Simultaneous extraction of spin-dependent parton distributions and fragmentation functions in the MC framework

Nobuo Sato
University of Connecticut/JLab Seminar at BNL
Dec 15, 2017

In collaboration with:
J. Ethier, W. Melnitchouk

Jefierson Lah Angular

Momentum Gollahoration

Outline

- The fitting methodology

■ QCD analysis of \triangle PDFs and FFs

The fitting methodology

The parent distribution

> "If we could make an infinite number of measurements, then we could describe exactly the distribution of the data points. This is not possible in practice, but we can hypothesize the existence of such a distribution that determines the probability of getting any particular observation in a single measurement. This distribution is called parent distribution. Similarly we can hypothesize that the measurements we have make are samples from the parent distribution and they form the sample distribution. In the limit of an infinite number of measurements, the sample distribution becomes the parent distribution"

Data reduction and error analysis for the physical sciences Bevington and Robison

Bayesian perspective for global fits

- Consider a quantity f for which we want to determine its parent distribution

$$
\mathcal{P}(f)
$$

- We are interested in the case where f cannot be measured directly, but instead it is inferred from experimental data. In this case

\mathscr{J} Bayes. the parent distribution is conditioned to the evidence, and mathematically this is written as

$$
\mathcal{P}(f \mid d a t a)
$$

■ How do we compute $\mathcal{P}(f \mid$ data $)$?
\rightarrow Bayes theorem:
$\mathcal{L}($ data $\mid f)$: Likelihood
$\pi(f):$ prior
$Z:$ evidence

$$
\mathcal{P}(f \mid \text { data })=\frac{1}{Z} \mathcal{L}(\text { data } \mid f) \pi(f)
$$

Bayesian perspective for global fits

- The likelihood function is chosen to describe the probability of the data to be drawn from a model with a given f. e.g Gaussian likelihood

$$
\mathcal{L}(\text { data } \mid f)=\exp \left[-\frac{1}{2} \sum_{i}\left(\frac{d_{i}-\operatorname{model}_{i}(f)}{\delta d_{i}}\right)^{2}\right]
$$

- The prior function allows us to restrict unphysical regions of f. We make the priors to be as flat as possible to avoid biases (uninformative priors) i.e.

$$
\pi(f)= \begin{cases}1 & \text { condition }(f)==\text { True } \\ 0 & \text { condition }(f)==\text { False }\end{cases}
$$

$$
\mathcal{P}(f \mid d)=\frac{1}{Z} \mathcal{L}(d \mid f) \pi(f)
$$

Bayesian perspective for global fits

- In practice f needs to be represented mathematically e.g

$$
\begin{aligned}
& f(x)=N x^{a}(1-x)^{b}(1+c \sqrt{x}+d x+\ldots) \\
& f(x)=N x^{a}(1-x)^{b} \operatorname{NN}\left(x ;\left\{w_{i}\right\}\right) \\
& f(x)=\operatorname{NN}\left(x ;\left\{w_{i}\right\}\right)-\operatorname{NN}\left(1 ;\left\{w_{i}\right\}\right)
\end{aligned}
$$

J. Bayes.

- The parent distribution for f becomes

$$
\begin{aligned}
\boldsymbol{a} & =(N, a, b, c, d, \ldots) \\
\mathcal{P}(\boldsymbol{a} \mid d) & =\frac{1}{Z} \mathcal{L}(d \mid \boldsymbol{a}) \pi(\boldsymbol{a}) \\
\mathcal{L}(d \mid \boldsymbol{a}) & =\exp \left[-\frac{1}{2} \sum_{i}\left(\frac{d_{i}-\operatorname{model}_{i}(\boldsymbol{a})}{\delta d_{i}}\right)^{2}\right] \\
\pi(\boldsymbol{a}) & =\prod_{i} \theta\left(a_{i}-a_{i}^{\text {min }}\right) \theta\left(a_{i}^{\text {max }}-a_{i}\right)
\end{aligned}
$$

$$
\begin{gathered}
\mathcal{P}(f \mid d)=\frac{1}{Z} \mathcal{L}(d \mid f) \pi(f) \\
\\
\downarrow \\
\mathcal{P}(\boldsymbol{a} \mid d)=\frac{1}{Z} \mathcal{L}(d \mid \boldsymbol{a}) \pi(\boldsymbol{a})
\end{gathered}
$$

