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The fitting methodology

QCD analysis of ∆PDFs and FFs
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The fitting methodology



The parent distribution
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“If we could make an infinite number of measurements, then
we could describe exactly the distribution of the data points.
This is not possible in practice, but we can hypothesize the
existence of such a distribution that determines the
probability of getting any particular observation in a single
measurement. This distribution is called parent distribution.
Similarly we can hypothesize that the measurements we have
make are samples from the parent distribution and they form
the sample distribution. In the limit of an infinite number of
measurements, the sample distribution becomes the parent
distribution”

Data reduction and error analysis for the physical sciences
Bevington and Robison



Bayesian perspective for global fits
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Consider a quantity f for which we want to
determine its parent distribution

P(f)

We are interested in the case where f
cannot be measured directly, but instead it is
inferred from experimental data. In this case
the parent distribution is conditioned to the
evidence, and mathematically this is written
as

P(f |data)

How do we compute P(f |data)?
→ Bayes theorem:

P(f |data) = 1
Z
L(data|f)π(f)

L(data|f): Likelihood
π(f): prior
Z: evidence
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The likelihood function is chosen to describe
the probability of the data to be drawn from
a model with a given f . e.g Gaussian
likelihood

L(data|f) = exp
[
−1

2
∑

i

(
di −modeli(f)

δdi

)2]

The prior function allows us to restrict
unphysical regions of f . We make the priors
to be as flat as possible to avoid biases
(uninformative priors) i.e.

π(f) =
{

1 condition(f) == True
0 condition(f) == False

P(f |d) = 1
Z
L(d|f)π(f) (1)
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P(f |d) = 1
Z
L(d|f)π(f)

↓

P(a|d) = 1
Z
L(d|a)π(a) (2)

In practice f needs to be represented
mathematically e.g

f(x) = Nxa(1− x)b(1 + c
√
x+ dx+ ...)

f(x) = Nxa(1− x)bNN(x; {wi})
f(x) = NN(x; {wi})−NN(1; {wi})

The parent distribution for f becomes

a = (N, a, b, c, d, ...)

P(a|d) = 1
Z
L(d|a)π(a)

L(d|a) = exp
[
−1

2
∑

i

(
di −modeli(a)

δdi

)2]
π(a) =

∏
i

θ(ai − amin
i )θ(amax

i − ai)



Bayesian perspective for global fits
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Having the parent distribution we can
compute

E[O] =
∫
dna P(a|data) O(a)

V[O] =
∫
dna P(a|data) (O(a)− E[O])2

O is any function of a. e.g

O(a) = f(x;a)

O(a) =
∫ 1

x

dξ

ξ
C(ξ)f

(
x

ξ
;a
)

How do we compute E[O],V[O]?
- Maximum likelihood
- Monte Carlo approach

Attention:
- typically n� 1
- P(a|data) is

computationally expensive
- for O == f(x), an n–dim

integration is needed for
each x. Not practical!



Maximum Likelihood
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Estimation of expectation value

E[O] =
∫
dna P(a|data) O(a) ' O(a0)

a0 is estimated from optimization algorithm

max [P(a|data)] = P(a0|data)
max [L(data|a)π(a)] = L(data|a0)π(a0)

equivalently

min [−2 log (L(data|a)π(a))] = −2 log (L(data|a0)π(a0))

=
∑

i

(
di −modeli(a0)

δdi

)2
− 2 log (π(a0))

= χ2(a0)− 2 log (π(a0)) this is Chi-squared
minimization



Maximum Likelihood + Hessian method
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Estimation of variance

V[O] =
∫
dna P(a|data) (O(a)− E[O])2

Eigen direction decomposition of P(a|data)

P(a|data) ∝ exp
(
−1

2χ
2(a)

)
∝ exp

(
−1

2χ
2(a0)− 1

2∆χ2(a))
)

∝ exp
(
−1

2∆χ2(a))
)

∝ exp
(
−1

2∆aT H ∆a

)
+O(∆a3)

∝ exp
(
−1

2
∑

k

(
tk

êT
k√
wk

)
H
∑

l

(
tl

êl√
wl

))
+O(∆a3)

∝ exp
(
−1

2
∑

k

t2k

)
+O(∆a3)

∝
∏
k

exp
(
−1

2 t
2
k

)
+O(∆a3)

Hêk = wkêk

The probability distribution
“factorizes” along each eigen
direction



Maximum Likelihood + Hessian method
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Estimation of variance

V[O] =
∫
dna P(a|data) (O(a)− E[O])2

Linear approximation of O(a)

[O(a)− E[O]]2 =
[∑

i

∂O
∂ai

(ai − a0) +O(a2)
]2

=
[∑

k

∂O
∂tk

tk

]2

+O(a3)

Combining with factorized P(a|data) we get

V[O] '
∏
k

∫
dtk

e− 1
2 t2

k

√
2π

∑
lm

∂O
∂tl

∂O
∂tm

tltm

=
∑

k

(
∂O
∂tk

)2
'
∑

k

[O(tk = 1)−O(tk = −1)
2

]2

master formulas



Maximum Likelihood + Hessian method
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pros
→ Very practical. Most of the PDF groups use this method
→ It is computationally inexpensive
→ f and its eigen directions can be precalculated/tabulated

cons
→ Assumes local gaussian approximation of the likelihood
→ Assumes linear approximation of the observables O around a0

