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Outline
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Basic theory aspects of SIDIS

Highlight existing issues of the framework

Highlights recent progress



Semi inclusive deep inelastic scattering (SIDIS)
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incoming lepton lµ

target Pµ

outgoing lepton l′µ

identified hadron pµh

X

identified hadron pµh

incoming lepton lµ

incoming proton Pµ

outgoing lepton l′µ

exchanged photon
q = l − l′

p⊥
h

Lab frame

Breit frame

Process is dominated by
one photon exchange with
large virtuality Q2 � λQCD

In the Breit frame the
proton and the photon has
zero transverse momentum.

The detected hadron has
p⊥h relative to
proton-photon axis

Key question :
How is p⊥h generated at
short distances?



Kinematic regions
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Detected hadron’s rapidity
yh = 1

2 ln
(
p+

h

p−
h

)
Current region p−h � p+

h

Target region p−h � p+
h

Different regions are described
by different theoretical
approximations

The higher the c.o.m
energy, the larger the
separation among the
regions
In this talk I will discuss
mainly the current regionsp⊥

h

yh

Current fragmentation
TMD factorization

Current fragmentation
Collinear factorization

Soft region
????

Target region
Fracture functions



Factorization in the current region
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Full contrubuion Leading regions: Hard
and soft blobs

Kinematic approximations to
separate the soft blobs from
hard blob

Each blob represents all
possible Feynman graphs
with restricted power
counting for their internal
propagators

The soft parts can have a
physical interpretation

→ parton to hadron
fragmentation functions
(FFs)

→ parton in hadron
distribution functions
(PDFs)
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Small transverse momentum

p⊥
h

yh

Current fragmentation
TMD factorization

Current fragmentation
Collinear factorization

Soft region
????

Target region
Fracture functions

⊗

incoming
quark

outgoing
quark

detected
hadron

Large transverse momentum

p⊥
h

yh

Current fragmentation
TMD factorization

Current fragmentation
Collinear factorization

Soft region
????

Target region
Fracture functions

⊗

incoming
quark

outgoing
quark

detected
hadron



Combining large and small p⊥h approximation
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?= ︸ ︷︷ ︸
A

+
︸ ︷︷ ︸

B

A is only optimal for small
p⊥h and its accuracy
degrades for large p⊥h
B is only optimal for large
p⊥h and its accuracy
degrades for small p⊥h
The p⊥h regions where the
accuracy of A and B
degrade, their contributions
needs to be suppressed

The two approximations
necessarily overlaps in
regions where p⊥h is neither
small or large. One needs to
avoid the double counting

The latter two issues are
resolved by using a
substraction method known
as W + Y



The subtraction method W + Y
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SIDIS reaction

l + P → l′ + ph +X

SIDIS invariants

q = l − l′ Q2 = −q2

x = Q2

2P · q z = P · ph
P · q

qT = p⊥h /z

SIDIS cross section

Γ ≡ dσ

dxdQ2dzdqT

The W+Y construction

Γ =Γ
=TTMDΓ + [Γ−TTMDΓ]
= TTMDΓ︸ ︷︷ ︸

W

+ Tcoll [Γ−TTMDΓ]︸ ︷︷ ︸
Y

+O(m2/Q2)Γ

Nomenclature

W ≡ TTMDΓ
FO ≡ TcollΓ
ASY ≡ TcollTTMDΓ
Y ≡ FO−ASY



Example of the subtraction method
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Consider inclusive DIS
(l + P → l′ +X) in scalar diquark
model with

Lint = −λΨ̄Nψqφ+ H.C.

E′
dσ

d3l′
= α2LµνW

µν

2π(s−M2)Q4

Lµν is the leptonic tensor and Wµν

is the hadronic tensor

Wµν =
∑
i

Cµνi Fi
(
x,Q2)

Fi
(
x,Q2) =

∫ d2kT
(2π)2 Fi(x,Q

2, k2
T)

Contributions at lowest order in λ

k

q

P

(A)

k + qq

P

(B)

k

q

P

(C)

Approximations

q

P

k̂

k̃

q

P

t t

q

P

k̂

k̃

q

P

t t

small kT large kT

Moffat, Melnitchouk, Rogers, NS 2017 (PRD.95.096008)



Example of the subtraction method
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Exact and “FO” has an upper kT limit and its singular behavior is
due to the jacobian peak

In contrast “W” and “ASY” has no upper kT limit.