Bayesian perspective for global fits

■ Having the parent distribution we can compute

$$
\begin{aligned}
& \mathrm{E}[\mathcal{O}]=\int \begin{array}{lll}
d^{n} a & \mathcal{P}(\boldsymbol{a} \mid \text { data }) & \mathcal{O}(\boldsymbol{a}) \\
\mathrm{V}[\mathcal{O}] & =\int d^{n} a & \mathcal{P}(\boldsymbol{a} \mid \text { data }) \\
(\mathcal{O}(\boldsymbol{a})-\mathrm{E}[\mathcal{O}])^{2}
\end{array}
\end{aligned}
$$

$■ \mathcal{O}$ is any function of \boldsymbol{a}. e.g

$$
\begin{aligned}
& \mathcal{O}(\boldsymbol{a})=f(x ; \boldsymbol{a}) \\
& \mathcal{O}(\boldsymbol{a})=\int_{x}^{1} \frac{d \xi}{\xi} C(\xi) f\left(\frac{x}{\xi} ; \boldsymbol{a}\right)
\end{aligned}
$$

- How do we compute $\mathrm{E}[\mathcal{O}], \mathrm{V}[\mathcal{O}]$?
- Maximum likelihood
- Monte Carlo approach

Attention:

- typically $n \gg 1$
- $\mathcal{P}(\boldsymbol{a} \mid$ data $)$ is
computationally expensive
- for $\mathcal{O}==f(x)$, an n-dim integration is needed for each x. Not practical!

Maximum Likelihood

■ Estimation of expectation value

$$
\mathrm{E}[\mathcal{O}]=\int d^{n} a \mathcal{P}(\boldsymbol{a} \mid d a t a) \quad \mathcal{O}(\boldsymbol{a}) \simeq \mathcal{O}\left(\boldsymbol{a}_{0}\right)
$$

- \boldsymbol{a}_{0} is estimated from optimization algorithm

$$
\begin{aligned}
& \max [\mathcal{P}(\boldsymbol{a} \mid \text { data })]=\mathcal{P}\left(\boldsymbol{a}_{0} \mid \text { data }\right) \\
& \max [\mathcal{L}(\text { data } \mid \boldsymbol{a}) \pi(\boldsymbol{a})]=\mathcal{L}\left(\text { data } \mid \boldsymbol{a}_{0}\right) \pi\left(\boldsymbol{a}_{0}\right)
\end{aligned}
$$

- equivalently

$$
\begin{aligned}
& \min [-2 \log (\mathcal{L}(\text { data } \mid \boldsymbol{a}) \pi(\boldsymbol{a}))]=-2 \log \left(\mathcal{L}\left(\text { data } \mid \boldsymbol{a}_{0}\right) \pi\left(\boldsymbol{a}_{0}\right)\right) \\
& =\sum_{i}\left(\frac{d_{i}-\operatorname{model}_{i}\left(\boldsymbol{a}_{0}\right)}{\delta d_{i}}\right)^{2}-2 \log \left(\pi\left(\boldsymbol{a}_{0}\right)\right) \\
& =\chi^{2}\left(\boldsymbol{a}_{0}\right)-2 \log \left(\pi\left(\boldsymbol{a}_{0}\right)\right)
\end{aligned} \begin{aligned}
& \text { this is Chi-squared } \\
& \text { minimization }
\end{aligned}
$$

Maximum Likelihood + Hessian method

■ Estimation of variance

$$
\mathrm{V}[\mathcal{O}]=\int d^{n} a \quad \mathcal{P}(\boldsymbol{a} \mid \text { data })(\mathcal{O}(\boldsymbol{a})-\mathrm{E}[\mathcal{O}])^{2}
$$

