Theoretical challenges in semi-inclusive DIS

Nobuo Sato
University of Connecticut
Seminar at LBNL LBNL, 2017
$1 / 20$

Outline

- Basic theory aspects of SIDIS

■ Highlight existing issues of the framework

■ Highlights recent progress

Semi inclusive deep inelastic scattering (SIDIS)

Breit frame

- Process is dominated by one photon exchange with large virtuality $Q^{2} \gg \lambda_{\mathrm{QCD}}$
- In the Breit frame the proton and the photon has zero transverse momentum.
- The detected hadron has p_{h}^{\perp} relative to proton-photon axis

■ Key question :
How is p_{h}^{\perp} generated at short distances?

Kinematic regions

- Detected hadron's rapidity
$y_{h}=\frac{1}{2} \ln \left(\frac{p_{h}^{+}}{p_{h}^{-}}\right)$
- Current region $p_{h}^{-} \gg p_{h}^{+}$
- Target region $p_{h}^{-} \ll p_{h}^{+}$

■ Different regions are described by different theoretical approximations

- The higher the c.o.m energy, the larger the separation among the regions
■ In this talk I will discuss $p_{h} \quad$ mainly the current regions

Current fragmentation
Collinear factorization

Current fragmentation TMD factorization	Soft region $? ? ? ?$	Target region Fracture functions
$y h$		

Factorization in the current region

Full contrubuion

Leading regions: Hard and soft blobs

Kinematic approximations to separate the soft blobs from hard blob

- Each blob represents all possible Feynman graphs with restricted power counting for their internal propagators
- The soft parts can have a physical interpretation

\rightarrow parton to hadron fragmentation functions (FFs)

\rightarrow parton in hadron distribution functions (PDFs)

Small transverse momentum

Large transverse momentum

$6 / 20$

Combining large and small p_{h}^{\perp} approximation

- A is only optimal for small p_{h}^{\perp} and its accuracy degrades for large p_{h}^{\perp}
- B is only optimal for large p_{h}^{\perp} and its accuracy degrades for small p_{h}^{\perp}
- The p_{h}^{\perp} regions where the accuracy of \mathbf{A} and \mathbf{B} degrade, their contributions needs to be suppressed
- The two approximations necessarily overlaps in regions where p_{h}^{\perp} is neither small or large. One needs to avoid the double counting
- The latter two issues are resolved by using a substraction method known as $W+Y$

The subtraction method $W+Y$

- SIDIS reaction

$$
l+P \rightarrow l^{\prime}+p_{h}+X
$$

- SIDIS invariants

$$
\begin{array}{ll}
q=l-l^{\prime} & Q^{2}=-q^{2} \\
x=\frac{Q^{2}}{2 P \cdot q} & z=\frac{P \cdot p_{h}}{P \cdot q} \\
q_{T}=p_{h}^{\perp} / z &
\end{array}
$$

- SIDIS cross section

$$
\Gamma \equiv \frac{d \sigma}{d x d Q^{2} d z d q_{T}}
$$

- The $\mathrm{W}+\mathrm{Y}$ construction

$$
\begin{aligned}
\Gamma= & \Gamma \\
= & \mathbf{T}_{\mathrm{TMD}} \Gamma+\left[\Gamma-\mathbf{T}_{\mathrm{TMD}} \Gamma\right] \\
= & \underbrace{\mathbf{T}_{\mathrm{TMD}} \Gamma}_{\mathbf{W}}+\underbrace{\left.\mathbf{T}_{\mathrm{coll}} \Gamma-\mathbf{T}_{\mathrm{TMD}} \Gamma\right]}_{\mathbf{Y}} \\
& +\mathcal{O}\left(m^{2} / Q^{2}\right) \Gamma
\end{aligned}
$$

- Nomenclature

$$
\begin{aligned}
& \mathrm{W} \equiv \mathbf{T}_{\mathrm{TMD}} \Gamma \\
& \mathrm{FO} \equiv \mathrm{~T}_{\mathrm{coll}} \Gamma \\
& \mathrm{ASY} \equiv \mathrm{~T}_{\text {coll }} \mathbf{T}_{\mathrm{TMD}} \Gamma \\
& \mathrm{Y} \equiv \mathrm{FO}-\mathrm{ASY}
\end{aligned}
$$

Example of the subtraction method

Moffat, Melnitchouk, Rogers, NS 2017 (PRD.95.096008)

