Theory Seminar at Hadron and Nuclear Physics Group, KEK, Tsukuba, Japan August 31, 2017

Explore hadron structure using the first principle lattice QCD calculations

Jianwei Qiu
Theory Center, Jefferson Lab

Based on work done with

T. Ishikawa, Y.-Q. Ma, K. Orginos, S. Yoshida, ...
and work by many others, ...

Outline of the rest of my talk

☐ Hadron structure in QCD How to quantify it, extract it, and/or calculate it? QCD factorization Approximation – a controllable approximation QCD global analyses From cross sections to hadron's partonic structure □ "Lattice cross sections" – single hadron matrix elements Calculable in lattice QCD Factorizable into PDFs, TMDs, GPDs, ... □ Case studies Quasi-PDFs, current-current correlation, ... □ Summary and outlook

Hadron structure in QCD

■ What do we need to know for the structure?

 \Rightarrow In theory: $\langle P, S | \mathcal{O}(\overline{\psi}, \psi, A^{\mu}) | P, S \rangle$ – Hadronic matrix elements

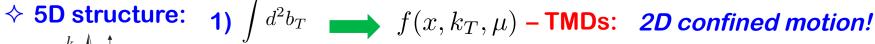
with all possible operators: $\mathcal{O}(\overline{\psi}, \psi, A^{\mu})$

♦ In practice: Accessible hadron structure

= hadron matrix elements of quarks and gluons, which

- 1) can be related to physical cross sections of hadrons and leptons with controllable approximation; and/or
- 2) can be calculated in lattice QCD

Single-parton structure "seen" by a short-distance probe:



2)
$$\int d^2k_T \longrightarrow F(x, b_T, \mu)$$
 – GPDs: 2D spatial imaging!

3)
$$\int d^2k_T d^2b_T$$
 \longrightarrow $f(x,\mu)$ -PDFs: Number density!

Hadron structure in QCD

■ What do we need to know for the structure?

 \Rightarrow In theory: $\langle P, S | \mathcal{O}(\overline{\psi}, \psi, A^{\mu}) | P, S \rangle$ – Hadronic matrix elements

with all possible operators: $\mathcal{O}(\overline{\psi},\psi,A^{\mu})$

observable in QCD – color confinement!

♦ In practice: Accessible hadron structure

= hadron matrix elements of quarks and gluons, which

- 1) can be related to physical cross sections of hadrons and leptons with controllable approximation; and/or
- 2) can be calculated in lattice QCD

■ Multi-parton correlations:

Quantum interference

3-parton matrix element – not a probability!

Unprecedented Intellectual Challenge!

☐ Facts:

Gluons are dark!

No modern detector has been able to see quarks and gluons in isolation!

☐ The challenge:

How to probe the quark-gluon dynamics, quantify the hadron structure, study the emergence of hadrons, ..., if we cannot see quarks and gluons?

☐ Answer to the challenge:

Theory advances:

QCD factorization – matching the quarks/gluons to hadrons with controllable approximations!

Experimental breakthroughs:

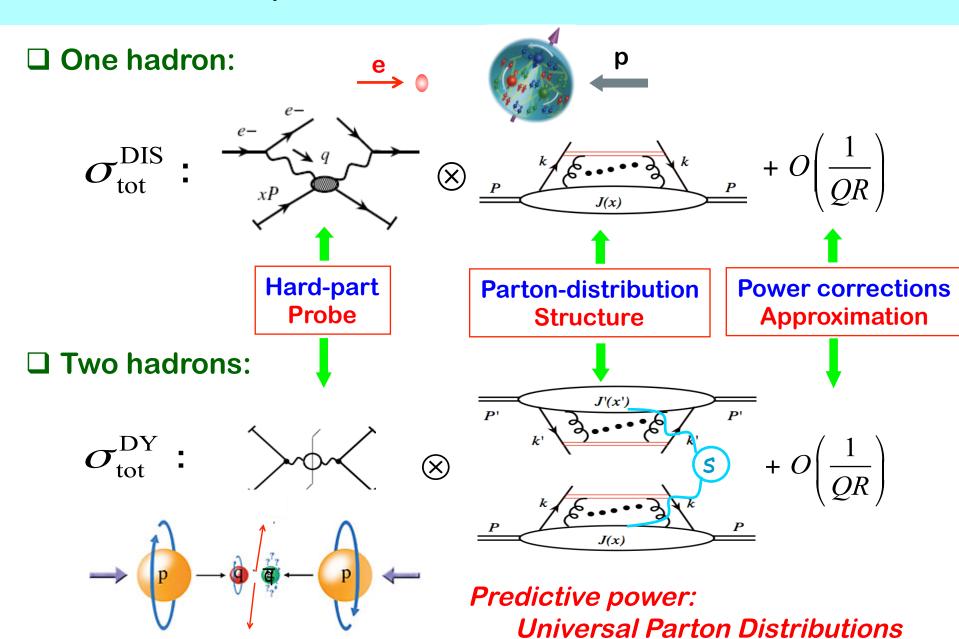
Jets – Footprints of energetic quarks and gluons

Quarks - Need an EM probe to "see" their existence, ...

Gluons - Varying the probe's resolution to "see" their effect, ...

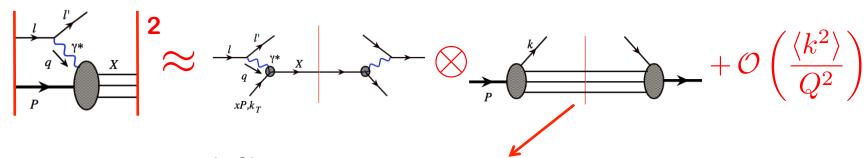
Energy, luminosity and measurement – Unprecedented resolution, event rates, and precision probes, especially EM probes – EIC, ...

Hard probe and QCD factorization



Operator definition of PDFs

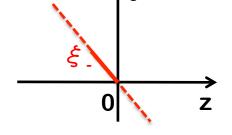
□ Definition – from QCD factorization:



$$\Phi^{[U]}(x;P,\mu) = \int \frac{d\xi^-}{(2\pi)} \, e^{i\,k\cdot\xi} \, \langle P|\overline{\psi}(0)U(0,\xi)\psi(\xi)|P\rangle_{\xi^+=0,\vec{\xi}_T=0} + \underset{\mathbf{A}\mathbf{t}}{\mathrm{UVCT}}(\mu)$$

Depends on the choice of the gauge link:

$$U(0,\xi) = e^{-ig\int_0^{\xi} ds^{\mu} A_{\mu}}$$

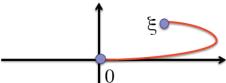


PDFs are not direct physical observables, but, well defined in QCD

☐ Transverse momentum dependent PDFs (TMDs):

$$\Phi^{[U]}(x, k_T; P, \mu) = \int \frac{d\xi^- d^2 \xi_T}{(2\pi)^3} e^{i k \cdot \xi} \langle P | \overline{\psi}(0) U(0, \xi) \psi(\xi) | P \rangle_{\xi^+ = 0} + \text{UVCT}(\mu)$$

♦ General gauge link:



Global QCD analyses – a successful story

■ World data with "Q" > 2 GeV

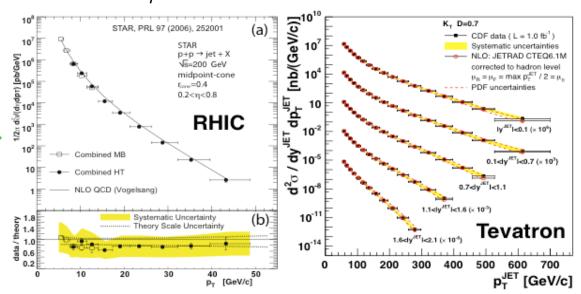
+ Factorization:

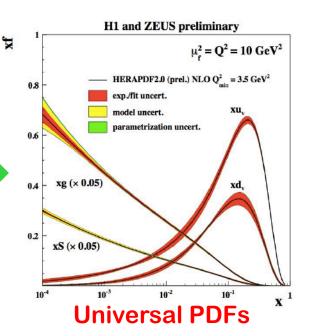
DIS:
$$F_2(x_B, Q^2) = \sum_f C_f(x_B/x, \mu^2/Q^2) \otimes f(x, \mu^2)$$

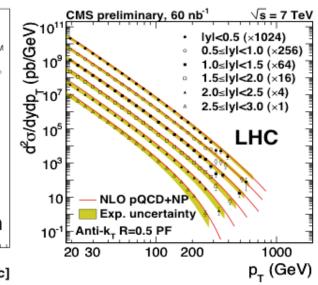
H-H:
$$\frac{d\sigma}{dydp_T^2} = \Sigma_{ff'}f(x) \otimes \frac{d\hat{\sigma}_{ff'}}{dydp_T^2} \otimes f'(x')$$

+ DGLAP Evolution:

$$\frac{\partial f(x,\mu^2)}{\partial \ln \mu^2} = \sum_{f'} P_{ff'}(x/x') \otimes f'(x',\mu^2)$$







Global QCD analyses – a successful story

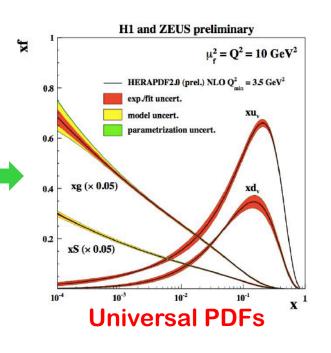
- ☐ World data with "Q" > 2 GeV
 - + Factorization:

DIS:
$$F_2(x_B, Q^2) = \sum_f C_f(x_B/x, \mu^2/Q^2) \otimes f(x, \mu^2)$$

H-H:
$$\frac{d\sigma}{dydp_T^2} = \Sigma_{ff'}f(x) \otimes \frac{d\hat{\sigma}_{ff'}}{dydp_T^2} \otimes f'(x')$$

+ DGLAP Evolution:

$$\frac{\partial f(x,\mu^2)}{\partial \ln \mu^2} = \Sigma_{f'} P_{ff'}(x/x') \otimes f'(x',\mu^2)$$



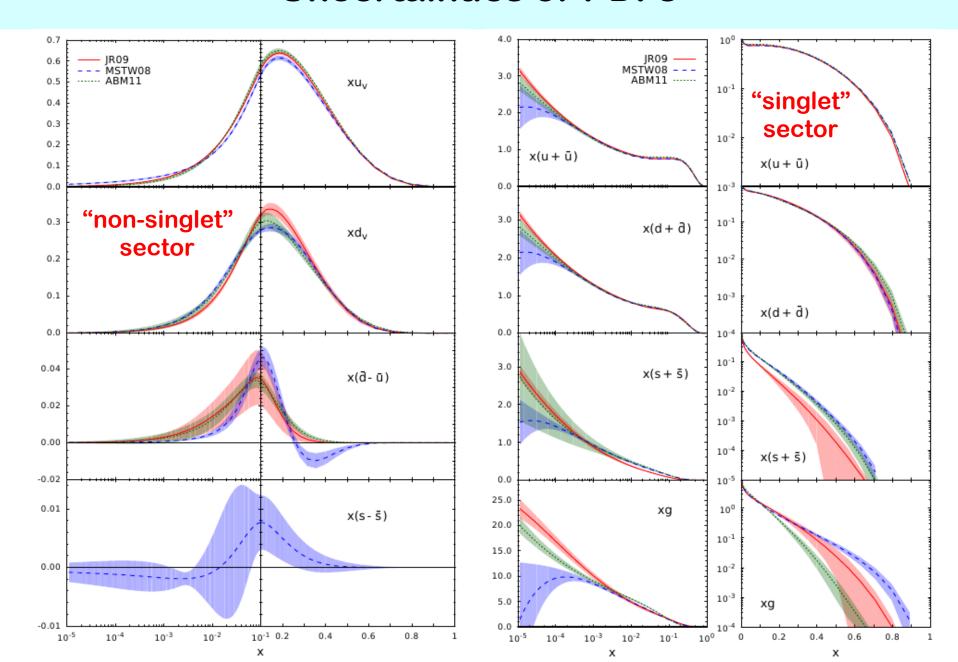
□ The "BIG" question(s)

Why these PDFs behave as what have been extracted from the fits?

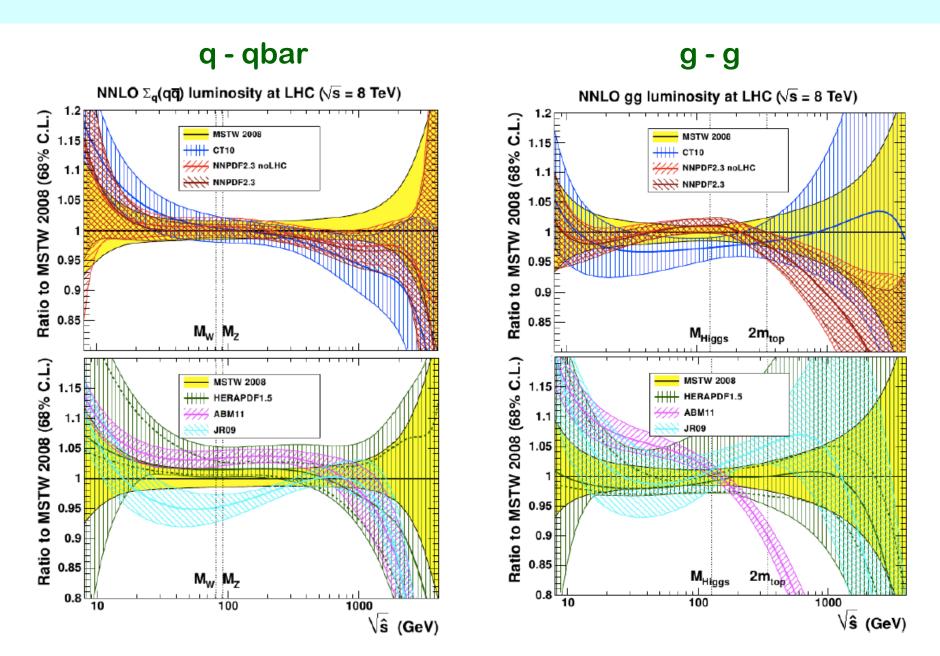
What have been tested is the evolution from μ_1 to μ_2 But, does not explain why they have the shape to start with!

Can QCD calculate and predict the shape of PDFs at the input scale, and other parton correlation functions?

