Towards universal QCD global analysis for nucleon structure distributions

Nobuo Sato University of Connecticut Workshop on QCD Structure of Nucleons in the Modern Era, UCLA, Los Angeles, 2017

Physics questions for JLab12

- How does QCD work at energy scales of a few GeV?
- Can we use small coupling techniques?
- Are the factorization theorems valid at such scales?
- How can we model the transition from nonperturbative physics to perturbative physics?

To address these questions we need:

- A solid theoretical framework
- Precise experimental measurements
- Robust data analysis framework

- Test of universality of collinear framework
- Robust data analysis framework is needed
- Collinear distributions are part of the TMD framework

So far...

4 / 34

So far...

Iterative Monte Carlo analysis of spin-dependent parton distributions

Nobuo Sato,¹ W. Melnitchouk,¹ S. E. Kuhn,² J. J. Ethier,³ and A. Accardi^{4,1} (Jefferson Lab Angular Momentum Collaboration)

Iterative Monte Carlo analysis of spin-dependent parton distributions

Nobuo Sato,¹ W. Melnitchouk,¹ S. E. Kuhn,² J. J. Ethier,³ and A. Accardi^{4,1} (Jefferson Lab Angular Momentum Collaboration)

Iterative Monte Carlo analysis of spin-dependent parton distributions

Nobuo Sato,¹ W. Melnitchouk,¹ S. E. Kuhn,² J. J. Ethier,³ and A. Accardi^{4,1} (Jefferson Lab Angular Momentum Collaboration)

Iterative Monte Carlo analysis of spin-dependent parton distributions

Nobuo Sato,¹ W. Melnitchouk,¹ S. E. Kuhn,² J. J. Ethier,³ and A. Accardi^{4,1} (Jefferson Lab Angular Momentum Collaboration)

Data analysis framework:

The goal is to estimate:

$$E[\mathcal{O}] = \int d^{n}a \ \mathcal{P}(\boldsymbol{a}|data) \ \mathcal{O}(\boldsymbol{a})$$
$$V[\mathcal{O}] = \int d^{n}a \ \mathcal{P}(\boldsymbol{a}|data) \ [\mathcal{O}(\boldsymbol{a}) - E[\mathcal{O}]]^{2}$$

- a = (N, a, b, c, d, ...) is a vector of parameters ilic. $f(x, Q_0^2) = Nx^a(1-x)^b P(x)$
- $\mathcal{O}(a)$ is an observable: i.e. PDFs, Δ PDFs, FF, cross sections
- \blacksquare Each flavor increases the number of parameters typically by ~ 5
- The combined PDF, Δ PDF and FF amount to analyzing $30 + 30 + 20 \times 2 \sim 100$ shape parameters

Data analysis framework:

The goal is to estimate:

$$E[\mathcal{O}] = \int d^{n}a \ \mathcal{P}(\boldsymbol{a}|data) \ \mathcal{O}(\boldsymbol{a})$$
$$V[\mathcal{O}] = \int d^{n}a \ \mathcal{P}(\boldsymbol{a}|data) \ [\mathcal{O}(\boldsymbol{a}) - E[\mathcal{O}]]^{2}$$

Maximum Likelihood

Maximize
$$\mathcal{P}(\boldsymbol{a}|data) {
ightarrow} \boldsymbol{a}_0$$

 $\bullet E[\mathcal{O}] \approx \mathcal{O}(\boldsymbol{a}_0)$

• $V[\mathcal{O}] \approx Hessian, \Delta \chi^2 envelope,...$

Data analysis framework:

The goal is to estimate:

$$E[\mathcal{O}] = \int d^{n}a \ \mathcal{P}(\boldsymbol{a}|data) \ \mathcal{O}(\boldsymbol{a})$$
$$V[\mathcal{O}] = \int d^{n}a \ \mathcal{P}(\boldsymbol{a}|data) \ [\mathcal{O}(\boldsymbol{a}) - E[\mathcal{O}]]^{2}$$

Maximum Likelihood

• Maximize $\mathcal{P}(\boldsymbol{a}|data) \rightarrow \boldsymbol{a}_0$

 $\bullet E[\mathcal{O}] \approx \mathcal{O}(\boldsymbol{a}_0)$

Monte Carlo methods

- $\square \mathcal{P}(\boldsymbol{a}|data) \rightarrow \{\boldsymbol{a}_k\}$
- $\operatorname{E}[\mathcal{O}] \approx \frac{1}{N} \sum_{k} \mathcal{O}(\boldsymbol{a}_{k})$
- $V[\mathcal{O}] \approx Hessian, \Delta \chi^2 \text{ envelope,...}$ $V[\mathcal{O}] \approx \frac{1}{N} \sum_k [\mathcal{O}(\boldsymbol{a}_k) E[\mathcal{O}]]^2$