- Consider inclusive DIS $\left(l+P \rightarrow l^{\prime}+X\right)$ in scalar diquark model with

$$
\begin{aligned}
& \mathcal{L}_{\mathrm{int}}=-\lambda \bar{\Psi}_{N} \psi_{q} \phi+\text { H.C. } \\
& E^{\prime} \frac{d \sigma}{d^{3} l^{\prime}}=\frac{\alpha^{2} L_{\mu \nu} W^{\mu \nu}}{2 \pi\left(s-M^{2}\right) Q^{4}}
\end{aligned}
$$

- $L_{\mu \nu}$ is the leptonic tensor and $W^{\mu \nu}$ is the hadronic tensor

$$
\begin{aligned}
& W^{\mu \nu}=\sum_{i} C_{i}^{\mu \nu} F_{i}\left(x, Q^{2}\right) \\
& F_{i}\left(x, Q^{2}\right)=\int \frac{\mathrm{d}^{2} \boldsymbol{k}_{\mathrm{T}}}{(2 \pi)^{2}} \mathcal{F}_{i}\left(x, Q^{2}, k_{\mathrm{T}}^{2}\right)
\end{aligned}
$$

- Contributions at lowest order in λ

- Approximations

Example of the subtraction method

■ Exact and "FO" has an upper k_{T} limit and its singular behavior is due to the jacobian peak

- In contrast "W" and "ASY" has no upper k_{T} limit.
- The k_{T} integration of "W" and "ASY" have logaritmic divergence. They need to be renormalized individually.
- "FO" diverges as $k_{T} \rightarrow 0$. Its singularity is canceled by "ASY"
- A finite F_{1} is given by $F_{1}=\int \frac{\mathrm{d}^{2} k_{\mathrm{T}}}{(2 \pi)^{2}}[\mathrm{~W}-\mathrm{ASY}+\mathrm{FO}]$

Connection with collinear SIDIS

- TMD factorization: designed to be an optimal calculation point-by-point in q_{T}

$$
\frac{d \sigma^{\mathrm{TMD}}}{d x d Q^{2} d z d q_{T}} \equiv \Gamma=\underbrace{\mathbf{T}_{\mathrm{TMD}} \Gamma}_{\mathbf{W}}+\underbrace{\mathbf{T}_{\text {coll }}\left[\Gamma-\mathbf{T}_{\mathrm{TMD}} \Gamma\right]}_{\mathbf{Y}}+\mathcal{O}\left(m^{2} / Q^{2}\right) \Gamma
$$

- Collinear factorization: designed to describe the q_{T} integrated cross section

$$
\frac{d \sigma^{\text {coll }}}{d x d Q^{2} d z}=\frac{d \sigma^{\text {Born }}}{d x d Q^{2} d z}+\frac{d \sigma^{\text {Virtual }}}{d x d Q^{2} d z}+\frac{d \sigma^{\text {Real }}}{d x d Q^{2} d z}-\frac{d \sigma^{\mathrm{CC}}}{d x d Q^{2} d z}
$$

- Can we relate both formalism? e.g.

$$
\begin{gathered}
\frac{d \sigma^{\mathrm{coll}}}{d x d Q^{2} d z} \stackrel{?}{=} \int d q_{T} \frac{d \sigma^{\mathrm{TMD}}}{d x d Q^{2} d z d q_{T}} \\
\sum_{q} e_{q}^{2} f_{1}^{q}\left(x, Q^{2}\right) D_{h / q}\left(z, Q^{2}\right) \stackrel{?}{=} \int d q_{T} W\left(q_{T}\right)
\end{gathered}
$$

