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Introduction

 QCD complexities

 Non-Abelian

 Confinement

 Can only be solved analytically in 

the simplest of cases.

 Use Factorization theorems to 

simplify the calculation.



Introduction

 Factorization:

 Method of disentangling the physics at different space-time scales by taking the 

asymptotically large limit of some physical energy

 Useful in QCD:

 Asymptotic freedom allows short-distance processes to be calculated using 

perturbative calculations

 Factorize to separate perturbative part from non-perturbative part



Introduction

 Example:  Collinear Factorization in Deep Inelastic Scattering (DIS)

 Assume that 𝑄 ≫ 𝑚 where 𝑄 = −𝑞2 and 𝑚 is a generic mass scale on the order of a 

hadron mass



Introduction

 Want to explore physics at lower 𝑄 (~ a few GeV) and larger 𝑥𝑏𝑗 (≳ 0.5)

 Interplay of perturbative and nonperturbative

 For example DIS at moderately low momentum transfer (𝑄 ~ 1 – 2 GeV)

 𝑄 ≫ 𝑚 is not an accurate assumption

 But Τ𝛼𝑠 𝜋 ≲ 0.1 so can still use perturbative calculations.



Introduction

 Proposed techniques for extending QCD factorization to lower energies and/or 

larger 𝑥𝑏𝑗:

 Target mass corrections (Georgi and Politzer, 1976)

 Large Bjorken-x corrections from re-summation (Sterman, 1987)

 Higher twist operators (Jaffe and Soldate, 1982)

 Questions arise:

 Which method would give the most accurate approximation?

 Are there other corrections that should be included? 



Introduction

 What can we do to test how effective these techniques really are?

 Problem:  Non-Abelian nature of QCD leaves “blobs” that cannot be calculated 

without making approximations

 There is no reason these techniques can only be applied to QCD.  

 They should work for most re-normalizable Quantum Field Theories (QFT)



Introduction

 Use a simple QFT that requires no approximations

 Perform an exact calculation in this QFT

 Perform the same calculation after applying a factorization theorem to the QFT

 Compare results numerically



Outline

 Define Simple QFT

 Review of standard notation in inclusive DIS

 Exact Calculation of Structure Functions in the Simple QFT

 Collinear Factorization Calculation of Structure Functions in the Simple QFT

 Analyze numerical differences between the Exact and Approximate results

 Summary of findings



Simple Model Definition

 Interaction Lagrangian Density:



 :  Spin-1/2 “Nucleon” Field with mass

 :  Spin-1/2 “Quark” Field with mass

 :  Scalar “Diquark” Field with mass

 The nucleon and quark couple to photon while the scalar does not.



Standard Notation in Inclusive DIS

 Inclusive DIS process

 𝑒 𝑙 + 𝑁 𝑃 → 𝑒 𝑙′ + 𝑋(𝑝𝑥)

 𝑙 and 𝑙′ are the initial and final 

lepton four-momenta

 𝑃 is the four-momentum of the 

nucleon

 𝑝𝑥 = 𝑝𝑞 + 𝑝𝑠 is the four-momentum 

of the inclusive hadronic state



Standard Notation in Inclusive DIS

 Using Breit frame where

 Nucleon momentum in +z direction

 Photon momentum in –z direction

 Using light-front coordinates

 Four-vector:

 “±” components:

 Transverse component:



Standard Notation in Inclusive DIS

 Momenta

 Nucleon

 Photon

 Internal Parton

 Final Parton

 Where

Nachtmann x

Bjorken x



Standard Notation in Inclusive DIS

 The DIS cross section can be written as 

 Where

 α is the electromagnetic fine structure constant

 Φ is a flux factor

 𝐿𝜇𝜈 is the leptonic tensor given by

 𝑊𝜇𝜈 is the hadronic tensor, which in terms of structure functions 𝐹1 and 𝐹2 is given by



Standard Notation in Inclusive DIS

 Define Projection Tensors for the Structure Functions

 Where



Exact Kinematics

 Familiar DIS Handbag Diagram



Exact Kinematics

 For electromagnetic gauge invariance these diagrams must also be included.