Methodology

Iterative Monte Carlo analysis (IMC)

- Multiple iterations until convergence of posterior distribution
- Keep all the parameters free. No assumptions on the exponents
- Avoid over-fitting by Cross-Validation
- Iterative procedure → Adaptive MC integration (like in Vegas)
- Robust estimation of uncertainties

Fragmentation Functions from SIA data

Technical details

- Use all available e^+e^- data from $Q = 10 \text{ GeV} \rightarrow 91.2 \text{ GeV}$ that includes light and HQ separated samples
- Include recent measurements from Belle and BaBar
- Fit π and K FFs using pQCD @ NLO

$$\frac{1}{\sigma_{\text{TOT}}} \frac{d\sigma^{h^{\pm}}}{dz}(z,Q^2) = \frac{2}{\sigma_{\text{TOT}}} \left[\sum_{q} C_q \otimes D_{q^+}(z,Q^2) + C_g \otimes D_g(z,Q^2) \right]$$

- **ZMVS** with input $Q_0^{u,d,s} = 1$ GeV and $Q_0^{c,b} = m_{c,b}$
- z > 0.05 for high energy data and z > 0.1 for low energy data • Traditional ansatz

•
$$D^{\text{favor}}(z) = T_1(z) + T_2(z)$$

$$D^{\text{unfavor}}(z) = T_1(x)$$

$$T_i(z) = \frac{M_i}{B(1+a_i,1+b_i)} z^{a_i} (1-z)^{b_i}$$

24 kaon parameters and 18 pion parameters

π analysis $(\chi^2/N_{ m pts}=1.31)$

- We use BaBar prompt data set
- Belle data set needs 10% normalization
- Good agreement at low z for inclusive data sets
- Data inconsistencies at large z for $Q^2=M_z^2$

K analysis $(\chi^2/N_{ m pts}=1.01)$

- $z_{cut} > 0.2$ for low energies to avoid hadron mass corrections
- z_{cut} > 0.05 for high energies
- Smaller χ^2 than π due to larger errors
- Consistent shapes across all z
- Inconsistencies mostly due to normalizations

Fragmentation functions

- \blacksquare Similar behavior of unfavored $D^{\pi}_{s^+}$ and $D^{K}_{d^+}$
- In contrast the D_g^{π} and D_g^K behave differently
- The charm and bottom FFs become compatible at largez
- Favored $D_{u^+}^{\pi}$ and $D_{s^+}^{K}$ have similar shape at largez
- JAM D^K_{s+} is more similar to DSS. Will it change the sign of ∆s⁺?

New combined analysis of $\Delta DIS + \Delta SIDS + SIA$

Study of FFs in pythia8+DIRE

String effects: PLB261 (1991) (OPAL Collaboration)

- 3 Jets events: $Q\bar{Q}$ and gluon jets. Jets are projected into a plane
- $\psi:$ angle of a given particle relative to the quark jet with the highest energy
- ψ_A : angle between highest energetic jet and gluon jet
- ψ_C : angle between quark jets
- \blacksquare Only events with $\psi_A=\psi_C$ are kept

String effects: PLB261 (1991) (OPAL Collaboration)

- **3** Jets events: $Q\bar{Q}$ and gluon jets. Jets are projected into a plane
- $\psi:$ angle of a given particle relative to the quark jet with the highest energy
- ψ_A : angle between highest energetic jet and gluon jet
- ψ_C : angle between quark jets
- Only events with $\psi_A = \psi_C$ are kept
- Particle flow asymmetry is observed \rightarrow evidence of string effects

Technical details

Simulate e^+e^- at Q = 30,91.2,1000 GeV flavor by flavor

• Fit π and K FFs using pQCD @ NLO

$$\frac{1}{\sigma_{\text{TOT}}} \frac{d\sigma_q^{h^{\pm}}}{dz}(z, Q^2) = \frac{2}{\sigma_{\text{TOT}}} \left[C_q \otimes D_{q^+}(z, Q^2) + C_g \otimes D_g(z, Q^2) \right]$$

• ZMVS with input
$$Q_0 = 11 \text{GeV}$$

Parametrization: $D_{q^+}(z) = N z^{\alpha} (1-z)^{\beta} (1+c_1 z+c_2 z^2+...)$

Pythia8 vs. collinear factorization (preliminary)

Pythia8 vs. collinear factorization (preliminary)

Pythia8 vs. collinear factorization (preliminary)

Pythia8+DIRE FFs (preliminary)

Pythia8+DIRE FFs (preliminary)

Pythia8+DIRE π FFs and other global analyses

Pythia8+DIRE K FFs and other global analyses

Pythia8+DIRE vs global $e^+e^- \rightarrow \pi + X$

Pythia8+DIRE vs global $e^+e^- \rightarrow K + X$

Beyond 1D distributions...

