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Introduction

» QCD complexities
» Non-Abelian

» Confinement

» Can only be solved analytically in
the simplest of cases.

» Use Factorization theorems to
simplify the calculation.

QCD event



Introduction

» Factorization:

» Method of disentangling the physics at different space-time scales by taking the
asymptotically large limit of some physical energy

» Useful in QCD:

» Asymptotic freedom allows short-distance processes to be calculated using
perturbative calculations

» Factorize to separate perturbative part from non-perturbative part




Introduction

» Example: Collinear Factorization in Deep Inelastic Scattering (DIS)

» Assume that Q > m where Q = ,/—q? and m is a generic mass scale on the order of a
hadron mass

QCD event leading region factorization




Introduction

» Want to explore physics at lower Q (~ a few GeV) and larger x,; (= 0.5)
» Interplay of perturbative and nonperturbative

» For example DIS at moderately low momentum transfer (Q ~ 1 - 2 GeV)
» (@ > mis not an accurate assumption

» Buta;/m < 0.1 so can still use perturbative calculations.




Introduction

» Proposed techniques for extending QCD factorization to lower energies and/or
larger x;:

» Target mass corrections (Georgi and Politzer, 1976)
» Large Bjorken-x corrections from re-summation (Sterman, 1987)
» Higher twist operators (Jaffe and Soldate, 1982)
» Questions arise:
» Which method would give the most accurate approximation?

» Are there other corrections that should be included?




Introduction

» What can we do to test how effective these techniques really are?

» Problem: Non-Abelian nature of QCD leaves “blobs” that cannot be calculated

without making approximations
/

» There is no reason these techniques can only be applied to QCD.

» They should work for most re-normalizable Quantum Field Theories (QFT)




Introduction

» Use a simple QFT that requires no approximations
» Perform an exact calculation in this QFT
» Perform the same calculation after applying a factorization theorem to the QFT

» Compare results numerically
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Simple Model Definition

» Interaction Lagrangian Density:

> Liw=—-AUnih,¢ + hec.
» ¥ i Spin-1/2 “Nucleon” Field with mass M
> 4h, t Spin-1/2 “Quark” Field with mass m,.
» ¢ : Scalar “Diquark” Field with mass mg

» The nucleon and quark couple to photon while the scalar does not.




Standard Notation in Inclusive DIS

» Inclusive DIS process
» e()+NP)-ell')+ X(p,)

» [ and !’ are the initial and final
lepton four-momenta

» P is the four-momentum of the
nucleon

> Dy = Dgq + D5 is the four-momentum
of the inclusive hadronic state

QCD event




Standard Notation in Inclusive DIS

» Using Breit frame where
» Nucleon momentum in +z direction
» Photon momentum in -z direction
» Using light-front coordinates
» Four-vector:
vt = (v", v, o)
» “+” components:

vt = (00 +07)/V2

» Transverse component:

VT




Standard Notation in Inclusive DIS

» Momenta » Where
» Nucleon Q=+—¢
Q x M?
P = (:Bn\/i, Q‘\/ﬁ :OT) NaChtmann X
» Photon gt 2wy,
qg=1-0 q=(—QQOT) R S 14 422, M2/Q?
\/E’ \/2_)’ \/ :Ebj Q
» Internal Parton .
Bjorken x
k= (kT k. kr)
: Q?
» Final Parton Tpj =
2P -¢q

k+q




Standard Notation in Inclusive DIS

» The DIS cross section can be written as
do dev

— pv
dz, dQ? ~ ®Q* LW
» Where

» ais the electromagnetic fine structure constant
» & is a flux factor

» L, is the leptonic tensor given by
L, =2 (E“EL + ELE,, — Guvl - )

» WH is the hadronic tensor, which in terms of structure functions F; and F, is given by

” Hq P , JP- F sz
W (P,q)=( —gt +qq )Fl(a:n,Q)+(P# q‘f)(P iy qzq) 2(;.{; )




Standard Notation in Inclusive DIS

» Define Projection Tensors for the Structure Functions
P’innu(Pa q) = F (mn: Qz) ) PE"VWW(P; q) = F» ($n1Q2)

1 QQZ:E% [y
2 (MEa2 +Q2)2 "
2
o 12Q%3 (Q7 — MBad) (., (Mizi+Q2)"
Py = 7 Ppp + P
(Q? + Mja3) 2@ 7

PLY = P

» Where

Pl = g, Pl = PRPY




Exact Kinematics

» Familiar DIS Handbag Diagram




Exact Kinematics

» For electromagnetic gauge invariance these diagrams must also be included.