Uncertainties of PDFs



Partonic luminosities



PDFs at large x

\square Testing ground for hadron structure at $x \rightarrow 1$:

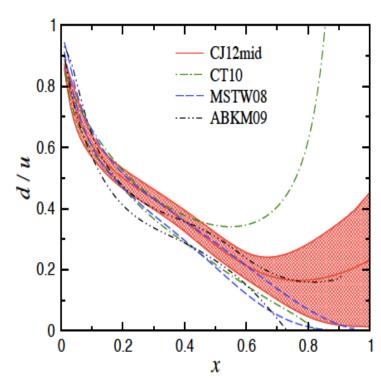
$$\Rightarrow d/u \rightarrow 1/2$$

$$\Rightarrow d/u \rightarrow 0$$

$$\Rightarrow d/u \rightarrow 1/5$$

$$\Rightarrow \ d/u \to \frac{4\mu_n^2/\mu_p^2-1}{4-\mu_n^2/\mu_p^2} \ \ \begin{array}{c} \text{Local quark-hadron} \\ \text{duality} \end{array}$$

$$\approx \ 0.42$$



PDFs at large x

 \square Testing ground for hadron structure at $\times \rightarrow 1$:

$$d/u \rightarrow 1/2$$

$$\Rightarrow d/u \rightarrow 0$$

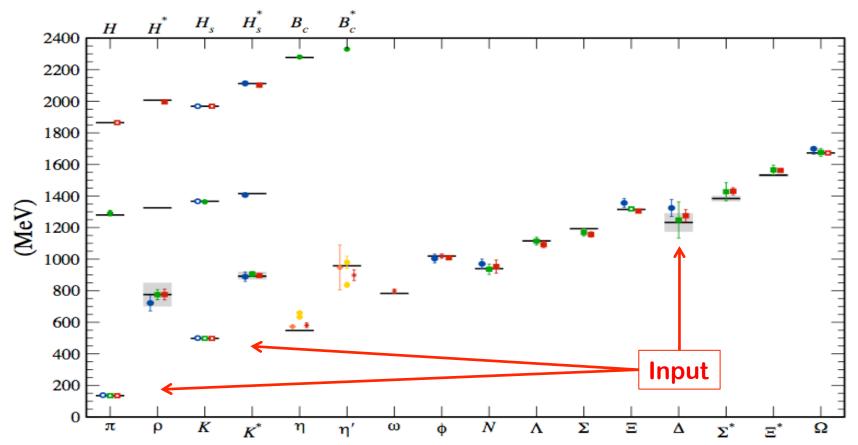
$$d/u \rightarrow 1/5$$

Can lattice QCD help?

Lattice QCD

☐ Hadron masses:

Predictions with limited inputs



 \Box Lattice "time" is Euclidean: $\tau = i t$

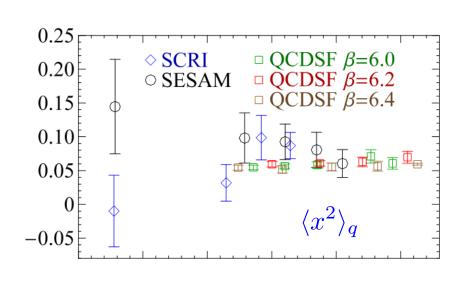
Cannot calculate PDFs, TMDs, ..., directly, whose operators are time-dependent

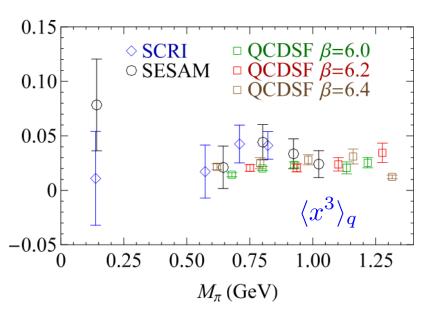
PDFs from lattice QCD

Moments of PDFs – matrix elements of local operators

$$\langle x^n(\mu^2) \rangle_q \equiv \int_0^1 dx \, x^n \, q(x, \mu^2)$$

■ Works, but, hard and limited moments:





Dolgov et al., hep-lat/0201021

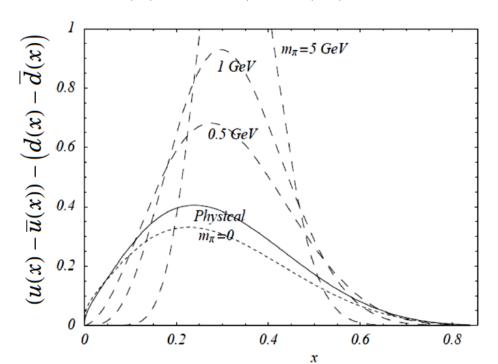
Gockeler et al., hep-ph/0410187

Limited moments – hard to get the full x-dependent distributions!

PDFs from lattice QCD

- □ How to get x-dependent PDFs with a limited moments?
 - ♦ Assume a smooth functional form with some parameters
 - **♦ Fix the parameters with the lattice calculated moments**

$$xq(x) = a x^b (1 - x)^c (1 + \epsilon \sqrt{x} + \gamma x)$$



W. Dermold et al., Eur.Phys.J.direct C3 (2001) 1-15

Cannot distinguish valence quark contribution from sea quarks

From quasi-PDFs to PDFs (Ji's idea)

☐ "Quasi" quark distribution (spin-averaged):

Ji, arXiv:1305.1539

$$\tilde{q}(x,\mu^{2},P_{z}) \equiv \int \frac{d\xi_{z}}{4\pi} e^{-ixP_{z}\xi_{z}} \langle P|\overline{\psi}(\xi_{z})\gamma_{z} \exp\left\{-ig\int_{0}^{\xi_{z}} d\eta_{z}A_{z}(\eta_{z})\right\} \psi(0)|P\rangle + \text{UVCT}(\mu^{2})$$
Proposed matching:
$$\tilde{\xi}_{z}$$

$$\tilde{q}(x,\mu^2,P_z) = \int_x^1 \frac{dy}{y} Z\left(\frac{x}{y},\frac{\mu}{P_z}\right) q(y,\mu^2) + \mathcal{O}\left(\frac{\Lambda^2}{P_z^2},\frac{M^2}{P_z^2}\right) \qquad \qquad \mathbf{Z}$$

- Size of O(1/P₂²) terms, non-perturbative subtraction of power divergence
- Mixing with lower dimension operators cannot be treated perturbatively, ...

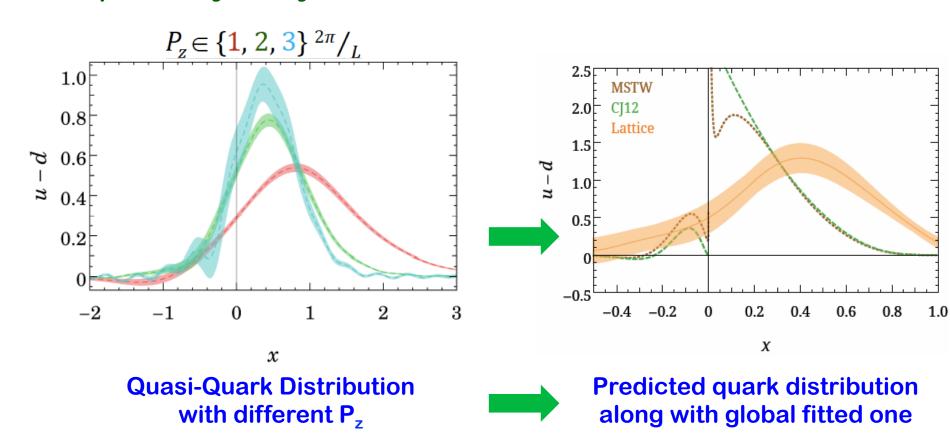
Features:

- Quark fields separated along the z-direction not boost invariant!
- Perturbatively UV power divergent: $\propto (\mu/P_z)^n$ with n>0 renormalizable?
- Quasi-PDFs could be calculated using standard lattice method
- Quasi-PDFs \rightarrow Normal PDFs when $P_{\tau} \rightarrow \infty$?