The kT integration of “W” and “ASY” have logaritmic divergence.
They need to be renormalized individually.

“FO” diverges as kT → 0. Its singularity is canceled by “ASY”

A finite F1 is given by F1 =
∫ d2kT

(2π)2 [W−ASY + FO]



Connection with collinear SIDIS
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Collins,Gamberg,
Prokudin, Rogers,
NS, Wang 2016
(PRD94,034014)TMD factorization: designed to be an optimal calculation

point-by-point in qT

dσTMD

dxdQ2dzdqT
≡ Γ = TTMDΓ︸ ︷︷ ︸

W

+ Tcoll [Γ−TTMDΓ]︸ ︷︷ ︸
Y

+O(m2/Q2)Γ

Collinear factorization: designed to describe the qT
integrated cross section

dσcoll

dxdQ2dz
= dσBorn

dxdQ2dz
+ dσVirtual

dxdQ2dz
+ dσReal

dxdQ2dz
− dσCC

dxdQ2dz

Can we relate both formalism? e.g.

dσcoll

dxdQ2dz

?=
∫
dqT

dσTMD

dxdQ2dzdqT∑
q

e2
q f

q
1 (x,Q2)Dh/q(z,Q2) ?=

∫
dqTW (qT )



Connection with collinear SIDIS
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Collins,Gamberg,
Prokudin, Rogers,
NS, Wang 2016
(PRD94,034014)

dσTMD

dxdQ2dzdqT
≡ Γ = H

z2

∫ ∞
0

d2b

(2π)2 e
iqT ·b W̃ (b∗) + Y

W̃ (b∗) ≡ e−Spert(Q,b∗)−Sf1
NP(Q,b)−SD1

NP(Q,b) F̃ (b∗)

F̃ (b∗) =
∑
q

e2
q

(
Ĉf1
q←i ⊗ f i1(x, µb)

) (
ĈD1
j←q ⊗Dh/j(z, µb)

)

b∗(b) =

√
b2

1 + b2/b2
max

Limiting behavior

lim
b→0

b̃∗(b) = 0

lim
b→0

W̃ (b∗) = 0

∫
d2qTW (qT ) =

∫
d2qT

∫
d2b

(2π)2 e
iqT ·bW̃ (b∗)

=
∫
d2b δ(2)(b) W̃ (b∗)

= 0

solution:

bc(b) =
√
b2 + b2

0/(C5Q)2 W̃ (b∗)→ W̃ (bc(b∗))



Does it work?
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0.0 0.5 1.0 1.5 2.0
qT/Q

10−2

10−1

100

101

102

103

FO

COMPASS

dσ
dxdzdQ2dp2T

dσ
dxdQ2

qT/Q

Kinematics
Q2 = 1.92 GeV2

x = 0.0318
z = 0.375

Need order α2
S or beyond?

Soft gluon resummation?
Subleading power corrections?

The unpolarized SIDIS cross
sections needs to be ready
to interpret upcoming TMD
data from JLab 12



order α2
S corrections to FO
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FIG. 4: Cross section as a function of pT , data and cuts as in Figure 3.

however the difference between LO and NLO decreases as pT increases.
The uncertainty due to the choice of a fragmentation functions set is also quite noticeable, this fact driven by the

different gluon content of the two sets considered here. Low Q2 bins seem to prefer KKP set, which have a larger
gluon-fragmentation content, whereas for larger Q2 both sets agree with the data within errors. LO estimates show
a much smaller sensitivity on the choice of fragmentation functions, since gluon fragmentation does not contribute
significantly to the cross section at this order.
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FIG. 5: NLO cross sections as a function of xB . The central (solid) line corresponds to setting the factorization and renormal-
ization scales to (Q2 + p2

T )/2 and the upper and lower (dashed) ones to (Q2 + p2
T )/4 and Q2 + p2

T respectively.

As mentioned, the dependence of the cross section in the choice for the renormalization and factorization scale is

Daleo,et al. (2005)
PRD.71.034013

There are strong indications
that order α2

S corrections are
very important

The seems to give an order of
magnitude of corrections at
small pT

It is possible that the Y term
improves significantly

Unfortunately, codes are not
publicly available



order α2
S corrections to FO
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Gonzalez, Rogers, NS, Wang (2018)

(R-A) (R-B) (R-C) (R-D)

(R-E) (R-F) (R-G) (R-H)

(R-I) (R-J) (R-K)

(V-A) (V-B) (V-C) (V-D)

FIG. 1. Topology of graphs that need to be considered at order αs(Q)2. The last four correspond

to virtual corrections to αs(Q) order graphs.

where Γ ∈ {g, pp} and i, j, k, l ∈ {q, q̄, g}. As before, i and j symbolize the incoming and

fragmenting parton flavors, while k and l label the unobserved parton flavors. The graph is

virtual when only one flavor index appears after the “;”.