71% — (C)
q

(B)

Y




Exact Kinematics

» To demonstrate the calculations it is convenient to organize the hadronic
tensor by separating the integrand into factors as follows:

+ 2
WP = Y [ S ] T [Propl, ok — ki) (k" — k)

j€ graphs
» Where
» j refers to Figures A, B, and C
» [Prop]; is the denominators of the internal propagators in Figure j
» T/ is the appropriate Dirac trace for Figure j

» [Jac] is the appropriate jacobian factor to isolate k= and k™ in the arguments of the delta
functions




Exact Kinematics

» The arguments of the delta functions give the quadratic system

(q+k‘)2—m§=0,

(P—k)*—m?=0.
» Solving this system for k™ = &P+ and k™~ yields two solutions for k~
» Only one solution is physically realistic (0 if Q is taken to infinity)

» The correct solution to the system is

VA = Q*(1 — z,) — za(m? —m2 — M*(1 — z,))
‘ 22 Q (1) ’
" k% +m?+Q(Q + v2k™)
! V2(Q+v2k7)
» Where A =[Q*(1—x,) -z, (M*(1 — 2,) + m_ —m?) ]2

8

— Az, (1 — 2,) [k3(Q% + 2 M?) — Q°M*(1 — z,) + Q°m + x, My |

k= =k

z

k+




Exact Kinematics

» The Jacobian factor is:

2.Q (2k +v2Q)
(1 o ml'll)"‘:_Qz(\-/ik_ + 2Q) + 2\/§[Q4(1 o xn) o (k‘% + mg)zn(Qz + z, W)]

[ac] = -

» The propagator factors are:

1
[Prop|, = ma

[Prop|s =

1 2

(P+a2?—M2)° (@1 — ) — M222)"
1 Tn
(k2 — m,g) (Q2(1 —Ty,) — M%ﬁ) '

[Propl. =




Exact Kinematics

» The Dirac traces are:

Ty =Tr [(P + M)(f + mg)y" (K + q + mg)Y” (K + mq)] ;
T =T [(P+ MWV P+ g+ M)F+d+mg)(P+d+ M)y,
T =2Tr [(P+ M)k + my"(k+ ¢ +mg) (P + ¢ + M)v"]

» Factor of 2 is for the Hermitian conjugate of Figure C.

» Define the projected quantities:

TY = PH T,

PP _ puv
i g Jpv Tj _PPPT

J v




Exact Kinematics

» The P;” projections with traces evaluated are:
TY =—8 [2(P-k+m,,M)k-q+(k2—3m§)P-k—2Mm3+(mf;—k?)P-q] ,
T, = 8 [2M3mq + P-k(2M? — Q%) — 2(M? + Mm,) @Q?
+2k-q(M?* = P -q) + [2(M? + Mm,) +Q2]P-q] ,
TS =—16 [-2(13 k)2 + KPM? + (M? — mgM) k - g — M*m2 + 2Mm,Q?

+(m§—Mmq)P-q—2P-k(k-q+Mmq—Q2+P-q)],




Exact Kinematics

» The P, projections with traces evaluated are:

PP _
Ty =

PP _
Tg =

PP _
Te =

4 [4(P-k)3 +4(P - k)> (Mm,+ P - q)
~M P k(3k*M +2M k - ¢ — 3Mm — 4m, P - q)
—MPmy(k* + 2k - ¢ — m?) — M*(k* —m}) P - 11] ,
AM* [P -k (AM? + Q%) + AM?*(k - ¢ + Mm,) — Q*(AM?* + Mm,)
H2k g+ A+ M) = Q] P-a.
8M [4M(P-k)2+MP-k(2k-q+4Mm,,—Q2)
—M*2M(K* + k - g — m?) + m,Q®]

—[K*M — (2M +mg)(2P - k + Mm,)] P - q] .




Exact Kinematics

» Define the nucleon structure functions as:

d’k
F (IL'n,Q2) - (2 ;f1($n>Q2=h%)’
2
Fg ($n,Q2) - /-?216)1‘ an]:2($mQ2 k‘%‘)

» Where

s 0 2Q2 PP ropl .

(2 )2 [Ja‘C]Z( T (M2$2 Q2)2TJ ) [P p]J’
1 12Q4 3(Q2 M2 2)

(2m)2 (Q% + M2z2)4

2,2 | )2)2
X [Jac] Z (Tf p_ M I;HQ—::::? ) Tg) [Prop;.
j n

Fy (IL‘n,Q2,k%) =

2-'L'n]:‘2 (:L'na Qza k’%‘) -




Exact Kinematics

» The exact kinematics impose an upper bound on k.