Lattice calculation of quasi-PDFs

Lin *et al.*, arXiv:1402.1462

☐ Exploratory study:



Matching – taking into account:

Target mass: $(M_N/P_z)^2$ High twist: $a+b/P_z^2$

"Quasi-PDFs" have no parton interpretation

■ Normal PDFs conserve parton momentum:

$$M = \sum_{q} \left[\int_{0}^{1} dx \, x f_{q}(x) + \int_{0}^{1} dx \, x f_{\bar{q}}(x) \right] + \int_{0}^{1} dx \, x f_{g}(x)$$

$$= \sum_{q} \int_{-\infty}^{\infty} dx \, x f_{q}(x) + \frac{1}{2} \int_{-\infty}^{\infty} dx \, x f_{g}(x)$$

$$= \frac{1}{2(P^{+})^{2}} \langle P | T^{++}(0) | P \rangle = \text{constant}$$
Energy-momentum tensor

☐ "Quasi-PDFs" do not conserve "parton" momentum:

$$\widetilde{\mathcal{M}} = \sum_{q} \left[\int_{0}^{\infty} d\tilde{x} \, \tilde{x} \tilde{f}_{q}(\tilde{x}) + \int_{0}^{\infty} d\tilde{x} \, \tilde{x} \tilde{f}_{\bar{q}}(\tilde{x}) \right] + \int_{0}^{\infty} d\tilde{x} \, \tilde{x} \tilde{f}_{g}(\tilde{x})$$

$$= \sum_{q} \int_{-\infty}^{\infty} d\tilde{x} \, \tilde{x} \tilde{f}_{q}(\tilde{x}) + \frac{1}{2} \int_{-\infty}^{\infty} d\tilde{x} \, \tilde{x} \tilde{f}_{g}(\tilde{x})$$

$$= \frac{1}{2(P_{z})^{2}} \langle P | \left[T^{zz}(0) - g^{zz}(...) \right] | P \rangle \neq \text{constant}$$

Note: "Quasi-PDFs" are not boost invariant

Our observation

☐ Quasi-PDFs are NOT defined by "twist-2" operators:

$$\tilde{q}(x,\mu^2,P_z) \equiv \int \frac{d\xi_z}{4\pi} e^{-ixP_z\xi_z} \langle P|\overline{\psi}(\xi_z)\gamma_z \exp\left\{-ig\int_0^{\xi_z} d\eta_z A_z(\eta_z)\right\} \psi(0)|P\rangle + \text{UVCT}(\mu^2)$$

They have power UV divergence! Twist = Dimension - Spin

☐ Renormalization scale dependence does not obey DGLAP:

$$\mu^2 \frac{d}{d\mu^2} \widetilde{q}(x, \mu^2, P_z) \neq \text{DGLAP}$$

- Questions to ask:
 - ♦ Is the operators defining quasi-PDFs renormalizable continuum limit?
 - ♦ Does the renormalization mix with other operators? within a close set?
 - ♦ Does renormalized quasi-PDFs and PDFs share the same CO properties?
 - ♦ Reliability to extract PDFs from the renormalized quasi-PDFs?
 - **♦ Lattice calculation: nonperturbative renormalization?**
 - **♦ ...?**
- ☐ Extract hadron structure beyond quasi-DPFs?

Our observation

☐ Facts:

- ♦ PDFs are time-independent, so as the factorized cross sections!
- ♦ The operators, defining PDFs, located on the light-cone is a consequence of the approximation defining the twist-2 factorization

More precisely, the collinear approximation

□ Our idea:

- ♦ NOT try to calculate PDFs directly from lattice QCD calculations
- Identify a set of time-independent (fixed or integrated over time) and good single hadron matrix elements:
 - Calculable in lattice QCD
 - Factorizable to PDFs with calculable coefficients with controllable approximations

Call these matrix elements as "lattice cross sections (LCS)"

♦ Derive PDFs from Global Analysis of "data" on lattice cross sections Just like what we do now to extract PDFs from experimental data

Our proposal

Ma and Qiu, 2014, 2017

☐ Lattice cross sections – definition:

$$\sigma_n(\xi^2, \omega, P^2) = \langle P | T \{ \mathcal{O}_n(\xi) \} | P \rangle$$

$$\omega = P \cdot \xi$$

where the operator is defined as

$$\mathcal{O}_{j_1 j_2}(\xi) \equiv \xi^{d_{j_1} + d_{j_2} - 2} Z_{j_1}^{-1} Z_{j_2}^{-1} j_1(\xi) j_2(0)$$

with

 d_i : Dimension of the current

 Z_i : Renormalization constant of the current

☐ Lattice cross sections – requirements:

- \diamond has a well-defined continuum limit as the lattice spacing, $\,a \to 0\,$ and
- ♦ has the same and factorizable logarithmic CO divergences as PDFs

☐ Lattice cross sections – two-current correlations:

$$\begin{split} j_S(\xi) &= \xi^2 Z_S^{-1}[\overline{\psi}_q \psi_q](\xi), & j_V(\xi) &= \xi Z_V^{-1}[\overline{\psi}_q \gamma \cdot \xi \psi_q](\xi), \\ j_{V'}(\xi) &= \xi Z_{V'}^{-1}[\overline{\psi}_q \gamma \cdot \xi \psi_{q'}](\xi), & j_G(\xi) &= \xi^3 Z_G^{-1}[-\frac{1}{4} F_{\mu\nu}^c F_{\mu\nu}^c](\xi) \text{ , ...} \end{split}$$

☐ Lattice cross sections – quasi-PDFs:

$$\mathcal{O}_q(\xi) = Z_q^{-1}(\xi^2)\overline{\psi}_q(\xi)\,\gamma \cdot \xi\Phi(\xi,0)\,\psi_q(0) \qquad \qquad \Phi(\xi,0) = \mathcal{P}e^{-ig\int_0^1 \xi \cdot A(\lambda\xi)\,d\lambda}$$

Our proposal

Ma and Qiu, 2014, 2017

☐ Lattice cross sections – definition:

$$\sigma_n(\xi^2, \omega, P^2) = \langle P | T \{ \mathcal{O}_n(\xi) \} | P \rangle$$

$$\omega = P \cdot \xi$$

where the operator is defined as

$$\mathcal{O}_{j_1 j_2}(\xi) \equiv \xi^{d_{j_1} + d_{j_2} - 2} Z_{j_1}^{-1} Z_{j_2}^{-1} j_1(\xi) j_2(0)$$

with

 d_i : Dimension of the current

 Z_i : Renormalization constant of the current

- ☐ Lattice cross sections requirements:
 - ♦ is calculable in lattice QCD with an Euclidean time
 - \diamond has a well-defined continuum limit as the lattice spacing, $\,a
 ightarrow 0$ and
 - ♦ has the same and factorizable logarithmic CO divergences as PDFs
- □ Identify good lattice cross sections:

$$\overline{\sigma}_{\mathrm{E}}^{\mathrm{Lat}}(\xi_z, 1/a, P_z) \stackrel{\mathcal{Z}}{\longleftrightarrow} \sigma_{\mathrm{E}}(\xi_z, \tilde{\mu}^2, P_z)$$
 – Renormalization

$$\sigma_{\mathrm{M}}(\xi_z, \tilde{\mu}^2, P_z) \stackrel{\mathcal{C}}{\longleftrightarrow} f_i(x, \mu^2),$$
 - Factorization

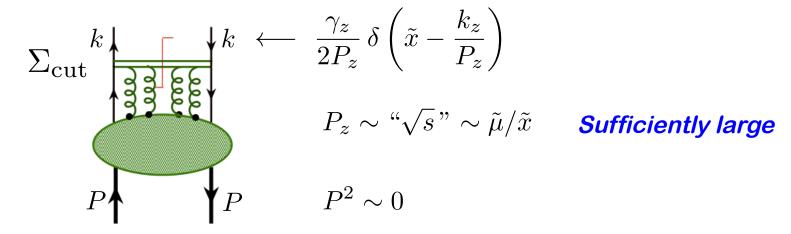
using quasi-PDFs as a case study Rest of my talk:

The case study

Quasi-quark distribution could be a good LCS:

$$\tilde{q}(\tilde{x}, \tilde{\mu}^2, P_z) = \int \frac{dy_z}{4\pi} e^{i\tilde{x}P_z y_z} \langle P | \overline{\psi}(y_z) \gamma_z \exp\left\{-ig \int_0^{y_z} dy_z' A_z(y_z')\right\} \psi(0) | P \rangle$$

 \Leftrightarrow Feynman diagram representation: $\Phi_{n_z}^{(f,a)}(\{\xi_z,0\}) = \Phi_{n_z}^{\dagger(f,a)}(\{\infty,\xi_z\}) \Phi_{n_z}^{(f,a)}(\{\infty,0\})$



- ♦ Like PDFs, it is IR finite
- Like PDFs, it is UV divergent, but, worse (linear UV divergence)
 Potential trouble! need to show that it is multiplicative renormalizable?
- ♦ Like PDFs, it is CO divergent factorizes CO divergence into PDFs Show to all orders in perturbation theory?

