m_q P \cdot q) \\
- M^3 m_q (k^2 + 2k \cdot q - m_q^2) - M^2 (k^2 - m_q^2) P \cdot q \right],
$$

$$
T_B^{PP} = 4M^2 \left[P \cdot k (4M^2 + Q^2) + 4M^2 (k \cdot q + Mm_q) - Q^2 (4M^2 + Mm_q) \\
+ [2k \cdot q + 4(M^2 + Mm_q) - Q^2] P \cdot q \right],
$$

$$
T_C^{PP} = 8M \left[4M (P \cdot k)^2 + M P \cdot k (2k \cdot q + 4Mm_q - Q^2) \\
- M^2 [2M (k^2 + k \cdot q - m_q^2) + m_q Q^2] \\
- [k^2 M - (2M + m_q)(2P \cdot k + Mm_q)] P \cdot q \right].
$$
Define the nucleon structure functions as:

\[F_1 (x_n, Q^2) = \int \frac{d^2 k_T}{(2\pi)^2} \mathcal{F}_1 (x_n, Q^2, k_T^2), \]

\[F_2 (x_n, Q^2) = \int \frac{d^2 k_T}{(2\pi)^2} 2x_n \mathcal{F}_2 (x_n, Q^2, k_T^2) \]

Where

\[\mathcal{F}_1 (x_n, Q^2, k_T^2) = \frac{1}{(2\pi)^2} \text{[Jac]} \sum_j \left(-\frac{1}{2} T^q_j + \frac{2Q^2x_n^2}{(M^2x_n^2 + Q^2)^2} T^{PP} \right) [\text{Prop}]_j, \]

\[2x_n \mathcal{F}_2 (x_n, Q^2, k_T^2) = \frac{1}{(2\pi)^2} \frac{12Q^4x_n^3(Q^2 - M^2x_n^2)}{(Q^2 + M^2x_n^2)^4} \times \text{[Jac]} \sum_j \left(T^{PP}_j - \frac{(M^2x_n^2 + Q^2)^2}{12Q^2x_n^2} T^q_j \right) [\text{Prop}]_j. \]
Exact Kinematics

- The exact kinematics impose an upper bound on k_T.
- Start from calculation of W in the center-of-mass frame:
 \[W = p_q^0 + p_s^0 \bigg|_{\text{c.m.}} = \sqrt{m_q^2 + k_T^2 + k_z^2} + \sqrt{m_s^2 + k_T^2 + k_z^2} \bigg|_{\text{c.m.}} \]
- W in the Breit frame:
 \[W^2 = (P + q)^2 = (p_q + p_s)^2 = M^2 + \frac{Q^2(1 - x_{bj})}{x_{bj}} \]
- Set the two equations for W equal to each other, and solve for k_T with $k_z = 0$
 \[k_{T_{\text{max}}} = \sqrt{\frac{x_{bj}(M^2 - (m_q + m_s)^2) + Q^2(1 - x_{bj})[x_{bj}(M^2 - (m_q - m_s)^2) + Q^2(1 - x_{bj})]}{4x_{bj}[Q^2(1 - x_{bj}) + M^2x_{bj}]}}. \]
Collinear Factorization

- Collinear Factorization

- Un-approximated hadronic tensor

\[W^{\mu\nu}(P, q) = \int \frac{d^4k}{(2\pi)^4} \text{Tr} \left[H^\mu(k, k') J(k') H^{\nu\dagger}(k, k') L(k, P) \right] \]
Collinear Factorization

- Internal quark momentum
 - Power Counting at low transverse momentum ($k_T \sim O(m_T)$)
 - k^2 and $k^2 \sim O(m^2)$
 - $k^+ \sim O(Q)$
 - Therefore
 \[
 k \sim \left(O(Q), O\left(\frac{m^2}{Q}\right), O(m_T) \right)
 \]
Collinear Factorization

- **Hard Factor** \(H(k, k')\)
 - \(k \cdot q = k^+ q^- + O(m^2)\)
 - \(k \to \vec{k} \equiv (k^+, 0, 0)\)
 - \(k' \to \vec{k}' = \vec{k} + q\)
 - \(H(k, k_2) \to H(\vec{k}, \vec{k}'')\)
 - \(\delta \left(\vec{k}'^2 - m_q^2 \right) \to \vec{k}^+ = x_n P^+ = x_{bj} P^+\)

- **Lower Factor** \(L(k, P)\)
 - Contains propagator, large component of \(k\) can be approximated but the small components must be kept exact
 - \(k \to \vec{k} \equiv (k^+, k^-, k_T)\)
 - \(L(k, P) \to L(\vec{k}, P)\)
Collinear Factorization