→ The assumptions are strictly valid for linear models.
→ Computation of the hessian matrix is numerically unstable if flat

directions are present
examples

→ if f(x) = a+ bx+ cx2 then E[f(x)] = E[a] + E[b]x+ E[c]x2

→ but f(x) = Nxa(1− x)b then E[f(x)] 6= E[N ]xE[a](1− x)E[b]



Monte Carlo Methods
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Recall that we are interested in computing

E[O] =
∫
dna P(a|data) O(a)

V[O] =
∫
dna P(a|data) (O(a)− E[O])2

Any MC method attempts to do this using
MC sampling

E[O] '
∑

k

wkO(ak)

V[O] '
∑

k

wk(O(ak)− E[O])2

Here {wk,ak} is the sample distribution of
the parent distribution P(a|data)
Given the P(a|data) the sample distribution
is unique, regardless of the MC method

→
∑

k wk = 1
→ unweighted sampling

w1 = w2 = ...

→ weighted sampling
w1 6= w2 6= ...



MC Method 1: data resampling
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Construct pseudo data sets where each data
point is sampled using Gaussian distribution
with mean and variance given by the original
data

d
(pseudo)
k,i = d

(exp)
i + σ

(exp)
i Rk,i

i : i–th data point
k : k–th pseudo data set index
Rk,i : random number from normal distribution

Fit each pseudo data sample k = 1, .., N to
obtain parameter vectors ak The sample
distribution of P(a|data) is approximately

{wk = 1/N,ak}
here “fit” means
Chi-square minimization



MC Method 1+: data resampling+cross validation
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Issues with number of parameters
→ Ideally one should not be worried about the

number of parameters to be used.
→ This is an issue for Hessian method due to

the flat directions.
→ However flat directions are typically only a

local feature of the parent distribution.
Over-fitting

→ If there are too many parameters there
would be regions in the parameter space
where P(a|data) develops “spikes”
→ signal of over-fitting

→ Use cross-validation to tame the “spikes”

Procedure
→ For each pseudo data

sample k split randomly the
data set in 50/50 and label
them as “training” and
“validation” respectively

→ Fit the “training” set and
stop the fitting whenever
the description of the
“validation” set deteriorates
to avoids over-fitting



MC Method 1+: data resampling+cross validation
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Procedure
→ For each pseudo data sample k split

randomly the data set in 50/50 and label
them as “training” and “validation”
respectively

→ Fit the “training” set and stop the fitting
whenever the description of the “validation”
set deteriorates → it avoids over-fitting
Caveat

→ the resulting sample distribution is sensitive
to the partition. Possible solutions include to
rescale the uncertainties of the training and
validation set to compensate for the splitting



MC Method 1+++: data resampling+cross validation
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+a(guess) randomization
+iterative runs

One vs. multiple minima
→ It is possible that P(a|data) is multi

modal.
→ Hence it is important to start the scan

from many different starting points
Caveat

→ Optimization algorithms are based on
gradient descent search. It is possible
that in a given run with N independent
scans the sample distribution does not
represent accurately the “true” parent
distribution

→ To solve this, we start a new run by
sampling guessing parameters from the
prior iteration

sampler priors

fit

fit

fit

posteriors

original data

pseudo
data

training
data

fit

parameters from
minimization steps

validation
data

validation

posterior

as initial
guess

prior

Iterative MC fitting (IMC)



MC Method 2: Hybrid Markov Chain Monte Carlo
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The basic idea
→ This is an MCMC based algorithm

(random walks + rejection sampling )
→ The random walks are optimized by

solving Hamilton’s equations.
→ The parameters a are the

“coordinates” and a conjugate vector
p e.g. “momentum” is defined

→ An initial “state” is defined by a
random coordinate vector a0 and a
random momentum vector p0.

→ A new state is proposed by solving a
Hamiltonian using the leap frog
method

H(p,a) = p2

2m − log(L(a))

pros
→ It provides a faithful

sampling distribution
cons

→ the number of steps and
step size of the leap frog
must be tuned.

→ Cannot be parallelized



MC Method 3: nested sampling
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The basic idea: compute

Z =
∫
L(data|a)π(a)dna =

∫ 1

0
L(X)dX

→ The algorithm traverses ordered isolikelihood
contours in the variable X such that X
follows the progression Xi = tiXi−1

→ The variable ti is estimated statistically
→ The algorithm can be optimized iteration to

iteration. One can sample only in the
regions where the likelihood is larger →
“importance sampling”

→ The nested sampling is parallelizable

L(data|a) in a space

L(X) in X space



Toy example
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→ We generate events
from f(x) to mimic
realistic counting
experiment

→ The fits and the
error bands are
performed with four
different algorithms

→ Clearly all the
methods give the
same parent
distribution for f(x)

→ This is expected as
all the methods
uses same likelihood
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QCD analysis ∆PDFs
and FFs