Ishikawa, et al. arXiv:1707.03107

☐ Different from PDFs:

♦ PDFs – moments – twist-2 operators: Twist-2 operators

$$\overline{\psi}(\xi^{-})\gamma^{+}\Phi_{n}(\xi^{-},0)\psi(0) = \sum_{m} \frac{(i\xi^{-})^{m}}{m!} \mathcal{O}^{\mu_{1}...\mu_{m}}(0)n_{\mu_{1}}...n_{\mu_{m}}$$

Moments of PDFs ←→ Matrix-elements of twist-2 operators

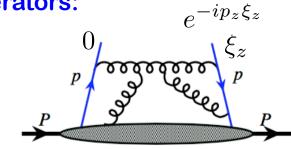
Renormalization of PDFs Renormalization of twist-2 operators

Mixing of all twist-2 operators

In $A \cdot n_z = 0$, NO gauge link!

Renormalization of QCD in $A \cdot n_z = 0$ gauge

NO guarantee for quasi-PDFs renormalization



♦ Most challenge part of quasi-PDFs renormalization:

Renormalization of the bi-local/composite operators!

☐ Conclusion from arXiv:1707.03107:

$$\tilde{F}_{i/p}^{R}(\xi_z, \tilde{\mu}^2, p_z) = e^{-C_i|\xi_z|} Z_{wi}^{-1} Z_{vi}^{-1} \tilde{F}_{i/p}^{b}(\xi_z, \tilde{\mu}^2, p_z)$$

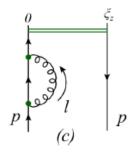
No mix with other flavors or gluon!

☐ Coordinate-space definition:

$$\tilde{F}_{q/p}(\xi_z, \tilde{\mu}^2, p_z) = \frac{e^{ip_z \xi_z}}{p_z} \langle h(p) | \overline{\psi}_q(\xi_z) \frac{\gamma_z}{2} \Phi_{n_z}^{(f)}(\{\xi_z, 0\}) \psi_q(0) | h(p) \rangle$$

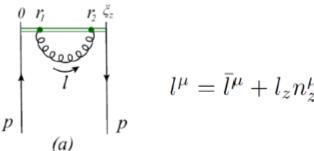
- Why the proof is hard:
 - Because of z-direction dependence, Lorentz symmetry is broken, hard to exhaust all possible UV divergences
 - Renormalization of composite operator is needed
- **Broken Lorentz symmetry:**

Both 3D and 4D loop-integration can generate UV divergences



UV: 4-D integration

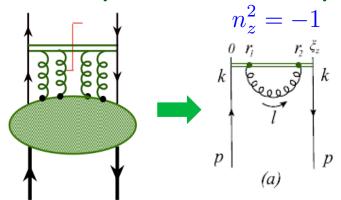
$$\int \frac{d^d l}{(2\pi)^d} \frac{1}{l^2 (p-l)^2} \qquad \int \frac{d^3 \bar{l}}{l^2} = \int \frac{d^3 \bar{l}}{\bar{l}^2 - l^2}$$

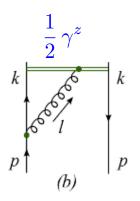


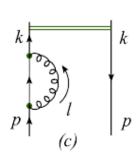
UV: 3-D integration

$$\int \frac{d^3 \bar{l}}{l^2} = \int \frac{d^3 \bar{l}}{\bar{l}^2 - l_z^2}$$

Quasi-quark at one-loop:







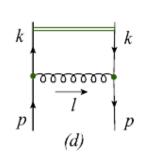
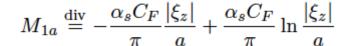


Fig. 1(a):

$$M_{1a} = \frac{e^{ip_z \xi_z}}{p_z} \frac{1}{N_c} \operatorname{Tr}_c[T^a T^a] \int_a^{\xi_z - 2a} dr_1 \int_{r_1 + a}^{\xi_z - a} dr_2 \qquad \Leftrightarrow \quad \text{Conclusion independent of regulator} \\ \times \int \frac{d^4 l}{(2\pi)^4} e^{-ip_z \xi_z} e^{il_z (r_2 - r_1)} \left(\frac{-ig_{\mu\nu}}{l^2} \right) \qquad \Leftrightarrow \quad \text{3D-integration:} \quad d^4 l = d^3 \bar{l} \, dl \\ \times \left(-ig_s n_z^{\mu} \right) \left(-ig_s n_z^{\nu} \right) \operatorname{Tr} \left[\frac{1}{2} \not p \frac{1}{2} \gamma_z \right] \qquad \qquad = \int d^3 \bar{l} \left(\frac{1}{\bar{l}^2} + \frac{l_z^2}{\bar{l}^2 - l_z^2} \right) \\ = \frac{\alpha_s C_F}{4i\pi^3} \int_a^{\xi_z - 2a} dr_1 \int_{r_1 + a}^{\xi_z - a} dr_2 \int d^4 l \frac{e^{il_z (r_2 - r_1)}}{l^2} \qquad \qquad \int dl_z e^{il_z (r_2 - r_1)} = 2\pi \delta(r_2 - r_1)$$

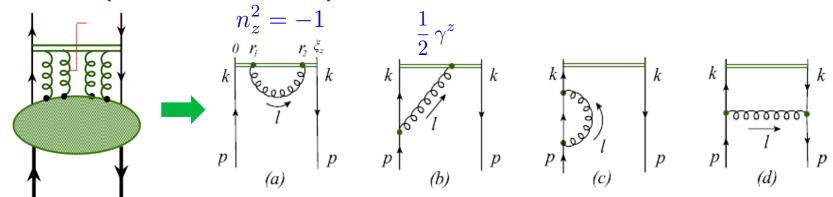
- Cutoff "a" between fields
- Conclusion independent of regulator
- \Rightarrow 3D-integration: $d^4l = d^3\bar{l} dl_z$

$$\int \frac{d^{3}\bar{l}}{l^{2}} = \int \frac{d^{3}\bar{l}}{\bar{l}^{2} - l_{z}^{2}}
= \int d^{3}\bar{l} \left(\frac{1}{\bar{l}^{2}} + \frac{l_{z}^{2}}{(\bar{l}^{2} - l_{z}^{2})\bar{l}^{2}} \right)
\int dl_{z}e^{il_{z}(r_{2} - r_{1})} = 2\pi\delta(r_{2} - r_{1})$$



1st term vanishes for $r_1 \neq r_2$

■ Quasi-quark at one-loop:



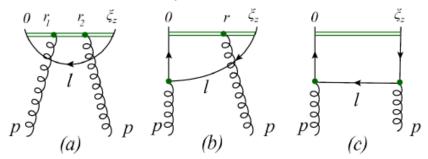
□ Complete one-loop contribution:

$$\begin{split} M^{(1)} &\stackrel{\text{div}}{=} M_{1a} + 2 \times M_{1b} + 2 \times \frac{1}{2} M_{1c} + M_{1d} \\ &= \frac{\alpha_s C_F}{\pi} \left(-\frac{|\xi_z|}{a} + 2 \ln \frac{|\xi_z|}{a} - \frac{1}{4\epsilon} \right). \end{split}$$

- ♦ At one-loop, all 3D integrations are finite
- Divergence only come from the region when all momentum components go to infinity

Localized UV divergence in all directions!