- Jet Factor ($f(k')$)
 - Power counting for k' is:
 \[
 k' \sim (O(Q), O(Q), O(m_T))
 \]
 - Consider a frame labeled "***", where the outgoing transverse momentum vanishes $k'^*_T = 0$,
 \[
 k'^* = \left(k^+ + q^+ - \frac{k_T^2}{2(q^- + k^-)}, q^- + k^- , 0_T \right)
 \]
 - The outgoing parton's virtuality is:
 \[
 k'^*^2 = 2 (k^+ + q^+) (k^- + q^-) - k_T^2
 \]
 \[
 \sim 2 (k^+ + q^+) q^- - k_T^2 + O \left(\frac{m_T^4}{Q} \right)
 \]
 - Make the approximation $k' \rightarrow \vec{k}' \equiv (l^+, q^-, 0_T)$ where $l^+ \equiv k^+ - x_n P^+ + \frac{k_T^2}{2q^-}$
 - Change integration variables from k^+ to l^+
 - $f(k') \rightarrow f(l^+)$
Collinear Factorization

- Hadronic Tensor now becomes

\[W^{\mu\nu}(P, q) = \int \frac{dl^+dk^-d^2k_T}{(2\pi)^4} \text{Tr} \left[H^\mu(Q^2)J(l^+)H^\nu(Q^2)L(\tilde{k}, P) \right] + O\left(\frac{m^2}{Q^2}\right) W^{\mu\nu} \]

- Separate the integrations into factors for the jet and target

\[W^{\mu\nu}(P, q) = \text{Tr} \left[H^\mu(Q^2) \left(\int \frac{dl^+}{2\pi} J(l^+) \right) H^\nu(Q^2) \left(\int \frac{dk^-d^2k_T}{(2\pi)^3} L(\tilde{k}, P) \right) \right] + O\left(\frac{m^2}{Q^2}\right) W^{\mu\nu} \]
Collinear Factorization

- To complete the factorization
 - Express the Jet and Lower factors in a basis of Dirac matrices.

\[
J^{(l^+)} = \gamma_\mu \Delta_\mu^{(l^+)} + \Delta_S^{(l^+)} + \gamma_5 \Delta_P^{(l^+)} + \gamma_5 \gamma_\mu \Delta_A^{(l^+)} + \sigma_{\mu\nu} \Delta_T^{(l^+)} ,
\]
\[
L(\vec{k}, P) = \gamma_\mu \Phi_\mu (\vec{k}, P) + \Phi_S (\vec{k}, P) + \gamma_5 \Phi_P (\vec{k}, P) + \gamma_5 \gamma_\mu \Phi_A (\vec{k}, P) + \sigma_{\mu\nu} \Phi_T^{(\mu\nu)} (\vec{k}, P)
\]

- Focusing on spin and azimuthally independent cross sections, only the vector part of those expressions contributes

- Remembering that \(Q \gg m \)

\[
J^{(l^+)} = \gamma^+ \Delta^- (l^+)^{\mu} + \mathcal{O} \left(\frac{m^2}{Q^2} \right) J + \text{(spin dep.)}
\]
\[
= \frac{\vec{k}'}{4q} \text{Tr} \left[\gamma^- J^{(l^+)} \right] + \mathcal{O} \left(\frac{m^2}{Q^2} \right) J + \text{(spin dep.)},
\]
\[
L(\vec{k}, P) = \gamma^- \Phi^+ (\vec{k}, P) + \mathcal{O} \left(\frac{m^2}{Q^2} \right) L + \text{(spin dep.)}
\]
\[
= \frac{\vec{k}}{4s_{\vec{P}}^+} \text{Tr} \left[\gamma^+ L(\vec{k}, P) \right] + \mathcal{O} \left(\frac{m^2}{Q^2} \right) L + \text{(spin dep.)},
\]
Collinear Factorization

Now we have

$$W^{\mu\nu}(P, q) = \frac{1}{2Q^2} \text{Tr} \left[H^\mu(Q^2) \vec{k}' H^{\nu}(Q^2) \vec{k} \right] \left(\int \frac{d^4l^+}{4\pi} \text{Tr} \left[\frac{\gamma^-}{2} J(l^+) \right] \right)$$

$$\times \left(\int \frac{d^3k}{(2\pi)^3} \text{Tr} \left[\frac{\gamma^+}{2} \Lambda(k, P) \right] \right) + O \left(\frac{m^2}{Q^2} \right) W^{\mu\nu}.$$