Exact Kinematics

 To demonstrate the calculations it is convenient to organize the hadronic 

tensor by separating the integrand into factors as follows:

 Where

 𝑗 refers to Figures A, B, and C

 Prop 𝑗 is the denominators of the internal propagators in Figure 𝑗

 𝑇𝑗
𝜇𝜈

is the appropriate Dirac trace for Figure 𝑗

 Jac is the appropriate jacobian factor to isolate 𝑘− and 𝑘+ in the arguments of the delta 

functions



Exact Kinematics

 The arguments of the delta functions give the quadratic system

 Solving this system for 𝑘+ ≡ ξ𝑃+ and 𝑘− yields two solutions for 𝑘−

 Only one solution is physically realistic (0 if Q is taken to infinity)

 The correct solution to the system is

 Where  



Exact Kinematics

 The Jacobian factor is:

 The propagator factors are:



 The Dirac traces are:

 Factor of 2 is for the Hermitian conjugate of Figure C.

 Define the projected quantities:

Exact Kinematics



 The 𝑃𝑔
𝜇ν

projections with traces evaluated are:

Exact Kinematics



 The 𝑃𝑃𝑃
𝜇ν

projections with traces evaluated are:

Exact Kinematics



 Define the nucleon structure functions as:

 Where

Exact Kinematics



Exact Kinematics

 The exact kinematics impose an upper bound on 𝑘𝑇.

 Start from calculation of 𝑊 in the center-of-mass frame:

 𝑊 in the Breit frame :

 Set the two equations for 𝑊 equal to each other, and solve for 𝑘𝑇 with 𝑘𝑧 = 0



Collinear Factorization

 Collinear Factorization

 Un-approximated hadronic tensor



Collinear Factorization

 Internal quark momentum

 Power Counting at low transverse momentum (𝑘𝑇~𝑂(𝒎𝑇))

 𝑘2 and 𝑘′2~𝑂(𝑚2)

 𝑘+~𝑂(𝑄)

 Therefore



Collinear Factorization

 Hard Factor 𝐻 𝑘, 𝑘′

 𝑘 ∙ 𝑞 = 𝑘+𝑞− + 𝑂(𝑚2)

 𝑘 → ෠𝑘 ≡ ෠𝑘+, 0,0

 𝑘′ → ෡𝑘′ = ෠𝑘 + q

 𝐻 𝑘, 𝑘2 → 𝐻 ෠𝑘, ෡𝑘′

 𝛿 ෠𝑘′
2
−𝑚𝑞

2 → ෠𝑘+ = 𝑥𝑛𝑃
+ = 𝑥𝑏𝑗𝑃

+

 Lower Factor (𝐿 𝑘, 𝑃 )         

 Contains propagator, large component of 𝑘 can be approximated but the small 
components must be kept exact

 𝑘 → ෨𝑘 ≡ ෠𝑘+, 𝑘−, 𝒌𝑇

 𝐿 𝑘, 𝑃 → 𝐿 ෨𝑘, 𝑃



Collinear Factorization

 Jet Factor (𝐽 𝑘′ )

 Power counting for 𝑘′ is:

 Consider a frame labeled “*”, where the outgoing transverse momentum vanishes 𝑘′𝑇
∗ = 0,

 The outgoing parton’s virtuality is:

 Make the approximation 𝑘′ → ෩𝑘′ ≡ (𝑙+, 𝑞−, 𝟎𝑇) where 𝑙+ ≡ 𝑘+ − 𝑥𝑛𝑃
+ +

𝑘𝑇
2

2𝑞−

 Change integration variables from 𝑘+ to  𝑙+

 𝐽 𝑘′ → 𝐽 𝑙+



Collinear Factorization

 Hadronic Tensor now becomes

 Separate the integrations into factors for the jet and target



Collinear Factorization

 To complete the factorization

 Express the Jet and Lower factors in a basis of Dirac matrices.