☐ Gluon-to-quark at one-loop:



$$M_{2a} \propto \int_0^{\xi_z} dr_1 \int_{r_1}^{\xi_z} dr_2 \int d^4 l \, e^{-il_z \xi_z} \frac{l_z}{l^2}$$
$$= \frac{\xi_z^2}{2} \int dl_z \, e^{-il_z \xi_z} \, l_z \int d^3 \bar{l} \left(\frac{1}{\bar{l}^2} + \frac{l_z^2}{(\bar{l}^2 - l_z^2)\bar{l}^2} \right)$$

- UV divergence from 3-D $\propto \delta'(\xi_z)$, vanishes for finite ξ_z
- ☐ Caution for momentum-space version:

Finite-term:
$$\frac{\xi_z^2}{2} \int dl_z \, e^{-il_z \xi_z} \, l_z \int d^3 \bar{l} \frac{l_z^2}{(\bar{l}^2 - l_z^2) \bar{l}^2}$$

$$\propto \frac{\xi_z^2}{2} \int dl_z \, e^{-il_z \xi_z} \, \frac{l_z^3}{|l_z|} \, = \frac{2i}{\xi_z} ,$$

- Divergent as $\xi_z \to 0$
- Result in bad large \tilde{x} behavior in momentum space

Ishikawa, Ma, Qiu, Yoshida (2017)

☐ Power counting and divergent sub-diagrams:

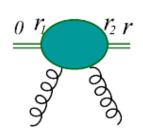
$$\frac{0 r_1}{r_2} = \frac{0 r_1}{r_2} + \frac{0 r_1}{r_2} + \frac{r_2}{r_2} + \cdots$$

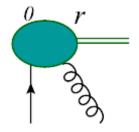
$$\frac{\partial r_1}{\partial r_2} = \frac{\partial r_1}{\partial r_2} + \frac{\partial r_2}{\partial r_1} + \frac{\partial r_2}{\partial r_2} + \cdots$$

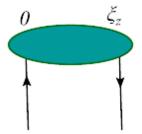
$$= \frac{0}{66666} + \frac{0}{66666} + \cdots$$

Happen only when all loop momenta go to infinity – localized!

☐ Example of convergent sub-diagrams:







Renormalized

Ishikawa, Ma, Qiu, Yoshida (2017)

Power divergence:

$$\frac{0}{1+c} \frac{r}{\int_{0}^{r} dr_{1} + c^{2} \int_{0}^{r} dr_{1} \int_{r_{1}}^{r} dr_{2} + \cdots} + \cdots + \frac{1+c}{\int_{0}^{r} dr_{1} + c^{2} \int_{0}^{r} dr_{1} \int_{r_{1}}^{r} dr_{2} + \cdots} + \cdots + \frac{1+c}{\int_{0}^{r} dr_{1} + c^{2} \int_{0}^{r} dr'_{1} = e^{c r}}$$

- It is allowed to introduce an overall factor $e^{-c|\xi_z|}$ to remove all power UV divergences
- ☐ Interpretation:
 - Mass renormalization of test particle

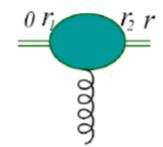
Dotsenko, Vergeles, NPB (1980)

- ☐ Log divergence in from gauge link:
 - Besides power divergence, there are also logarithmic UV divergences
 - It is known that these divergences can be removed by a "wave function" renormalization of the test particle, Z_{wq}^{-1} .

Renormalized

Ishikawa, Ma, Qiu, Yoshida (2017)

☐ Log divergence from gluon-gauge link vertex:



 Logarithmic UV: can be absorbed by the coupling constant renormalization of QCD.

UV from vertex correction:

- The most dangerous UV diagram, may mix with other operators
- Locality of UV divergence: no dependence on $r_2 r_1$ or p
- UV divergence is proportional to quark-gaugelink vertex at lowest order, with a constant coefficient
- A constant counter term is able to remove this UV divergence.

□ Renormalization to all orders:

• Using bookkeeping forests subtraction method, the net effect is to introduce a constant multiplicative renormalization factor Z_{vq}^{-1} for the quark-gaugelink vertex.

Renormalized

Ishikawa, Ma, Qiu, Yoshida (2017)

- ☐ With renormalized QCD Lagrangian:
 - All UV divergences (too all orders) can be removed by the following renormalization

$$\tilde{F}_{i/p}^{R}(\xi_z, \tilde{\mu}^2, p_z) = e^{-C_i|\xi_z|} Z_{wi}^{-1} Z_{vi}^{-1} \tilde{F}_{i/p}^{b}(\xi_z, \tilde{\mu}^2, p_z).$$

□ Renormalization:

Multiplicative factor – not mix with other operators

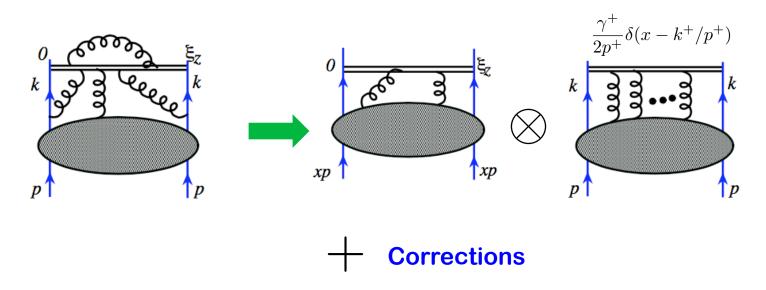
- Significantly different from normal PDFs
- Quasi-quark PDF could be a good "lattice cross sections"

If it can be factorized into PDFs

Factorization

□ Does the renormalized quasi-PDFs and PDFs share the same CO properties?

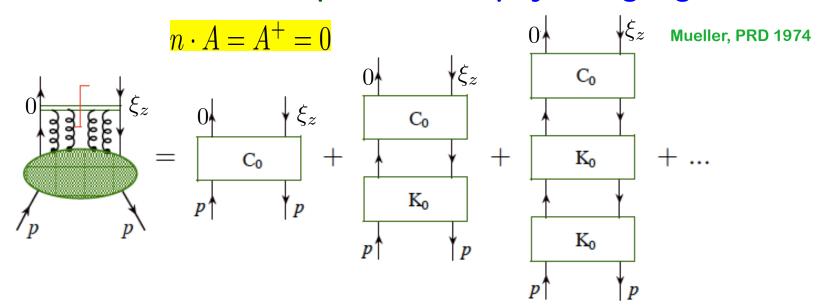
□ Can we extract PDFs from renormalized quasi-PDFs reliably?



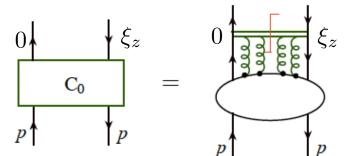
Factorization of CO divergence

Ma and Qiu, arXiv:1404.6860

☐ Generalized ladder decomposition in a physical gauge



- $lue{}$ $C_0,\ K_0$:2PI kernels
 - **♦ Only process dependence:**

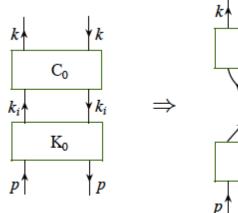


♦ 2PI are finite in a physical gauge for fixed k and p:

Factorization of CO divergence

☐ 2PI kernels – Diagrams:

lacksquare Ordering in virtuality: $P^2 \ll k^2 \lesssim \tilde{\mu}^2$ - Leading power in $rac{1}{\tilde{\mu}}$



$$\leftarrow \frac{1}{2}\gamma \cdot p \\ \leftarrow \frac{\gamma \cdot n}{2p \cdot n} \delta \left(x_i - \frac{k_i \cdot n}{p \cdot n} \right) \quad \text{+ power suppressed}$$

Cut-vertex for normal quark distribution Logarithmic UV and CO divergence

☐ Renormalized kernel - UV & IR safe - parton PDF:

$$K \equiv \int d^4k_i \,\delta\left(x_i - \frac{k^+}{p^+}\right) \operatorname{Tr}\left[\frac{\gamma \cdot n}{2p \cdot n} \,K_0 \,\frac{\gamma \cdot p}{2}\right] + \operatorname{UVCT}_{\operatorname{Logarithmic}}$$