- Eigen direction decomposition of $\mathcal{P}(\boldsymbol{a} \mid$ data $)$

$$
\begin{aligned}
& \left.\mathcal{P}(\boldsymbol{a} \mid \text { data }) \propto \exp \left(-\frac{1}{2} \chi^{2}(\boldsymbol{a})\right) \propto \exp \left(-\frac{1}{2} \chi^{2}\left(\boldsymbol{a}_{0}\right)-\frac{1}{2} \Delta \chi^{2}(\boldsymbol{a})\right)\right) \\
& \left.\propto \exp \left(-\frac{1}{2} \Delta \chi^{2}(\boldsymbol{a})\right)\right) \\
& \propto \exp \left(-\frac{1}{2} \Delta \boldsymbol{a}^{T} H \Delta \boldsymbol{a}\right)+O\left(\Delta a^{3}\right) \\
& \propto \exp \left(-\frac{1}{2} \sum_{k}\left(t_{k}=w_{k} \hat{\boldsymbol{e}}_{k}^{T}\right.\right. \\
& \propto \hat{\boldsymbol{e}}_{k} \\
& \propto \exp \left(-\frac{1}{2} \sum_{k} t_{k}^{2}\right)+O\left(\Delta a^{3}\right) \\
& \left.\propto \sum_{l}\left(t_{l} \frac{\hat{\boldsymbol{e}}_{l}}{\sqrt{w_{l}}}\right)\right)+O\left(\Delta a^{3}\right) \\
&
\end{aligned} \begin{aligned}
& \text { The probability distribution } \\
& \text { "factorizes" along each eigen } \\
& \text { direction }
\end{aligned}
$$

Maximum Likelihood + Hessian method

- Estimation of variance

$$
\mathrm{V}[\mathcal{O}]=\int d^{n} a \mathcal{P}(\boldsymbol{a} \mid \text { data })(\mathcal{O}(\boldsymbol{a})-\mathrm{E}[\mathcal{O}])^{2}
$$

- Linear approximation of $\mathcal{O}(\boldsymbol{a})$

$$
[\mathcal{O}(\boldsymbol{a})-\mathrm{E}[\mathcal{O}]]^{2}=\left[\sum_{i} \frac{\partial \mathcal{O}}{\partial a_{i}}\left(a_{i}-a_{0}\right)+O\left(a^{2}\right)\right]^{2}=\left[\sum_{k} \frac{\partial \mathcal{O}}{\partial t_{k}} t_{k}\right]^{2}+O\left(a^{3}\right)
$$

■ Combining with factorized $\mathcal{P}(\boldsymbol{a} \mid d a t a)$ we get

$$
\begin{aligned}
\mathrm{V}[\mathcal{O}] & \simeq \prod_{k} \int d t_{k} \frac{e^{-\frac{1}{2} t_{k}^{2}}}{\sqrt{2 \pi}} \sum_{l m} \frac{\partial \mathcal{O}}{\partial t_{l}} \frac{\partial \mathcal{O}}{\partial t_{m}} t_{l} t_{m} \\
& =\sum_{k}\left(\frac{\partial \mathcal{O}}{\partial t_{k}}\right)^{2} \simeq \sum_{k}\left[\frac{\mathcal{O}\left(t_{k}=1\right)-\mathcal{O}\left(t_{k}=-1\right)}{2}\right]^{2}
\end{aligned}
$$

Maximum Likelihood + Hessian method

- pros
\rightarrow Very practical. Most of the PDF groups use this method
\rightarrow It is computationally inexpensive
$\rightarrow f$ and its eigen directions can be precalculated/tabulated
- cons
\rightarrow Assumes local gaussian approximation of the likelihood
\rightarrow Assumes linear approximation of the observables \mathcal{O} around \boldsymbol{a}_{0}
\rightarrow The assumptions are strictly valid for linear models.
\rightarrow Computation of the hessian matrix is numerically unstable if flat directions are present
- examples
\rightarrow if $f(x)=a+b x+c x^{2}$ then $\mathrm{E}[f(x)]=\mathrm{E}[a]+\mathrm{E}[b] x+\mathrm{E}[c] x^{2}$
\rightarrow but $f(x)=N x^{a}(1-x)^{b}$ then $\mathrm{E}[f(x)] \neq \mathrm{E}[N] x^{\mathrm{E}[a]}(1-x)^{\mathrm{E}[b]}$