Perform the l^+ integration to obtain the desired factorized structure

$$W^{\mu\nu}(P, q) = \frac{1}{2Q^2} \text{Tr} \left[H^\mu(Q^2) \vec{k}' H^{\nu}(Q^2) \vec{k} \right] \left(\int \frac{d^3k}{(2\pi)^3} \text{Tr} \left[\frac{\gamma^+}{2} \Lambda(k, P) \right] \right)$$

$$+ O \left(\frac{m^2}{Q^2} \right) W^{\mu\nu}.$$
Collinear Factorization

- For a specific structure function

\[F_i(x_{bj}, Q^2) = \mathcal{H}_i(Q^2) f(x_{bj}) + O \left(\frac{m^2}{Q^2} \right), \quad i = 1, 2, \]

- Where

\[\mathcal{H}_i(Q^2) \equiv P_i^{\mu\nu} \frac{1}{2Q^2} \text{Tr} \left[H_\mu(Q^2) \not{k} \not{k}^\nu H_\nu(Q^2) \not{k} \right] \]
Collinear Factorization

- Factorization of the simple QFT
 - At the large Q limit, Figures B and C are suppressed by powers of m/Q
 - Only need to factorize Figure A
 - The hard functions are
 \[H(Q^2)^\mu = \gamma^\mu, \quad H^\dagger(Q^2)^\nu = \gamma^\nu \]
 - The projected hard functions are
 \[\mathcal{H}_1(Q^2) = 1, \]
 \[\mathcal{H}_2(Q^2) = \frac{2Q^2 x_{bj} (Q^2 - M^2 x_{bj}^2)}{(Q^2 + M^2 x_{bj}^2)^2} \]
 \[= 2 x_{bj} \left(1 + O \left(\frac{M^2 x_{bj}^2}{Q^2} \right) \right) \]
The lower part is given by:

\[f(x_{bij}) = \int \frac{dk^{-} dk_T}{(2\pi)^3} \left(\frac{1}{k^2 - m_q^2} \right)^2 \text{Tr} \left[\frac{\gamma^+}{2} (\tilde{k} + m_q)(P + M)(\tilde{k} + m_q) \right] \times (2\pi) \delta_+ \left((P - \tilde{k})^2 - m_s^2 \right). \]

Integrating over \(k^{-} \) yields:

\[k^{-} = -\frac{x_{bj} [k_T^2 + m_s^2 + (x_{bj} - 1)M^2]}{\sqrt{2Q(1 - x_{bj})}} \]

The parton virtuality is:

\[\tilde{k}^2 = -\frac{k_T^2 + x_{bj} [m_s^2 + (x_{bj} - 1)M^2]}{1 - x_{bj}} \]

The \(k_T \)-unintegrated functions \(\mathcal{F}_{1,2} \) (equivalent to what was defined in the exact case are:

\[\mathcal{F}_1(x_{bj}, Q^2, k_T^2) = \mathcal{F}_2(x_{bj}, Q^2, k_T^2) = \frac{1}{(2\pi)^2} \frac{(1 - x_{bj}) [k_T^2 + (m_q + x_{bj}M)^2]}{[k_T^2 + x_{bj}m_s^2 + (1 - x_{bj}) m_q^2 + x_{bj}(x_{bj} - 1)M^2]^2} \]
Collinear Factorization

- Expanding exact solutions in powers of $1/Q$

$$\xi = x_{bj} \left[1 + \frac{k_T^2 + m_\perp^2 - x_{bj}^2 M^2}{Q^2} - \frac{x_{bj} M^2 (k_T^2 + m_\perp^2) + x_{bj} (k_T^2 + m_\perp^2) (k_T^2 + m_\perp^2 - M^2) - 2M^4 x_{bj}^4 (x_{bj} - 1)}{Q^4 (x_{bj} - 1)} \right] + O\left(\frac{m^6}{Q^6}\right),$$

$$k^- = - \frac{x_n}{Q \sqrt{2}} \left[\frac{k_T^2 + m_\perp^2 + (x_n - 1) M^2}{1 - x_n} - \frac{x_n (k_T^2 + m_\perp^2) (k_T^2 + m_\perp^2)}{Q^2 (x_n - 1)^2} \right] + O\left(\frac{m \cdot m_\perp}{Q^6}\right),$$

$$k^2 = - \frac{k_T^2 + x_n [m_\perp^2 + (x_n - 1) M^2]}{1 - x_n} - \frac{x_n (k_T^2 + m_\perp^2) (k_T^2 + m_\perp^2) [m_\perp + (x_n - 1) M] [m_\perp - (x_n - 1) M]}{Q^2 (x_n - 1)^2} + O\left(\frac{m^2 \cdot m_\perp^4}{Q^4}\right).$$
Comparison Between the Exact Calculation and the Standard Approximation