Factorization of CO divergence

□ Projection operator for CO divergence:

$$\widehat{\mathcal{P}}\,K$$
 Pick up the logarithmic CO divergence of K

☐ Factorization of CO divergence:

$$\begin{split} \tilde{f}_{q/p} &= \lim_{m \to \infty} C_0 \sum_{i=0}^m K^i + \text{UVCTs} &\longleftarrow \text{If multiplicative} \\ &= \lim_{m \to \infty} C_0 \left[1 + \sum_{i=0}^{m-1} K^i (1 - \widehat{\mathcal{P}}) K \right]_{\text{ren}} + \tilde{f}_{q/p} \, \widehat{\mathcal{P}} \, K \\ &= \lim_{m \to \infty} C_0 \left[1 + \sum_{i=1}^m \left[(1 - \widehat{\mathcal{P}}) K \right]^i \right]_{\text{ren}} + \tilde{f}_{q/p} \, \widehat{\mathcal{P}} \, K \\ &\longrightarrow \tilde{f}_{q/P} = \left[C_0 \frac{1}{1 - (1 - \widehat{\mathcal{P}}) K} \right]_{\text{ren}} \left[\frac{1}{1 - \widehat{\mathcal{P}} K} \right] &\longleftarrow \text{Normal Quark distribution} \end{split}$$

CO divergence free

All CO divergence of quasi-quark distribution

$$\tilde{f}_{i/h}(\tilde{x}, \tilde{\mu}^2, P_z) \approx \sum_{i} \int_0^1 \frac{dx}{x} \, \mathcal{C}_{ij}(\frac{\tilde{x}}{x}, \tilde{\mu}^2, P_z) \, f_{j/h}(x, \mu^2) \, + \, \frac{\text{Power}}{\text{corrections}}$$

One-loop example: quark → quark

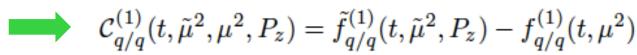
Ma and Qiu, arXiv:1404.6860

■ Expand the factorization formula:

$$\tilde{f}_{i/h}(\tilde{x}, \tilde{\mu}^2, P_z) \approx \sum_{i} \int_0^1 \frac{dx}{x} \, \mathcal{C}_{ij}(\frac{\tilde{x}}{x}, \tilde{\mu}^2, P_z) \, f_{j/h}(x, \mu^2)$$

To order α_s :

$$\tilde{f}_{q/q}^{(1)}(\tilde{x}) = f_{q/q}^{(0)}(x) \otimes \mathcal{C}_{q/q}^{(1)}(\tilde{x}/x) + f_{q/q}^{(1)}(x) \otimes \mathcal{C}_{q/q}^{(0)}(\tilde{x}/x)$$

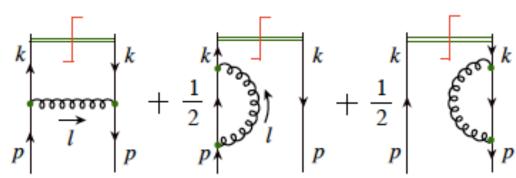


☐ Feynman diagrams:

Same diagrams for both

$$ilde{f}_{q/q}$$
 and $f_{q/q}$

But, in different gauge:



$$n_z \cdot A = 0$$
 for $\tilde{f}_{q/q}$

$$n \cdot A = 0$$
 for $f_{q/q}$

□ Gluon propagator in n_z . A = 0:

$$\tilde{d}^{\alpha\beta}(l) = -g^{\alpha\beta} + \frac{l^{\alpha}n_z^{\beta} + n_z^{\alpha}l^{\beta}}{l_z} - \frac{n_z^2 l^{\alpha}l^{\beta}}{l_z^2}$$

$$\quad \text{with} \quad n_z^2 = -1$$

One-loop "quasi-quark" distribution in a quark

Ma and Qiu, arXiv:1404.6860

☐ Real + virtual contribution:

$$\tilde{f}_{q/q}^{(1)}(\tilde{x}, \tilde{\mu}^2, P_z) = C_F \frac{\alpha_s}{2\pi} \frac{(4\pi)^{\epsilon}}{\Gamma(1 - \epsilon)} \int_0^{\tilde{\mu}^2} \frac{dl_{\perp}^2}{l_{\perp}^{2+2\epsilon}} \int_{-\infty}^{+\infty} \frac{dl_z}{P_z} \left[\delta \left(1 - \tilde{x} - y \right) - \delta \left(1 - \tilde{x} \right) \right] \left\{ \frac{1}{y} \left(1 - y + \frac{1 - \epsilon}{2} y^2 \right) \right\} \\
\times \left[\frac{y}{\sqrt{\lambda^2 + y^2}} + \frac{1 - y}{\sqrt{\lambda^2 + (1 - y)^2}} \right] + \frac{(1 - y)\lambda^2}{2y^2 \sqrt{\lambda^2 + y^2}} + \frac{\lambda^2}{2y\sqrt{\lambda^2 + (1 - y)^2}} + \frac{1 - \epsilon}{2} \frac{(1 - y)\lambda^2}{[\lambda^2 + (1 - y)^2]^{3/2}} \right\}$$

where
$$y = l_z/P_z$$
, $\lambda^2 = l_\perp^2/P_z^2$, $C_F = (N_c^2 - 1)/(2N_c)$

☐ Cancelation of CO divergence:

$$\frac{y}{\sqrt{\lambda^2 + y^2}} + \frac{1 - y}{\sqrt{\lambda^2 + (1 - y)^2}} = 2\theta(0 < y < 1) - \left[\operatorname{Sgn}(y) \frac{\sqrt{\lambda^2 + y^2} - |y|}{\sqrt{\lambda^2 + y^2}} + \operatorname{Sgn}(1 - y) \frac{\sqrt{\lambda^2 + (1 - y)^2} - |1 - y|}{\sqrt{\lambda^2 + (1 - y)^2}} \right]$$

Only the first term is CO divergent for 0 < y < 1, which is the same as the divergence of the normal quark distribution – necessary!

□ UV renormalization:

Different treatment for the upper limit of $~l_{\perp}^2~$ integration - "scheme"

Here, a UV cutoff is used – other scheme is discussed in the paper

One-loop coefficient functions

Ma and Qiu, arXiv:1404.6860

lacksquare MS scheme for $f_{q/q}(x,\mu^2)$:

$$\mathcal{C}_{q/q}^{(1)}(t,\tilde{\mu}^2,\mu^2,P_z) = \tilde{f}_{q/q}^{(1)}(t,\tilde{\mu}^2,P_z) - f_{q/q}^{(1)}(t,\mu^2)$$

CO, UV IR finite!

$$\frac{\mathcal{C}_{q/q}^{(1)}(t)}{C_F \frac{\alpha_s}{2\pi}} = \left[\frac{1+t^2}{1-t} \ln \frac{\tilde{\mu}^2}{\mu^2} + 1 - t \right]_+ + \left[\frac{t\Lambda_{1-t}}{(1-t)^2} + \frac{\Lambda_t}{1-t} + \frac{\operatorname{Sgn}(t)\Lambda_t}{\Lambda_t + |t|} - \frac{1+t^2}{1-t} \left[\operatorname{Sgn}(t) \ln \left(1 + \frac{\Lambda_t}{2|t|} \right) + \operatorname{Sgn}(1-t) \ln \left(1 + \frac{\Lambda_{1-t}}{2|1-t|} \right) \right] \right]$$

where $\Lambda_t = \sqrt{\tilde{\mu}^2/P_z^2 + \underline{t^2}} - |t|$, $\mathrm{Sgn}(t) = 1$ if $t \ge 0$, and -1 otherwise.