Monte Carlo Methods

- Recall that we are interested in computing

$$
\begin{aligned}
& \mathrm{E}[\mathcal{O}]=\int d^{n} a \\
& \mathrm{P}(\boldsymbol{a} \mid \text { data }) \\
& \mathrm{V}[\mathcal{O}]=\int d^{n} a \\
& d^{n} a(\boldsymbol{a} \mid \text { data }) \\
& (\mathcal{O}(\boldsymbol{a})-\mathrm{E}[\mathcal{O}])^{2}
\end{aligned}
$$

■ Any MC method attempts to do this using MC sampling

$$
\rightarrow \sum_{k} w_{k}=1
$$

$$
\begin{aligned}
& \mathrm{E}[\mathcal{O}] \simeq \sum_{k} w_{k} \mathcal{O}\left(\boldsymbol{a}_{k}\right) \\
& \mathrm{V}[\mathcal{O}] \simeq \sum_{k} w_{k}\left(\mathcal{O}\left(\boldsymbol{a}_{k}\right)-\mathrm{E}[\mathcal{O}]\right)^{2}
\end{aligned}
$$

\rightarrow unweighted sampling $w_{1}=w_{2}=\ldots$
\rightarrow weighted sampling $w_{1} \neq w_{2} \neq \ldots$

- Here $\left\{w_{k}, \boldsymbol{a}_{k}\right\}$ is the sample distribution of the parent distribution $\mathcal{P}(\boldsymbol{a} \mid$ data $)$
Given the $\mathcal{P}(\boldsymbol{a} \mid$ data $)$ the sample distribution is unique, regardless of the MC method

MC Method 1: data resampling

- Construct pseudo data sets where each data point is sampled using Gaussian distribution with mean and variance given by the original data
$d_{k, i}^{(\text {pseudo })}=d_{i}^{(\exp)}+\sigma_{i}^{(\exp)} R_{k, i}$
i : i-th data point
k : k-th pseudo data set index
$R_{k, i}$: random number from normal distribution
■ Fit each pseudo data sample $k=1, . ., N$ to obtain parameter vectors a_{k} The sample distribution of $\mathcal{P}(\boldsymbol{a} \mid$ data $)$ is approximately

$$
\left\{w_{k}=1 / N, \boldsymbol{a}_{k}\right\}
$$

here "fit" means
Chi-square minimization

MC Method 1+: data resampling+cross validation

■ Issues with number of parameters
\rightarrow Ideally one should not be worried about the number of parameters to be used.
\rightarrow This is an issue for Hessian method due to the flat directions.
\rightarrow However flat directions are typically only a local feature of the parent distribution.

- Over-fitting
\rightarrow If there are too many parameters there would be regions in the parameter space where $\mathcal{P}(\boldsymbol{a} \mid$ data $)$ develops "spikes"
\rightarrow signal of over-fitting
\rightarrow Use cross-validation to tame the "spikes"

■ Procedure
\rightarrow For each pseudo data sample k split randomly the data set in 50/50 and label them as "training" and "validation" respectively
\rightarrow Fit the "training" set and stop the fitting whenever the description of the "validation" set deteriorates to avoids over-fitting

MC Method 1+: data resampling+cross validation

- Procedure
\rightarrow For each pseudo data sample k split randomly the data set in 50/50 and label them as "training" and "validation"
respectively
\rightarrow Fit the "training" set and stop the fitting whenever the description of the "validation" set deteriorates \rightarrow it avoids over-fitting
■ Caveat
\rightarrow the resulting sample distribution is sensitive to the partition. Possible solutions include to rescale the uncertainties of the training and validation set to compensate for the splitting