Intuitive picture

The Breit frame: q = (0, 0, 0, -Q) and $P = (P^0, 0, 0, P_z)$

Small transverse mom. "Intrinsic"

Setup of the calculation

Factorization in TMD observables

$$\Gamma = d\sigma/dq_T q_T = p^h/z$$

$$= \mathbf{T}_{\mathrm{TMD}}\Gamma + [\Gamma - \mathbf{T}_{\mathrm{TMD}}\Gamma]$$

$$= \underbrace{\mathbf{T}_{\mathrm{TMD}}\Gamma}_{\mathbf{W}} + \underbrace{\mathbf{T}_{\mathrm{coll}}[\Gamma - \mathbf{T}_{\mathrm{TMD}}\Gamma]}_{\mathbf{Y}} + \mathcal{O}(m^2/Q^2)\Gamma$$

• Region of $q_T \ll Q$

 $\Gamma = \Gamma$

- TMD approx. dominates $\rightarrow~\Gamma\approx \mathbf{T}_{TMD}\Gamma$
- \mathbf{Y} term small

• Region of $q_T \gtrsim Q$

- Collinear approx. dominates $\rightarrow \ \Gamma \approx \mathbf{T}_{coll} \Gamma$
- At large Q , $\mathbf{T}_{\mathrm{TMD}}\Gamma$ is mostly perturbative

$$W = T_{TMD}\Gamma$$
$$FO = T_{coll}\Gamma$$
$$ASY = T_{coll}T_{TMD}\Gamma$$
$$Y = FO - ASY$$

SIDIS (One of the main programs of JLab12)

Cross section and structure functions

$$\frac{d^5 \sigma(S_{\perp})}{dx_B dQ^2 dz_h d^2 P_{h\perp}} = \sigma_0 \Big[F_{UU} + \sin(\phi_h - \phi_s) \ F_{UT}^{\sin(\phi_h - \phi_s)} \\ + \sin(\phi_h + \phi_s) \ \frac{2(1-y)}{1+(1-y)^2} \ F_{UT}^{\sin(\phi_h + \phi_s)} + \dots \Big]$$

CSS formalism

$$F_{UU} = H_{\text{SIDIS}} \frac{1}{z_h^2} \int_0^\infty \frac{db \, b}{(2\pi)} J_0(q_{h\perp}b) \, \widetilde{W}_{UU}(b_*) + Y_{UU}$$

$$F_{UT}^{\sin(\phi_h - \phi_s)} = -H_{\text{SIDIS}} \frac{M_P}{z_h^2} \int_0^\infty \frac{db \, b^2}{(2\pi)} J_1(q_{h\perp}b) \, \widetilde{W}_{UT}^{\sin(\phi_h - \phi_s)}(b_*) + Y_{UT}^{\sin(\phi_h - \phi_s)}$$

$$F_{UT}^{\sin(\phi_h + \phi_s)} = H_{\text{SIDIS}} \frac{M_h}{z_h^2} \int_0^\infty \frac{db \, b^2}{(2\pi)} J_1(q_{h\perp}b) \, \widetilde{W}_{UT}^{\sin(\phi_h + \phi_s)}(b_*) + Y_{UT}^{\sin(\phi_h + \phi_s)}$$

SIDIS: small transverse momentum

• W term formulation in b_T space

$$\begin{split} \widetilde{W}_{UU}(b_{*}) &\equiv e^{-S_{pert}(Q,b_{*}) - S_{\rm NP}^{\rm f1}(Q,b) - S_{\rm NP}^{\rm D1}(Q,b)} \, \widetilde{F}_{UU}(b_{*}) \\ \widetilde{W}_{UT}^{\sin(\phi_{h} - \phi_{s})}(b_{*}) &\equiv e^{-S_{pert}(Q,b_{*}) - S_{\rm NP}^{\rm f1}(Q,b) - S_{\rm NP}^{\rm D1}(Q,b)} \, \widetilde{F}_{UT}^{\sin(\phi_{h} - \phi_{s})}(b_{*}) \\ \widetilde{W}_{UT}^{\sin(\phi_{h} + \phi_{s})}(b_{*}) &\equiv e^{-S_{pert}(Q,b_{*}) - S_{\rm NP}^{\rm h1}(Q,b) - S_{\rm NP}^{\rm H1}(Q,b)} \, \widetilde{F}_{UT}^{\sin(\phi_{h} + \phi_{s})}(b_{*}) \end{split}$$

