Theoretical challenges in semi-inclusive DIS

Nobuo Sato University of Connecticut Seminar at LBNL LBNL, 2017

Outline

- Basic theory aspects of SIDIS
- Highlight existing issues of the framework
- Highlights recent progress

Semi inclusive deep inelastic scattering (SIDIS)

- Process is dominated by one photon exchange with large virtuality $Q^2 \gg \lambda_{\rm QCD}$
- In the Breit frame the proton and the photon has zero transverse momentum.
- The detected hadron has *p*[⊥]_h relative to proton-photon axis
- Key question : How is p[⊥]_h generated at short distances?

Kinematic regions

- Detected hadron's rapidity $y_h = \frac{1}{2} \ln \left(\frac{p_h^+}{p_h^-} \right)$
- Current region $p_h^- \gg p_h^+$
- \blacksquare Target region $p_h^- \ll p_h^+$
- Different regions are described by different theoretical approximations

- The higher the c.o.m energy, the larger the separation among the regions
- In this talk I will discuss mainly the current regions

Current fragmentation Collinear factorization

Current fragmentation TMD factorization Soft region ????

Target region Fracture functions

 y_h

Factorization in the current region

- Each blob represents all possible Feynman graphs with restricted power counting for their internal propagators
- The soft parts can have a physical interpretation

Small transverse momentum

Large transverse momentum

Combining large and small p_h^{\perp} approximation

- A is only optimal for small p_h^{\perp} and its accuracy degrades for large p_h^{\perp}
- **B** is only optimal for large p_h^{\perp} and its accuracy degrades for small p_h^{\perp}
- The p[⊥]_h regions where the accuracy of A and B degrade, their contributions needs to be suppressed

- The two approximations necessarily overlaps in regions where p[⊥]_h is neither small or large. One needs to avoid the double counting
- The latter two issues are resolved by using a substraction method known as W + Y

The subtraction method W + Y

- SIDIS reaction
 - $l+P \to l'+p_h+X$
- SIDIS invariants

$$q = l - l' \qquad Q^2 = -q^2$$
$$x = \frac{Q^2}{2P \cdot q} \qquad z = \frac{P \cdot p_h}{P \cdot q}$$
$$q_T = p_h^\perp / z$$

SIDIS cross section

$$\Gamma \equiv \frac{d\sigma}{dx dQ^2 dz dq_T}$$

■ The W+Y construction

$$\begin{split} \boldsymbol{\Gamma} = & \boldsymbol{\Gamma} \\ = & \mathbf{T}_{\mathrm{TMD}}\boldsymbol{\Gamma} + [\boldsymbol{\Gamma} - \mathbf{T}_{\mathrm{TMD}}\boldsymbol{\Gamma}] \\ = & \underbrace{\mathbf{T}_{\mathrm{TMD}}\boldsymbol{\Gamma}}_{\mathbf{W}} + \underbrace{\mathbf{T}_{\mathrm{coll}}\left[\boldsymbol{\Gamma} - \mathbf{T}_{\mathrm{TMD}}\boldsymbol{\Gamma}\right]}_{\mathbf{Y}} \\ & + \mathcal{O}(m^2/Q^2)\boldsymbol{\Gamma} \end{split}$$

Nomenclature

 $W \equiv \mathbf{T}_{TMD}\Gamma$ $FO \equiv \mathbf{T}_{coll}\Gamma$ $ASY \equiv \mathbf{T}_{coll}\mathbf{T}_{TMD}\Gamma$ $Y \equiv FO - ASY$

Example of the subtraction method

Moffat, Melnitchouk, Rogers, NS 2017 (PRD.95.096008)

• Consider inclusive DIS $(l+P \rightarrow l'+X)$ in scalar diquark model with

$$\mathcal{L}_{\text{int}} = -\lambda \bar{\Psi}_N \psi_q \phi + \text{H.C.}$$
$$E' \frac{d\sigma}{d^3 l'} = \frac{\alpha^2 L_{\mu\nu} W^{\mu\nu}}{2\pi (s - M^2) Q^4}$$

• $L_{\mu\nu}$ is the leptonic tensor and $W^{\mu\nu}$ is the hadronic tensor

$$\begin{split} W^{\mu\nu} &= \sum_{i} C_{i}^{\mu\nu} F_{i}\left(x,Q^{2}\right) \\ F_{i}\left(x,Q^{2}\right) &= \int \frac{\mathrm{d}^{2}\boldsymbol{k}_{\mathrm{T}}}{(2\pi)^{2}} \,\mathcal{F}_{i}(x,Q^{2},k_{\mathrm{T}}^{2}) \end{split}$$

Contributions at lowest order in λ

Approximations

Example of the subtraction method

• Exact and "FO" has an upper k_T limit and its singular behavior is due to the jacobian peak