MC Method $1+++$: data resampling+cross validation

■ One vs. multiple minima
\rightarrow It is possible that $\mathcal{P}(\boldsymbol{a} \mid$ data $)$ is multi modal.
\rightarrow Hence it is important to start the scan from many different starting points

■ Caveat

\rightarrow Optimization algorithms are based on gradient descent search. It is possible that in a given run with N independent scans the sample distribution does not represent accurately the "true" parent distribution
\rightarrow To solve this, we start a new run by sampling guessing parameters from the prior iteration

MC Method 2: Hybrid Markov Chain Monte Carlo

- The basic idea
\rightarrow This is an MCMC based algorithm (random walks + rejection sampling)
\rightarrow The random walks are optimized by solving Hamilton's equations.
\rightarrow The parameters a are the "coordinates" and a conjugate vector \boldsymbol{p} e.g. "momentum" is defined
\rightarrow An initial "state" is defined by a random coordinate vector \boldsymbol{a}_{0} and a random momentum vector \boldsymbol{p}_{0}.
\rightarrow A new state is proposed by solving a
- pros
\rightarrow It provides a faithful sampling distribution
- Cons
\rightarrow the number of steps and step size of the leap frog must be tuned.
\rightarrow Cannot be parallelized Hamiltonian using the leap frog method

$$
H(\boldsymbol{p}, \boldsymbol{a})=\frac{\boldsymbol{p}^{2}}{2 m}-\log (\mathcal{L}(\boldsymbol{a}))
$$

MC Method 3: nested sampling

- The basic idea: compute

$$
Z=\int \mathcal{L}(\text { data } \mid \boldsymbol{a}) \pi(\boldsymbol{a}) d^{n} a=\int_{0}^{1} \mathcal{L}(X) d X
$$

\rightarrow The algorithm traverses ordered isolikelihood contours in the variable X such that X follows the progression $X_{i}=t_{i} X_{i-1}$
\rightarrow The variable t_{i} is estimated statistically
\rightarrow The algorithm can be optimized iteration to iteration. One can sample only in the regions where the likelihood is larger \rightarrow "importance sampling"
\rightarrow The nested sampling is parallelizable
$\mathcal{L}($ data $\mid \boldsymbol{a})$ in \boldsymbol{a} space

Toy example

\rightarrow We generate events from $f(x)$ to mimic realistic counting experiment
\rightarrow The fits and the error bands are performed with four different algorithms
\rightarrow Clearly all the methods give the same parent distribution for $f(x)$
\rightarrow This is expected as all the methods

 uses same likelihood

QCD analysis \triangle PDFs and FFs

Polarized PDFs: inclusive polarized DIS

NS, Melnitchouk, Kuhn, Ethier, Accardi (PRD 93,074005)

Inclusion of all the JLab 6 GeV data
Determination of twist $3 g_{2}$
SU3 constraints imposed:
$a_{3}=\Delta u^{+}-\Delta d^{+}$
$a_{8}=\Delta u^{+}+\Delta d^{+}-2 \Delta s^{+}$
\rightarrow DSSV and JAM Δs^{+}is inconsistent

Fragmentation Functions: SIA

NS, Ethier, Melnitchouk, Hirai, Kumano, Accardi (PRD 94, 114004)

\rightarrow IMC in action
$\rightarrow \pi$ and K global data from Belle and Babar up to LEP data at $Q=M_{z}$

\rightarrow JAM and DSS $D_{s^{+}}^{K}$ consistent

The ΔS^{+}puzzle

- Constraints on Δs^{+}
\rightarrow JAM: Δ DIS + SU3
\rightarrow DSSV: Δ DIS + SU3, Δ SIDIS
■ Note
\rightarrow DSSV analysis shows no violation of SU3 due to penalties
\rightarrow In DSSV, FF is extracted independently from SIA, SIDIS and pp data
\rightarrow In JAM negative Δs^{+}comes only from SU3

■ Questions
\rightarrow What controls the sign of Δs^{+}?
\rightarrow What are the actual uncertainties on Δs^{+}?