Small b_T contribution

$$\widetilde{F}_{UU}(b_*) = \sum_q e_q^2 \left(C_{q \leftarrow i}^{f_1} \otimes f_1^i(x_B, \mu_b) \right) \left(\hat{C}_{j \leftarrow q}^{D_1} \otimes D_{h/j}(z_h, \mu_b) \right)$$
$$\widetilde{F}_{UT}^{\sin(\phi_h - \phi_s)}(b_*) = \sum_q e_q^2 \left(C_{q \leftarrow i}^{f_{1T}^\perp} \otimes f_{1T}^{\perp(1)i}(x_B, \mu_b) \right) \left(\hat{C}_{j \leftarrow q}^{D_1} \otimes D_{h/j}(z_h, \mu_b) \right)$$
$$\widetilde{F}_{UT}^{\sin(\phi_h + \phi_s)}(b_*) = \sum_q e_q^2 \left(\delta C_{q \leftarrow i}^{h_1} \otimes h_1^i(x_B, \mu_b) \right) \left(\delta \hat{C}_{j \leftarrow q}^{H_1^\perp} \otimes \hat{H}_1^{\perp(1)j}(z_h, \mu_b) \right)$$

Collinear distribution are important in TMDs

Does it work?

Kinematics $Q^2 = 1.92 \text{ GeV}^2$ x = 0.0318z = 0.375

- Threshold resummation?
- Subleading power corrections?

The unpolarized SIDIS cross sections needs to be ready to interpret upcoming TMD data from JLab 12

SIDIS kinematics analysis Boglione et al (PLB.2017.01.02)

- Can we apply factorization theorems in SIDIS measurements?
- Factorization demands that

$$p_h \cdot k_f = \mathcal{O}(m^2)$$
$$p_h \cdot k_i = \mathcal{O}(Q^2)$$

Define a collinearity parameter

$$R = \frac{(p_h \cdot k_f)}{(p_h \cdot k_i)} = \mathcal{O}(m^2/Q^2)$$

SIDIS kinematics analysis

Summary and outlook

• The collinear master plan:

- New MC fitting methodology
- Combine polarized PDFs and FF analysis \rightarrow sign of ΔS puzzle
- The baseline PDFs, FFs for TMD studies

Open questions:

- Do we understand the shapes of FFs? Especially the gluon FF?
- What governs the low-z FFs?
- Can we trust in the collinear framework for SIDIS at low energies?
- Are the SIDIS measurements in the current region?

MCEG for SIDIS:(new directions)

- Pythia8 validation of Hermes multiplicities
- Extraction of FFs from Pythia8: test of DGLAP and Pythia8's parton shower

Spin PDFs from polarized DIS

Global polarized DIS data

Asymmetries

$$A_{||} = \frac{\sigma^{\uparrow \Downarrow} - \sigma^{\downarrow \Downarrow}}{\sigma^{\uparrow \Downarrow} + \sigma^{\downarrow \Downarrow}} = D(A_1 + \eta A_2)$$

$$A_{\perp} = \frac{\sigma^{\uparrow \Rightarrow} - \sigma^{\downarrow \Rightarrow}}{\sigma^{\uparrow \Rightarrow} + \sigma^{\downarrow \Rightarrow}} = d(A_2 - \xi A_1)$$

$$A_1 = \frac{(g_1 - \gamma^2 g_2)}{F_1} \qquad A_2 = \gamma \frac{(g_1 + g_2)}{F_1} \qquad \gamma^2 = \frac{4M^2 x^2}{Q^2}$$

Polarized structure functions

 $g_1(x,Q^2) = g_1^{\text{LT+TMC}}(\Delta u^+, \Delta d^+, \Delta g, \dots) + g_1^{\text{T3+TMC}}(D_u, D_d) + g_1^{\text{T4}}(H_{p,n})$ $g_2(x,Q^2) = g_2^{\text{LT+TMC}}(\Delta u^+, \Delta d^+, \Delta g, \dots) + g_2^{\text{T3+TMC}}(D_u, D_d)$