- In contrast "W" and "ASY" has no upper k_T limit.
- The k_T integration of "W" and "ASY" have logaritmic divergence. They need to be renormalized individually.
- "FO" diverges as $k_T \rightarrow 0$. Its singularity is canceled by "ASY"

• A finite
$$F_1$$
 is given by $F_1 = \int \frac{d^2 \mathbf{k}_T}{(2\pi)^2} [W - ASY + FO]$

Connection with collinear SIDIS

Collins,Gamberg, Prokudin, Rogers, NS, Wang 2016 (PRD94,034014)

TMD factorization: designed to be an optimal calculation point-by-point in q_T

$$\frac{d\sigma^{\mathrm{TMD}}}{dxdQ^2dzdq_T} \equiv \Gamma = \underbrace{\mathbf{T}_{\mathrm{TMD}}\Gamma}_{\mathbf{W}} + \underbrace{\mathbf{T}_{\mathrm{coll}}\left[\Gamma - \mathbf{T}_{\mathrm{TMD}}\Gamma\right]}_{\mathbf{Y}} + \mathcal{O}(m^2/Q^2)\Gamma$$

■ **Collinear factorization**: designed to describe the *q*_{*T*} integrated cross section

 $\frac{d\sigma^{\rm coll}}{dxdQ^2dz} = \frac{d\sigma^{\rm Born}}{dxdQ^2dz} + \frac{d\sigma^{\rm Virtual}}{dxdQ^2dz} + \frac{d\sigma^{\rm Real}}{dxdQ^2dz} - \frac{d\sigma^{\rm CC}}{dxdQ^2dz}$

Can we relate both formalism? e.g.

$$\frac{d\sigma^{\text{coll}}}{dxdQ^2dz} \stackrel{?}{=} \int dq_T \frac{d\sigma^{\text{TMD}}}{dxdQ^2dzdq_T}$$
$$\sum_q e_q^2 f_1^q(x,Q^2) D_{h/q}(z,Q^2) \stackrel{?}{=} \int dq_T W(q_T)$$

Connection with collinear SIDIS

Collins,Gamberg, Prokudin, Rogers, NS, Wang 2016 (PRD94,034014)

$$\frac{d\sigma^{\text{TMD}}}{dxdQ^2dzdq_T} \equiv \Gamma = \frac{H}{z^2} \int_0^\infty \frac{d^2 \mathbf{b}}{(2\pi)^2} e^{i\mathbf{q}_T \cdot \mathbf{b}} \ \widetilde{W}(\mathbf{b}_*) + \mathbf{Y}$$

 $\widetilde{W}(b_*) \equiv e^{-S_{\rm pert}(Q,b_*) - S_{\rm NP}^{\rm f_1}(Q,b) - S_{\rm NP}^{\rm D_1}(Q,b)} \, \widetilde{F}(b_*)$

$$\begin{split} \widetilde{F}(b_*) &= \sum_q e_q^2 \left(\widehat{C}_{q \leftarrow i}^{\mathbf{f}_1} \otimes f_1^i(x, \mu_b) \right) \left(\widehat{C}_{j \leftarrow q}^{\mathbf{D}_1} \otimes D_{h/j}(z, \mu_b) \right) \\ b_*(b) &= \sqrt{\frac{b^2}{1 + b^2/b_{\max}^2}} \\ \bullet \text{ Limiting behavior} \\ &\lim_{b \to 0} \widetilde{W}(b_*) = 0 \\ &\lim_{b \to 0} \widetilde{W}(b_*) = 0 \end{split} \qquad \begin{aligned} \int d^2 \boldsymbol{q}_T W(q_T) &= \int d^2 \boldsymbol{q}_T \int \frac{d^2 \boldsymbol{b}}{(2\pi)^2} e^{i\boldsymbol{q}_T \cdot \boldsymbol{b}} \widetilde{W}(b_*) \\ &= \int d^2 \boldsymbol{b} \ \delta^{(2)}(\boldsymbol{b}) \ \widetilde{W}(b_*) \\ &= 0 \\ \mathbf{solution:} \\ b_c(b) &= \sqrt{b^2 + b_0^2/(C_5Q)^2} \quad \widetilde{W}(b_*) \to \widetilde{W}(b_c(b_*)) \end{split}$$

Does it work?

Kinematics
 Q² = 1.92 GeV²
 x = 0.0318
 z = 0.375

- Need order α_S^2 or beyond?
- Soft gluon resummation?
- Subleading power corrections?