» Start from calculation of W in the center-of-mass frame:

W = pj + p}

=R R m R

Im.

» W in the Breit frame :

M2 + Q2(1 B 'Tb.i)

W?=(P+q)?=(pg+ps)’ =
I'hj

» Set the two equations for W equal to each other, and solve for k; with k, =0

Btz = \/ [0 (M? = (mq + m)?) + Q2(1 — )] [ (M? — (g — ma)?) + Q2(1 — ;)]
o Az [Q*(1 — apy) + M2y




Collinear Factorization

» Collinear Factorization

» Un-approximated hadronic tensor

W (P q) = / (;1:‘;4 Te[HM(k, k) J(K) H" (k. ) L(k, P)]




Collinear Factorization

» Internal quark momentum
» Power Counting at low transverse momentum (k;~0(my))
» k? and k'2~0(m?)
> kt~0(Q)

» Therefore

i~ (0@.0(%) . 00m)




Collinear Factorization

» Hard Factor (H(k, k"))
» k-q=k*tq™ + 0(m?
» k-k=(k*00)
> k'>k'=k+q
> H(k ky) - H(k k")
> 8(k° —m3) > k* = x,P* = xy;P*
» Lower Factor (L(k,P))

» Contains propagator, large component of k can be approximated but the small
components must be kept exact

> k-ok= (k" k™ k)
» L(k,P) - L(k,P)




Collinear Factorization

» Jet Factor (J(k"))

» Power counting for k' is:
K~ (0(Q),0(Q),0(my))
» Consider a frame labeled “*”, where the outgoing transverse momentum vanishes k'; = 0,

2
khz(k-l—_'_q-l-—_z kT

(q_+k_)1q +k 10T)

» The outgoing parton’s virtuality is:
kh? — 2(k+ + q+) (k— + q—) o k’%
3

~2(k++q+)q‘—k"’r+o(%)
k7

» Make the approximation k' — k' = (I*,q~,0;) where It = k* — x,,P* + .

» Change integration variables from k™ to [*
> JED) - JUA)




Collinear Factorization

» Hadronic Tensor now becomes

W"(P,q) = / dl+((1§7:)(i2kT Tr [Hﬂ(Q2)J(l+)Hf"(Q2)L(IE, P)] +0 (%:) W

» Separate the integrations into factors for the jet and target

wora) =t @) ([ G000 ) @) ([ et nem) |+ o (5 ) we




Collinear Factorization

» To complete the factorization

» Express the Jet and Lower factors in a basis of Dirac matrices.
J(IY) = 5 AR(1) + As(h) + wAp(lY) + 4y, AL (1Y) + 0, AL (1),
L(k, P) = ,®"(k, P) + ®s(k, P) + v5®p(k, P) + 1579, (k, P) + 0,, ¥} (k, P)

» Focusing on spin and azimuthally independent cross sections, only the vector part of those
expressions contributes

» Remembering that Q » m

J(I) = A~ (I*) + O (%) J + (spin dep.)
! 2
= 4‘?}__1} [v-J(H] +0 (%) J + (spin dep.),
2
L(k, P) = ®*(k, P) + O (%) L + (spin dep.)
¥ m?

=P —Tr [T*L(E, P)} +0 (@) L + (spin dep.),




Collinear Factorization

» Now we have

WH(P,q) = TQzTr [H» (QHF Hv (Q'-’)E] ( {1!4-’1\-[ 5 (zﬂ])

([ ) o) w

» Perform the [* integration to obtain the desired factorized structure

Wi (P, q) — ﬁﬁ[w@z Y (0% g] ( dk~ d‘)’;eTTrlz L(k, P)D

Wi (Q?) ."'( bj)




Collinear Factorization

» For a specific structure function
m? ,
il @) = (@) o) +0 () i=1.2

» Where

Hi(Q*) =PI 5T [H(Q1) B (@) ]




Collinear Factorization

» Factorization of the simple QFT
» At the large Q limit, Figures B and C are suppressed by powers of m/Q
» Only need to factorize Figure A
» The hard functions are
H(Q)! =", HY(Q?)" =~
» The projected hard functions are
HA(Q%) = 1,
(@) = 2L (& M)
(@ + M?ai))

M3z,
=20 (1+0 ("))




Collinear Factorization

» The lower part is given by:
dk_d2kT 1
k2

f(-'L'bj) = (27()3 2 _ m2

q

) Tr [%(ie +mg)(P+ M)(K +m,,)]
x (2m) o, ((P—k)* —m2) .