 Focusing on spin and azimuthally independent cross sections, only the vector part of those 

expressions contributes

 Remembering that 𝑄 ≫ 𝑚



Collinear Factorization 

 Now we have

 Perform the 𝑙+ integration to obtain the desired factorized structure



Collinear Factorization

 For a specific structure function

 Where



Collinear Factorization

 Factorization of the simple QFT

 At the large 𝑄 limit, Figures B and C are suppressed by powers of Τ𝑚 𝑄

 Only need to factorize Figure A

 The hard functions are

 The projected hard functions are



Collinear Factorization

 The lower part is given by:

 Integrating over 𝑘−yields:

 The parton virtuality is:

 The 𝑘𝑇-unintegrated functions         (equivalent to what was defined in the exact 
case are:  



Collinear Factorization

 Expanding exact solutions in powers of Τ1 𝑄



Comparison Between the Exact Calculation 

and the Standard Approximation

 Want to choose a set of masses that mimics QCD

 For 𝑀, use the proton mass (0.938 GeV)

 Choose values of 𝑚𝑞 and 𝑚𝑠 such that 𝑘 is on the order of a few MeV and the 𝑘𝑇
distribution peaks at not more than 300 MeV

 𝑚𝑞 should be on the order of a few MeV 

 𝑚𝑠 is chosen on a case by case basis:

 In QCD, the remnant mass would grow with 𝑄.  The mass used here should behave similarly. 

 The mass in the quark-diquark rest frame is constrained

 Solve 𝑣 ≡ −𝑘2 at 𝑘𝑇 = 0 for 𝑚𝑠.   



Comparison Between the Exact Calculation and the Standard Approximation

 Plots of exact and approximate          for 𝑥𝑏𝑗 = 0.6



Comparison Between the Exact Calculation 

and the Standard Approximation

 Plot 𝑣 ≡ −𝑘2 vs. 𝑘𝑇 (𝑥𝑏𝑗 = 0.6, 𝑚𝑞 = 0.3 GeV, and 𝑚𝑠 corresponding to 

𝑣 𝑘𝑇 = 0 = 0.5 GeV) 



Comparison Between the Exact Calculation 

and the Standard Approximation

 Integrated Structure Functions

 Exact:

 Approximate:



Purely Kinematic TMCs

 Our analysis provides a means of clearly defining purely kinematic TMCs.

 Expand exact solutions in powers of Τ𝑚 𝑄, but keep only powers of Τ𝑀 𝑄 (assume 
powers of Τ𝑘𝑇 𝑄, Τ𝑚𝑞 𝑄, and Τ𝑚𝑠 𝑄 are still negligible):

 This is equivalent to inserting 𝑥𝑛 in place of 𝑥𝑏𝑗 in the collinear factorized 
equations for these quantities.

 Define purely kinematic TMCs as those corrections obtained from this substitution



Purely Kinematic TMCs

 Plots of          (exact, approximate, and approximate with 𝑥𝑏𝑗 → 𝑥𝑛)

(𝑥𝑏𝑗 = 0.6, 𝑚𝑞 = 0.3 GeV, and 𝑚𝑠 corresponding to 𝑣 𝑘𝑇 = 0 = 0.5 GeV)



Summary of Findings

 Analysis using the simple QFT demonstrates that the most accurate QCD 

factorization theorem for low-𝑄 and large-𝑥𝑏𝑗 would need to account for 

corrections due to parton mass, parton transverse momentum, and parton

virtuality as well as the target mass.

 This type of analysis using a simple QFT can be used as a testing ground for 

any factorization theorem 

 From this analysis, we can define purely kinematical TMCs as corrections that 

result from substituting 𝑥𝑛 in place of 𝑥𝑏𝑗 in the collinear factorized formula.