- Want to choose a set of masses that mimics QCD
 - For M, use the proton mass (0.938 GeV)
 - Choose values of m_q and m_s such that $|k|$ is on the order of a few MeV and the k_T distribution peaks at not more than 300 MeV
 - m_q should be on the order of a few MeV
 - m_s is chosen on a case by case basis:
 - In QCD, the remnant mass would grow with Q. The mass used here should behave similarly.
 - The mass in the quark-diquark rest frame is constrained
 \[M - m_q < m_s \leq W(x_{bj}, Q) - m_q \]
 - Solve $v \equiv \sqrt{-k^2}$ at $k_T = 0$ for m_s.
Comparison Between the Exact Calculation and the Standard Approximation

- Plots of exact and approximate $k_T F_1$ for $x_{bj} = 0.6$
Comparison Between the Exact Calculation and the Standard Approximation

- Plot $v \equiv \sqrt{-k^2}$ vs. k_T ($x_{bj} = 0.6$, $m_q = 0.3$ GeV, and m_s corresponding to $v(k_T = 0) = 0.5$ GeV)
Comparison Between the Exact Calculation and the Standard Approximation

- Integrated Structure Functions
 - Exact:
 \[I(x_{bj}, Q) \equiv \int_0^{k_{T_{\text{max}}}} \, dk_T \, k_T \, F_1^{\text{exact}}(x_{bj}, Q, k_T) \]
 - Approximate:
 \[\hat{I}(x_{bj}, Q, k_{\text{cut}}) \equiv \int_0^{k_{\text{cut}}} \, dk_T \, k_T \, F_1^{\text{approx}}(x_{bj}, Q, k_T) \]

<table>
<thead>
<tr>
<th></th>
<th>(Q = 2) GeV</th>
<th>(Q = 20) GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m_q) (GeV)</td>
<td>0.3 0.5 0.3 0.5</td>
<td>0.3 0.5 0.3 0.5</td>
</tr>
<tr>
<td>(m_s) (GeV)</td>
<td>0.67 0.65 0.75 0.73</td>
<td>0.64 0.64 0.72 0.72</td>
</tr>
<tr>
<td>(I/I(k_{T_{\text{max}}}))</td>
<td>0.88 0.64 0.76 0.57</td>
<td>1.00 1.00 1.00 1.00</td>
</tr>
<tr>
<td>(I/\hat{I}(Q))</td>
<td>0.67 0.45 0.49 0.35</td>
<td>0.90 0.88 0.86 0.85</td>
</tr>
</tbody>
</table>
Our analysis provides a means of clearly defining purely kinematic TMCs.

Expand exact solutions in powers of m/Q, but keep only powers of M/Q (assume powers of k_T/Q, m_q/Q, and m_s/Q are still negligible):

\[\xi \rightarrow \xi_{\text{TMC}} \equiv x_{bj} \left[1 - \frac{x_{bj}^2 M^2}{Q^2} + \frac{2M^4 x_{bj}^4}{Q^4} + \cdots \right] = x_n \]

\[k^- \rightarrow k^-_{\text{TMC}} = -\frac{x_n \left[k_T^2 + m_s^2 + (x_n - 1)M^2 \right]}{\sqrt{2Q(1-x_n)}} \]

\[k^2 \rightarrow k^2_{\text{TMC}} \equiv -\frac{k_T^2 + x_n \left[m_s^2 + (x_n - 1)M^2 \right]}{1-x_n} \]

This is equivalent to inserting x_n in place of x_{bj} in the collinear factorized equations for these quantities.

Define purely kinematic TMCs as those corrections obtained from this substitution.
Purely Kinematic TMCs

- Plots of $k_T F_1$ (exact, approximate, and approximate with $x_{bj} \rightarrow x_n$) ($x_{bj} = 0.6$, $m_q = 0.3$ GeV, and m_s corresponding to $v(k_T = 0) = 0.5$ GeV)

![Plot Diagram]

$Q = 3$ GeV

$M \rightarrow 2M$
Summary of Findings

- Analysis using the simple QFT demonstrates that the most accurate QCD factorization theorem for low-Q and large-x_{bj} would need to account for corrections due to parton mass, parton transverse momentum, and parton virtuality as well as the target mass.
- This type of analysis using a simple QFT can be used as a testing ground for any factorization theorem.
- From this analysis, we can define purely kinematical TMCs as corrections that result from substituting x_n in place of x_{bj} in the collinear factorized formula.