Polarized PDFs: inclusive polarized DIS
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NS, Melnitchouk, Kuhn, Ethier, Accardi (PRD 93,074005)
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→ Inclusion of all the JLab 6GeV data

→ Determination of twist 3 g2

→ SU3 constraints imposed:
a3 = ∆u+ −∆d+

a8 = ∆u+ + ∆d+ − 2∆s+

→ DSSV and JAM ∆s+ is
inconsistent



Fragmentation Functions: SIA
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NS, Ethier, Melnitchouk, Hirai, Kumano, Accardi (PRD 94, 114004)
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→ IMC in action → π and K global data from Belle
and Babar up to LEP data at
Q = Mz

→ JAM and DSS DK
s+ consistent



The ∆S+ puzzle
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Constraints on ∆s+

→ JAM: ∆DIS + SU3

→ DSSV: ∆DIS + SU3, ∆SIDIS

Note

→ DSSV analysis shows no violation
of SU3 due to penalties

→ In DSSV, FF is extracted
independently from SIA, SIDIS and
pp data

→ In JAM negative ∆s+ comes only
from SU3

Questions

→ What controls the sign of ∆s+?

→ What are the actual uncertainties
on ∆s+ ?



Combined ∆PDF and FF: ∆DIS+∆SIDIS+SIA
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Ethier, NS, Melnitchouk (PRL 119, 132001)
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0.04 x(∆ū + ∆d̄)

DSSV09

0.4 0.810−3 10−2 10−1

−0.04

−0.02

0

0.02

0.04
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Setup

→ Simultaneous extraction of
polarized ∆PDFs and FFs

→ Data: ∆DIS,∆SIDIS, SIA

→ No SU(3) constraints

Results

→ Sea polarization consistent with
zero

→ The current precision of ∆SIDIS
data is not sufficient to
determined the sea polarization

→ DK
s+ consistent with SIA only

analysis



What determines the sign of ∆s+?
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case data sign change ∆s+(1)(Q2
0)

1 ∆DIS+SU(3) No −0.1
2 ∆DIS+SU(3) (x > 0.02) Possible −0.1
3 ∆DIS+∆SIDIS+FF Possible −0.03(10)
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x(∆ū−∆d̄)

0.4 0.8
x

10−3 10−2 10−1

−0.04

−0.02

0

0.02

0.04 x∆s+

JAM17 + SU(3)
0.4 0.8

x
10−3 10−2 10−1

−0.1

−0.05

0

0.05

0.1 x∆s−

0.01 0.1 0.5x
0

0.2

0.4

0.6

Aπ−
1p

JAM17

∆q̄ = 0

COMPASS

0.03 0.1 0.2 0.5x
−0.2

0

0.2

0.4

0.6

0.8

AK−
1d

JAM17

∆s+ < 0

HERMES

case 1

→ ∼ 5 COMPASS d data points at
x < 0.002 favor small ∆s+(x)

→ To generate ∆s+(1)(Q2
0) ∼ −0.1

a peak at x ∼ 0.1 is generated

case 2

→ In the absence of x < 0.002 data, the
negative ∆s+(1)(Q2

0) ∼ −0.1 is mostly
generated at small x.

→ No need for negative ∆s+(x) at
x ∼ 0.1

case 3

→ ∆s+(x ∼ 0.1) < 0 disfavored by
HERMES AK−

1d

→ Smaller ∆s+(1)(Q2
0) but larger

uncertainties



Updates on the moments
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∆ū ∆d̄−

→ We construct flat priors that
gives flat a8 in order to have an
unbias extraction of a8

→ Data prefers smaller values for
a8 → 25% larger total spin
carried by quarks.

→ a3 which is in a good
agreement with values from β
decays within 2%.

→ Data indicates possible
∆ū > ∆d̄ consistent with
measurements of W±(Z)
asymmetries from PHENIX and
STAR

obs. JAM15 JAM17
gA 1.269(3) 1.24(4)
g8 0.586(31) 0.46(21)

∆Σ 0.28(4) 0.36(9)
∆ū−∆d̄ 0 0.05(8)



SIDIS+Lattice analysis of nucleon tensor charge
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Lin, Melnitchouk, Prokudin, NS, Shows (arXiv:1710.09858)
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SIDIS

→ Extraction of transversity and Collins FFs from SIDIS
AUT +Lattice gT

→ In the absence of Lattice, SIDIS at present has no
significant constraints on gT → this will change with the
upcoming JLab12 measurements



Summary and outlook
JAM status

→ Global analysis methodology based on Bayesian perspectives
has been studied and implemented.

→ Provides faithful representation of uncertainties
→ First simultaneous extraction of ∆PDF and FF from ∆DIS,

∆SIDIS and SIA
Ongoing work

→ Almost done in implementing inclusive DIS analysis to extract
PDFs

→ Extraction of helicity distributions
Future work

→ Combined (∆)DIS, (∆)SIDIS and SIA to extract
simultaneously (∆)PDFs and FFs.

→ (∆)Jets, (∆)W± from Tevatron and RHIC
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