So, for example, Hg
qq;gg is represented by Fig. 1(A), when the partonic tensor is contracted

with gµν . Fig. 1(B) includes both Hg
qq;q�q̄� and Hg

qq�;qq̄� contributions where the prime indicates

a different flavor. Note that graphs like Fig. 1(G) give contributions like Hg
qq̄;qq or Hg

qq̄�;q�q.

A major result of this paper is to make available explicit expressions for all the HΓ
ij;kl,

9

We are calculating order α2
S

corrections to the Y term
ourselves

Preliminary calculation of all the
contributions are available
which shows cancellation of all
IR singularities

At present we are checking
carefully the results



Analysis of SIDIS kinematics
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Boglione, Collins, Gamberg, Gonzalez, Rogers, NS
(2017) PLB 766

Can we apply factorization
theorems in SIDIS
measurements?
Factorization demands that

ph · kf = O(m2)
ph · ki = O(Q2)

Define a collinearity parameter

R = (ph · kf )
(ph · ki)

= O(m2/Q2)
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Analysis of SIDIS kinematics
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Beyond W+Y
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l

l′

q

P

k

pq

ps

⋃ ⋃⋃ ⋃ ⋃⋃

QCD event

l

l′

q

P

k

pq

ps

leading region

l

l′

q

P

k

pq

ps

factorization

Factorization theorem (current fragmentation):
dσ/dφ = H ⊗ f ⊗D
Hadrons can also be produced in the mid rapidity region →
see discussion by J. Collins arXiv:1610.09994
String type effects are potentially important



String effects: PLB261 (1991) (OPAL Collaboration)
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3 Jets events: QQ̄ and gluon jets. Jets are projected into a plane
ψ: angle of a given particle relative to the quark jet with the highest
energy
ψA: angle between highest energetic jet and gluon jet
ψC : angle between quark jets
Only events with ψA = ψC are kept
Particle flow asymmetry is observed → evidence of string effects



Summary and outlook
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dσ

dx dy dΨ dz dφh dP
2
hT

= α2

xyQ2
y2

2(1− ε)

(
1 + γ2

2x

) 18∑
i=1

Fi(x, z,Q2, P 2
hT )βi

Fi Standard label βi
F1 FUU,T 1
F2 FUU,L ε

F3 FLL S||λe
√

1− ε2

F4 F
sin(φh+φS)
UT |~S⊥|ε sin(φh + φS)

F5 F
sin(φh−φS)
UT,T |~S⊥|sin(φh − φS)

F6 F
sin(φh−φS)
UT,L |~S⊥|ε sin(φh − φS)

F7 F cos 2φh
UU ε cos(2φh)

F8 F
sin(3φh−ψS)
UT |~S⊥|ε sin(3φh − φS)

F9 F
cos(φh−φS)
LT |~S⊥|λe

√
1− ε2 cos(φh − φS)

F10 F sin 2φh
UL S||ε sin(2φh)

F11 F cosφS
LT |~S⊥|λe

√
2ε(1− ε) cosφS

F12 F cosφh
LL S||λe

√
2ε(1− ε) cosφh

F13 F
cos(2φh−φS)
LT |~S⊥|λe

√
2ε(1− ε) cos(2φh − φS)

F14 F sinφh
UL S||

√
2ε(1 + ε) sinφh

F15 F sinφh
LU λe

√
2ε(1− ε) sinφh

F16 F cosφh
UU

√
2ε(1 + ε) cosφh

F17 F sinφS
UT |~S⊥|

√
2ε(1 + ε) sinφS

F18 F
sin(2φh−φS)
UT |~S⊥|

√
2ε(1 + ε) sin(2φh − φS)

I discussed the current status of
FUU

At present, there is no successful
description of data using W+Y
There are many results where
the success is shown by
restricting the qT range and
avoiding the inclusion of Y
To make use of all the data
from the upcoming JLab 12, we
need to make more progress in
theory to describe all the 18
structure functions