Connection with collinear SIDIS

$$
\begin{aligned}
& \frac{d \sigma^{\mathrm{TMD}}}{d x d Q^{2} d z d q_{T}} \equiv \Gamma=\frac{H}{z^{2}} \int_{0}^{\infty} \frac{d^{2} \boldsymbol{b}}{(2 \pi)^{2}} e^{i \boldsymbol{q}_{T} \cdot \boldsymbol{b}} \widetilde{W}\left(b_{*}\right)+Y \\
& \widetilde{W}\left(b_{*}\right) \equiv e^{-S_{\mathrm{pert}}\left(Q, b_{*}\right)-S_{\mathrm{NP}}^{\mathrm{f}_{1}}(Q, b)-S_{\mathrm{NP}}^{\mathrm{D}_{1}}(Q, b)} \widetilde{F}\left(b_{*}\right) \\
& \begin{aligned}
\widetilde{F}\left(b_{*}\right)=\sum_{q} e_{q}^{2}\left(\hat{C}_{q \leftarrow i}^{\mathrm{f}_{1}} \otimes f_{1}^{i}\left(x, \mu_{b}\right)\right)\left(\hat{C}_{j \leftarrow q}^{\mathrm{D}_{1}} \otimes D_{h / j}\left(z, \mu_{b}\right)\right) \\
b_{*}(b)=\sqrt{\frac{b^{2}}{1+b^{2} / b_{\max }^{2}}} \sqrt{\int d^{2} \boldsymbol{q}_{T} W\left(q_{T}\right)} \begin{aligned}
& =\int d^{2} \boldsymbol{q}_{T} \int \frac{d^{2} \boldsymbol{b}}{(2 \pi)^{2}} e^{i \boldsymbol{q}_{T} \cdot \boldsymbol{b}} \widetilde{W}\left(b_{*}\right) \\
& =\int d^{2} \boldsymbol{b} \delta^{(2)}(\boldsymbol{b}) \widetilde{W}\left(b_{*}\right) \\
& =0
\end{aligned} \\
\begin{aligned}
\sim \text { Limiting behavior } \\
\sim
\end{aligned}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
\lim _{b \rightarrow 0} \widetilde{b}_{*}(b) & =0 \\
\lim _{b \rightarrow 0} \widetilde{W}\left(b_{*}\right) & =0
\end{aligned}
$$

solution:

$$
b_{c}(b)=\sqrt{b^{2}+b_{0}^{2} /\left(C_{5} Q\right)^{2}} \quad \widetilde{W}\left(b_{*}\right) \rightarrow \widetilde{W}\left(b_{c}\left(b_{*}\right)\right)
$$

Does it work?

- Kinematics

$$
\begin{aligned}
& Q^{2}=1.92 \mathrm{GeV}^{2} \\
& x=0.0318 \\
& z=0.375
\end{aligned}
$$

- Need order α_{S}^{2} or beyond?

■ Soft gluon resummation?
■ Subleading power corrections?

The unpolarized SIDIS cross sections needs to be ready to interpret upcoming TMD data from JLab 12

order α_{S}^{2} corrections to FO

- There are strong indications that order α_{S}^{2} corrections are very important
- The seems to give an order of magnitude of corrections at small p_{T}
- It is possible that the Y term improves significantly
- Unfortunately, codes are not publicly available

order α_{S}^{2} corrections to FO

(R-I)

■ We are calculating order α_{S}^{2} corrections to the Y term ourselves

- Preliminary calculation of all the contributions are available which shows cancellation of all IR singularities
- At present we are checking carefully the results

Analysis of SIDIS kinematics

- Can we apply factorization theorems in SIDIS

measurements?

■ Factorization demands that

$$
\begin{aligned}
p_{h} \cdot k_{f} & =\mathcal{O}\left(m^{2}\right) \\
p_{h} \cdot k_{i} & =\mathcal{O}\left(Q^{2}\right)
\end{aligned}
$$

- Define a collinearity parameter

$$
R=\frac{\left(p_{h} \cdot k_{f}\right)}{\left(p_{h} \cdot k_{i}\right)}=\mathcal{O}\left(m^{2} / Q^{2}\right)
$$

Analysis of SIDIS kinematics

Beyond W+Y

$■$ Factorization theorem (current fragmentation):
$d \sigma / d \phi=H \otimes f \otimes D$

- Hadrons can also be produced in the mid rapidity region \rightarrow see discussion by J. Collins arXiv:1610.09994
■ String type effects are potentially important

String effects: PLB261 (1991) (OPAL Collaboration)

(a)

■ 3 Jets events: $Q \bar{Q}$ and gluon jets. Jets are projected into a plane
■ ψ : angle of a given particle relative to the quark jet with the highest energy

- ψ_{A} : angle between highest energetic jet and gluon jet
- ψ_{C} : angle between quark jets

■ Only events with $\psi_{A}=\psi_{C}$ are kept
■ Particle flow asymmetry is observed \rightarrow evidence of string effects