The unpolarized SIDIS cross sections needs to be ready to interpret upcoming TMD data from JLab 12

order α_S^2 corrections to FO

- There are strong indications that order α²_S corrections are very important
- The seems to give an order of magnitude of corrections at small p_T
- It is possible that the Y term improves significantly
- Unfortunately, codes are not publicly available

Daleo, et al. (2005) PRD.71.034013

order α_S^2 corrections to FO

- We are calculating order α²_S corrections to the Y term ourselves
- Preliminary calculation of all the contributions are available which shows cancellation of all IR singularities
- At present we are checking carefully the results

Analysis of SIDIS kinematics

Boglione, Collins, Gamberg, Gonzalez, Rogers, NS (2017) PLB 766

- Can we apply factorization theorems in SIDIS measurements?
- Factorization demands that

$$p_h \cdot k_f = \mathcal{O}(m^2)$$
$$p_h \cdot k_i = \mathcal{O}(Q^2)$$

Define a collinearity parameter

$$R = \frac{(p_h \cdot k_f)}{(p_h \cdot k_i)} = \mathcal{O}(m^2/Q^2)$$

Analysis of SIDIS kinematics

Beyond W+Y

- Factorization theorem (current fragmentation): $d\sigma/d\phi = H \otimes f \otimes D$
- \blacksquare Hadrons can also be produced in the mid rapidity region \rightarrow see discussion by J. Collins arXiv:1610.09994
- String type effects are potentially important

String effects: PLB261 (1991) (OPAL Collaboration)

- **3** Jets events: $Q\bar{Q}$ and gluon jets. Jets are projected into a plane
- $\psi:$ angle of a given particle relative to the quark jet with the highest energy
- ψ_A : angle between highest energetic jet and gluon jet
- ψ_C : angle between quark jets
- Only events with $\psi_A = \psi_C$ are kept
- Particle flow asymmetry is observed \rightarrow evidence of string effects

Summary and outlook

$$\frac{d\sigma}{dx \, dy \, d\Psi \, dz \, d\phi_h \, dP_{hT}^2} = \frac{\alpha^2}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x}\right) \sum_{i=1}^{18} F_i(x, z, Q^2, P_{hT}^2) \beta_i$$

F_i	Standard label	β_i
F_1	$F_{UU,T}$	1
F_2	$F_{UU,L}$	ε
F_3	F_{LL}	$S_{ }\lambda_e\sqrt{1-\varepsilon^2}$
F_4	$F_{UT}^{\sin(\phi_h + \phi_S)}$	$ \vec{S}_{\perp} \varepsilon \sin(\phi_h + \phi_S)$
F_5	$\frac{F_{UT,T}^{\sin(\phi_h - \phi_S)}}{F_{UT,T}^{\sin(\phi_h - \phi_S)}}$	$ ec{S}_{\perp} \mathrm{sin}(\phi_h - \phi_S)$
F_6	$\frac{F_{UT,L}^{\sin(\phi_h - \phi_S)}}{F_{UU}^{\cos 2\phi_h}}$	$ \vec{S}_{\perp} \varepsilon \sin(\phi_h - \phi_S)$
F_7	$F_{UU}^{\cos 2\phi_h}$	$\varepsilon \cos(2\phi_h)$
F_8	$\frac{F_{UU}^{\cos 2\phi_h}}{F_{UT}^{\sin(3\phi_h-\psi_S)}}$	$ \vec{S}_{\perp} \varepsilon \sin(3\phi_h - \phi_S)$
F_9	$F_{LT}^{\cos(\phi_h - \phi_S)}$	$ \vec{S}_{\perp} \lambda_e\sqrt{1-\varepsilon^2}\cos(\phi_h-\phi_S)$
F_{10}	$F_{UL}^{\sin 2\phi_h}$	$S_{ } \varepsilon \sin(2\phi_h)$
F_{11}	$F_{UL}^{\cos \phi_S}$ $F_{LT}^{\cos \phi_S}$	$ \vec{S}_{\perp} \lambda_e\sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_S$
F_{12}	$\frac{F_{LT}}{F_{LL}^{\cos \phi_h}}$	$S_{ }\lambda_e\sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_h$
F_{13}	$F_{LT}^{\cos(2\phi_h - \phi_S)}$	$ \vec{S}_{\perp} \lambda_e\sqrt{2\varepsilon(1-\varepsilon)}\cos(2\phi_h-\phi_S)$
F_{14}	$F_{UL}^{\sin \phi_h}$ $F_{UL}^{\sin \phi_h}$	$S_{\parallel}\sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_h$
F_{15}	= LU	$\lambda_e \sqrt{2\varepsilon(1-\varepsilon)}\sin\phi_h$
F_{16}	$\frac{F_{UU}^{\cos \phi_h}}{F_{UT}^{\sin \phi_S}}$	$\sqrt{2\varepsilon(1+\varepsilon)} \cos \phi_h$
F_{17}		$ \vec{S}_{\perp} \sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_S$
F_{18}	$F_{UT}^{\sin(2\phi_h - \phi_S)}$	$ \vec{S}_{\perp} \sqrt{2\varepsilon(1+\varepsilon)}\sin(2\phi_h-\phi_S)$

- I discussed the current status of F_{UU}
- At present, there is no successful description of data using W+Y
- There are many results where the success is shown by restricting the q_T range and avoiding the inclusion of Y
- To make use of all the data from the upcoming JLab 12, we need to make more progress in theory to describe all the 18 structure functions