Combined $\Delta \mathrm{PDF}$ and FF: $\Delta \mathrm{DIS}+\Delta$ SIDIS+SIA

Ethier, NS, Melnitchouk (PRL 119, 132001)

- Setup
\rightarrow Simultaneous extraction of polarized \triangle PDFs and FFs
\rightarrow Data: Δ DIS, Δ SIDIS, SIA
\rightarrow No SU(3) constraints
- Results
\rightarrow Sea polarization consistent with zero
\rightarrow The current precision of Δ SIDIS data is not sufficient to determined the sea polarization
$\rightarrow D_{s^{+}}^{K}$ consistent with SIA only analysis

What determines the sign of Δs^{+}?

- case 1
$\rightarrow \sim 5$ COMPASS d data points at $x<0.002$ favor small $\Delta s^{+}(x)$

case	data	sign change	$\Delta s^{+(1)}\left(Q_{0}^{2}\right)$
1	$\Delta \mathrm{DIS}+\mathrm{SU}(3)$	No	-0.1
2	$\Delta \mathrm{DIS}+\mathrm{SU}(3)(x>0.02)$	Possible	-0.1
3	$\Delta \mathrm{DIS}+\Delta \mathrm{SIDIS}+\mathrm{FF}$	Possible	$-0.03(10)$

\rightarrow To generate $\Delta s^{+(1)}\left(Q_{0}^{2}\right) \sim-0.1$ a peak at $x \sim 0.1$ is generated

- case 2
\rightarrow In the absence of $x<0.002$ data, the negative $\Delta s^{+(1)}\left(Q_{0}^{2}\right) \sim-0.1$ is mostly generated at small x.
\rightarrow No need for negative $\Delta s^{+}(x)$ at
 $x \sim 0.1$
- case 3
$\rightarrow \Delta s^{+}(x \sim 0.1)<0$ disfavored by HERMES $A_{1 d}^{K^{-}}$
\rightarrow Smaller $\Delta s^{+(1)}\left(Q_{0}^{2}\right)$ but larger uncertainties

Updates on the moments

\rightarrow We construct flat priors that gives flat a_{8} in order to have an unbias extraction of a_{8}
\rightarrow Data prefers smaller values for $a_{8} \rightarrow 25 \%$ larger total spin carried by quarks.
$\rightarrow a_{3}$ which is in a good agreement with values from β decays within 2%.
\rightarrow Data indicates possible $\Delta \bar{u}>\Delta \bar{d}$ consistent with measurements of $W^{ \pm}(Z)$ asymmetries from PHENIX and STAR

obs.	JAM15	JAM17
g_{A}	$1.269(3)$	$1.24(4)$
g_{8}	$0.586(31)$	$0.46(21)$
$\Delta \Sigma$	$0.28(4)$	$0.36(9)$
$\Delta \bar{u}-\Delta d$	0	$0.05(8)$

SIDIS+Lattice analysis of nucleon tensor charge

Lin, Melnitchouk, Prokudin, NS, Shows (arXiv:1710.09858)

\rightarrow Extraction of transversity and Collins FFs from SIDIS $A_{U T}+$ Lattice g_{T}
\rightarrow In the absence of Lattice, SIDIS at present has no significant constraints on $g_{T} \rightarrow$ this will change with the upcoming JLab12 measurements

Summary and outlook

- JAM status
\rightarrow Global analysis methodology based on Bayesian perspectives has been studied and implemented.
\rightarrow Provides faithful representation of uncertainties
\rightarrow First simultaneous extraction of \triangle PDF and FF from \triangle DIS, Δ SIDIS and SIA
- Ongoing work
\rightarrow Almost done in implementing inclusive DIS analysis to extract PDFs
\rightarrow Extraction of helicity distributions
■ Future work
\rightarrow Combined (Δ) DIS, (Δ) SIDIS and SIA to extract simultaneously (Δ)PDFs and FFs.
$\rightarrow(\Delta)$ Jets, $(\Delta) W^{ \pm}$from Tevatron and RHIC