Summary and outlook

$$
\frac{d \sigma}{d x d y d \Psi d z d \phi_{h} d P_{h T}^{2}}=\frac{\alpha^{2}}{x y Q^{2}} \frac{y^{2}}{2(1-\varepsilon)}\left(1+\frac{\gamma^{2}}{2 x}\right) \sum_{i=1}^{18} F_{i}\left(x, z, Q^{2}, P_{h T}^{2}\right) \beta_{i}
$$

F_{i}	Standard label	β_{i}	
F_{1}	$F_{U U, T}$	1	
F_{2}	$F_{U U, L}$	ε	
F_{3}	$F_{L L}$	$S_{\\| \mid} \lambda_{e} \sqrt{1-\varepsilon^{2}}$	
F_{4}	$F_{U T}^{\sin \left(\phi_{h}+\phi_{S}\right)}$	$\left\|\vec{S}_{\perp}\right\| \varepsilon \sin \left(\phi_{h}+\phi_{S}\right)$	
F_{5}	$F_{U T, T}^{\sin \left(\phi_{h}-\phi_{S}\right)}$	$\left\|\vec{S}_{\perp}\right\| \sin \left(\phi_{h}-\phi_{S}\right)$	
F_{6}	$F_{U T, L}^{\sin \left(\phi_{h}-\phi_{S}\right)}$	$\left\|\vec{S}_{\perp}\right\| \varepsilon \sin \left(\phi_{h}-\phi_{S}\right)$	
F_{7}	$F_{U U}^{\cos 2 \phi_{h}}$	$\varepsilon \cos \left(2 \phi_{h}\right)$	
F_{8}	$F_{U T}^{\sin \left(3 \phi_{h}-\psi_{S}\right)}$	$\left\|\vec{S}_{\perp}\right\| \varepsilon \sin \left(3 \phi_{h}-\phi_{S}\right)$	
F_{9}	$F_{L T}^{\cos \left(\phi_{h}-\phi_{S}\right)}$	$\left\|\vec{S}_{\perp}\right\| \lambda_{e} \sqrt{1-\varepsilon^{2}} \cos \left(\phi_{h}-\phi_{S}\right)$	
F_{10}	$F_{U L}^{\sin \phi_{h}}$	$S_{\\|} \varepsilon \sin \left(2 \phi_{h}\right)$	
F_{11}	$F_{L T}^{\cos \phi_{S}}$	$\left\|\vec{S}_{\perp}\right\| \lambda_{e} \sqrt{2 \varepsilon(1-\varepsilon)} \cos \phi_{S}$	
F_{12}	$F_{L L}^{\cos \phi_{h}}$	$S_{\\|} \lambda_{e} \sqrt{2 \varepsilon(1-\varepsilon)} \cos \phi_{h}$	
F_{13}	$F_{L T}^{\cos \left(2 \phi_{h}-\phi_{S}\right)}$	$\left\|\vec{S}_{\perp}\right\| \lambda_{e} \sqrt{2 \varepsilon(1-\varepsilon)} \cos \left(2 \phi_{h}-\phi_{S}\right)$	
F_{14}	$F_{U L}^{\sin \phi_{h}}$	$S_{\\|} \sqrt{2 \varepsilon(1+\varepsilon)} \sin \phi_{h}$	
F_{15}	$F_{L U}^{\sin \phi_{h}}$	$\lambda_{e} \sqrt{2 \varepsilon(1-\varepsilon)} \sin \phi_{h}$	
F_{16}	$F_{U U}^{\cos \phi_{h}}$	$\sqrt{2 \varepsilon(1+\varepsilon)} \cos \phi_{h}$	
F_{17}	$F_{U T}^{\sin \phi_{S}}$	$\left\|\vec{S}_{\perp}\right\| \sqrt{2 \varepsilon(1+\varepsilon)} \sin \phi_{S}$	
F_{18}	$F_{U T}^{\sin \left(2 \phi_{h}-\phi_{S}\right)}$	$\left\|\vec{S}_{\perp}\right\| \sqrt{2 \varepsilon(1+\varepsilon)} \sin \left(2 \phi_{h}-\phi_{S}\right)$	

■ I discussed the current status of $F_{U U}$
■ At present, there is no successful description of data using $\mathrm{W}+\mathrm{Y}$

- There are many results where the success is shown by restricting the q_{T} range and avoiding the inclusion of Y
- To make use of all the data from the upcoming JLab 12, we need to make more progress in theory to describe all the 18 structure functions