Leading twist structure functions:

$$\begin{split} g_1^{\text{LT}+\text{TMC}}(x,Q^2) = & \frac{x}{\xi} \frac{g_1^{\text{LT}}(\xi)}{(1+4\mu^2 x^2)^{3/2}} + 4\mu^2 x^2 \frac{x+\xi}{\xi(1+4\mu^2 x^2)^2} \int_{\xi}^{1} \frac{dz}{z} g_1^{\text{LT}}(z) \\ & -4\mu^2 x^2 \frac{2-4\mu^2 x^2}{2(1+4\mu^2 x^2)^{5/2}} \int_{\xi}^{1} \frac{dz}{z} \int_{z'}^{1} \frac{dz'}{z'} g_1^{\text{LT}}(z') \\ g_2^{\text{LT}+\text{TMC}}(x,Q^2) = & -\frac{x}{\xi} \frac{g_1^{\text{LT}}(\xi)}{(1+4\mu^2 x^2)^{3/2}} + \frac{x}{\xi} \frac{(1-4\mu^2 x\xi)}{(1+4\mu^2 x^2)^2} \int_{\xi}^{1} \frac{dz}{z} g_1^{\text{LT}}(z) \\ & + \frac{3}{2} \frac{4\mu^2 x^2}{(1+4\mu^2 x^2)^{5/2}} \int_{\xi}^{1} \frac{dz}{z} \int_{z'}^{1} \frac{dz'}{z'} g_1^{\text{LT}}(z') \end{split}$$

Leading twist quark distributions:

$$g_1^{ ext{LT}}(x) = rac{1}{2} \sum_q e_q^2 \left[\Delta C_{qq} \otimes \Delta q(x) + \Delta C_{qg} \otimes \Delta g(x)
ight]$$

Twist-3 structure functions:

$$g_1^{\text{T3+TMC}}(x,Q^2) = 4\mu^2 x^2 \frac{D(\xi)}{(1+4\mu^2 x^2)^{3/2}} - 4\mu^2 x^2 \frac{3}{(1+4\mu^2 x^2)^2} \int_{\xi}^{1} \frac{dz}{z} D(z)$$
$$+ 4\mu^2 x^2 \frac{2-4\mu^2 x^2}{(1+4\mu^2 x^2)^{5/2}} \int_{\xi}^{1} \frac{dz}{z} \int_{z'}^{1} \frac{dz'}{z'} D(z')$$
$$g_2^{\text{T3+TMC}}(x,Q^2) = \frac{D(\xi)}{(1+4\mu^2 x^2)^{3/2}} - \frac{1-8\mu^2 x^2}{(1+4\mu^2 x^2)^2} \int_{\xi}^{1} \frac{dz}{z} D(z)$$
$$- \frac{12\mu^2 x^2}{(1+4\mu^2 x^2)^{5/2}} \int_{\xi}^{1} \frac{dz}{z} \int_{z'}^{1} \frac{dz'}{z'} D(z')$$

Twist-3 quark distributions:

$$D(x,Q^2) = \frac{4}{9}D_u(x,Q^2) + \frac{1}{9}D_d(x,Q^2)$$

Twist-4 structure function (Nucleon d.o.f.):

$$g_1^{\mathrm{T4}(p,n)}(x,Q^2) = H^{(p,n)}(x)/Q^2$$

Nuclear corrections: \rightarrow nuclear smearing functions

$$g_i^A(x,Q^2) = \sum_N \int \frac{dy}{y} f_{ij}^N(y,\gamma) g_j^N(x/y,Q^2)$$

 $\mbox{Addition constraints:} \rightarrow$ weak neutron and hyperon decay constants

•
$$\Delta u^{+(1)} - \Delta d^{+(1)} = F + D = 1.269(3)$$

• $\Delta u^{+(1)} + \Delta d^{+(1)} - 2\Delta s^{+(1)} = 3F - D = 0.586(31)$

Data vs theory: proton

Data vs theory: proton

Data vs theory: proton JLab eg1-dvcs

Data vs theory: proton JLab eg1b

Data vs theory: ³He

Results

moment	truncated	full
Δu^+	0.82 ± 0.01	0.83 ± 0.01
Δd^+	-0.42 ± 0.01	-0.44 ± 0.01
Δs^+	-0.10 ± 0.01	-0.10 ± 0.01
$\Delta\Sigma$	0.31 ± 0.03	0.28 ± 0.04
ΔG	0.5 ± 0.4	1 ± 15
d_2^p	0.022 ± 0.008	0.022 ± 0.003
d_2^n	-0.004 ± 0.004	-0.004 ± 0.004
h_p	-0.000 ± 0.001	0.000 ± 0.002
h_n	0.001 ± 0.002	0.001 ± 0.003

$$\quad \quad \mathbf{\chi}^2/N_{npts} = 1.07$$

- Sign of τ₃ distributions is the same as τ₂
- Negative ∆s⁺
- ∆g compatible with the most recent DSSV fits
- Moment of Δg not constrained