» Integrating over k~yields:
@y [kF +m3 + (2 — 1) M?]

b= V2Q(1 — a1y)

» The parton virtuality is:

g2 _ k@ [mg + (o — )M

I—ij

» The kr-unintegrated functions Ji2 (equivalent to what was defined in the exact
case are:

1 (1 — zp;) [K2 + (mg + 2 M)?
Fl(xbj:Q2:k'%) — fg(l'bj, Qza k’%‘) — 9 9 9 9 & [ & ;I . ] 2 2
( 7!') [kT + Tpyms + (1 — -T:bj) my -+ :Ebj(:l.'bj — 1)M ]




Collinear Factorization

» Expanding exact solutions in powers of 1/Q

k3 +m?2 — x2. M?

€=wbj[1+ T 222 L

M2 (K + m2) + oy (K + m2) (K + m? — M2) — 2M 2 (w1 — 1)

Q" (wp; — 1)
mb

0 (%)

e (KR Eml e (m - )M (kT +m2) (k1 +m2)
QV?2 1—x, Q%(z, — 1)
5

+0 (m— %) ,

W k3 + zy (m? + (2, — 1) M?
1—=x,

T (K +m2) (B + [ + (2 — )M] [y — (2 — 1)M])
Q2($n - 1)2




Comparison Between the Exact Calculation
and the Standard Approximation

» Want to choose a set of masses that mimics QCD

» For M, use the proton mass (0.938 GeV)

» Choose values of m, and m; such that [k| is on the order of a few MeV and the kr
distribution peaks at not more than 300 MeV

» m, should be on the order of a few MeV

» my is chosen on a case by case basis:
» In QCD, the remnant mass would grow with Q. The mass used here should behave similarly.
» The mass in the quark-diquark rest frame is constrained
M —my <my < W(xzy;, Q) —my
» Solve v = V—k? at k; = 0 for mq.




Comparison Between the Exact Calculation and the Standard Approximation

» Plots of exact and approximate krJ; for x,; = 0.6
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Comparison Between the Exact Calculation
and the Standard Approximation

» Plot v =vV—k? vs. kr (xp; = 0.6, my; = 0.3 GeV, and m; corresponding to

0.2}

Q =2 GeV
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1.4} — exact

--- collinear

1.0}
0.6}
Q = 20 GeV
0.2}
0.0 0.2 04 0.6 0.8
kr (GeV)

1.0




Comparison Between the Exact Calculation
and the Standard Approximation

» Integrated Structure Functions

kTmax
> ExaCtI I(:Bbj, Q) = / dk’I‘ kT f?xact(ﬂ':bj,Q, kT)
0

o~ kcut
4 Approximate: I(a:bj, Q, kcut) = f dkt kr f?ppm(a:bj, Q, kT)
0

Q =2 GeV Q = 20 GeV
my (GeV) | 03 | 05| 03| 05|03 |05 03] 05

ms (GeV) | 0.67 | 0.65 | 0.75 | 0.73 | 0.64 | 0.64 | 0.72 | 0.72

I/T(krmax)| 0.88 | 0.64 | 0.76 | 0.57 | 1.00 | 1.00 | 1.00 | 1.00
1/1(Q) | 0.67 | 0.45 | 0.49 | 0.35 | 0.90 | 0.88 | 0.86 | 0.85




Purely Kinematic TMCs

» Our analysis provides a means of clearly defining purely kinematic TMCs.

» Expand exact solutions in powers of m/Q, but keep only powers of M/Q (assume
powers of k;/Q, m,;/Q, and m¢/Q are still negligible):

xp M? 2MAxy,
£ = Erme = o |1 - 0 + 0t +- | =1y
N T [k +m2 + (2, — 1) M?]
e ﬁQ(l_mn) ’

» This is equivalent to inserting x,, in place of x,; in the collinear factorized
equations for these quantities.

» Define purely kinematic TMCs as those corrections obtained from this substitution




Purely Kinematic TMCs

» Plots of krF1 (exact, approximate, and approximate with x;,; — x,)
(xp; = 0.6, my = 0.3 GeV, and m; corresponding to v(ky = 0) = 0.5 GeV)

: : - 8 : - :
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Summary of Findings

» Analysis using the simple QFT demonstrates that the most accurate QCD
factorization theorem for low-Q and large-x;; would need to account for

corrections due to parton mass, parton transverse momentum, and parton
virtuality as well as the target mass.

» This type of analysis using a simple QFT can be used as a testing ground for
any factorization theorem

» From this analysis, we can define purely kinematical TMCs as corrections that
result from substituting x;, in place of x;; in the collinear factorized formula.