□ Generalized "+" description: $t = \tilde{x}/x$

$$\int_{-\infty}^{+\infty} dt \Big[g(t)\Big]_N h(t) = \int_{-\infty}^{+\infty} dt \, g(t) \, [h(t) - h(1)] \qquad \begin{array}{c} \text{For a testing function} \\ h(t) \end{array}$$

Explicit verification of the CO factorization at one-loop

Note: $\Lambda_t o \mathcal{O}\left(rac{\widetilde{\mu}}{P_Z}
ight)$ as $P_Z o \infty$ the linear power UV divergence!

Go beyond quasi-PDFs

□ Recall: good lattice cross sections – time independent!

$$\sigma_n(\xi^2, \omega, P^2) = \langle P | T \{ \mathcal{O}_n(\xi) \} | P \rangle \qquad \omega = P \cdot \xi$$

$$\mathcal{O}_{j_1 j_2}(\xi) \equiv \xi^{d_{j_1} + d_{j_2} - 2} Z_{j_1}^{-1} Z_{j_2}^{-1} j_1(\xi) j_2(0)$$

With renormalized and/or conserved currents – No power divergence!

♦ Lattice calculable:

Calculable using lattice QCD with an Euclidean time

♦ UV Renormalizable:

Ensure a well-defined continuum limit, UV & IR finite!

♦ CO Factorizable:

Share the same perturbative collinear divergences with PDFs Factorizable to PDFs with IR-safe hard coefficients with controllable power corrections

P and ξ define the "collision" kinematics – 1/ ξ ~ μ defines the hard scale to ensure the necessary condition for the factorization

Summary and outlook

- □ "lattice cross sections" = single hadron matrix elements calculable in Lattice QCD, renormalizable + factorizable in QCD Going beyond the quasi-PDFs
- ☐ Extract PDFs by global analysis of data on "Lattice x-sections".

 Same should work for other distributions (TMDs, GPDs)

$$\widetilde{\sigma}_{\mathrm{E}}^{\mathrm{Lat}}(\widetilde{x}, \frac{1}{a}, P_z) \approx \sum_{i} \int_{0}^{1} \frac{dx}{x} f_{i/h}(x, \mu^2) \widetilde{\mathcal{C}}_{i}(\frac{\widetilde{x}}{x}, \frac{1}{a}, \mu^2, P_z)$$

- ☐ Conservation of difficulties complementarity:
 - High energy scattering experiments
 - less sensitive to large x parton distribution/correlation
 "Lattice factorizable cross sections"
 - more suited for large x PDFs, but limited to large x for now
- ☐ Quasi-PDFs are renormalizable & factorizable
- □ Lattice QCD can be used to study hadron structure, but, more works are needed!

Thank you!

BACKUP SLIDES

QCD factorization – Approximation

Cross section with identified hadron(s) is NON-Perturbative!

Leading power Linear contribution DGLAP regime

Power corrections Non-Linear contribution Multi-parton correlations

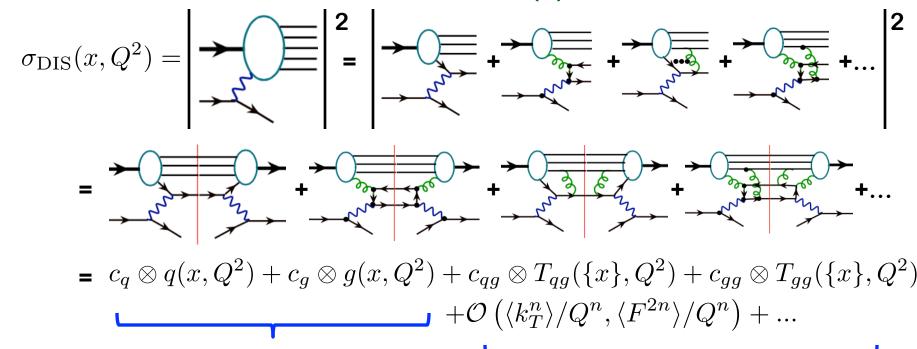
$$\approx c_q \otimes q(x,Q^2) + c_g \otimes g(x,Q^2) + \mathcal{O}\left(\frac{\langle k_T^2 \rangle}{Q^2},\frac{\langle F^2 \rangle}{Q^2},..\right) \ \ \textit{Non-perturbative physics neglected}$$

or in input PDFs!

Approximation – Leading power/twist factorization!

QCD factorization – Approximation

Cross section with identified hadron(s) is NON-Perturbative!



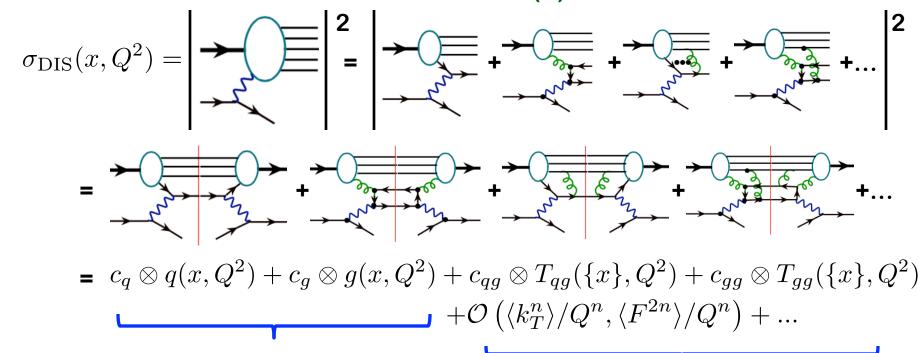
Leading power
Linear contribution
DGLAP regime

Power corrections
Non-Linear contribution
Multi-parton correlations

$$\approx c_q \otimes q(x,Q^2) + c_g \otimes g(x,Q^2) + \mathcal{O}\left(\frac{\langle k_T^2 \rangle}{Q^2}, \frac{\langle F^2 \rangle}{Q^2}, ..\right)$$
Probe

QCD factorization – Approximation

Cross section with identified hadron(s) is NON-Perturbative!



Leading power
Linear contribution
DGLAP regime

Power corrections
Non-Linear contribution
Multi-parton correlations

$$\approx c_q \otimes q(x,Q^2) + c_g \otimes g(x,Q^2) + \mathcal{O}\left(\frac{\langle k_T^2 \rangle}{Q^2}, \frac{\langle F^2 \rangle}{Q^2}, ...\right)$$
 Structure Structure

Pseudo-PDFs

Radyushkin, 2017

Pseudo-PDFs = generalization of PDFs:

$$\Rightarrow$$
 Definition: $\xi^2 < 0$

$$\mathcal{M}^{\alpha}(\nu = p \cdot \xi, \xi^{2}) \equiv \langle p | \overline{\psi}(0) \gamma^{\alpha} \Phi_{v}(0, \xi, v \cdot A) \psi(\xi) | p \rangle$$

$$\equiv 2p^{\alpha} \mathcal{M}_{p}(\nu, \xi^{2}) + \xi^{\alpha}(p^{2}/\nu) \mathcal{M}_{\xi}(\nu, \xi^{2}) \approx 2p^{\alpha} \mathcal{M}_{p}(\nu, \xi^{2})$$

$$\mathcal{P}(x, \xi^{2}) \equiv \int \frac{d\nu}{2\pi} e^{ix \nu} \frac{1}{2p^{+}} \mathcal{M}^{+}(\nu, \xi^{2})$$

♦ Interpretation:

with
$$\xi^{\mu} = (0^+, \xi^-, 0_{\perp})$$

 $f(x) = \mathcal{P}(x, \xi^2 = 0)$ Off-light-cone extension of PDFs:

Quasi-PDFs:

$$\xi^{\mu}=(0,0_{\perp},\xi_z)$$
 No longer Lorentz invariant $ilde{q}(x,\mu^2,p_z)=\int rac{d
u}{2\pi}\,e^{ix
u}rac{1}{2p_z}\mathcal{M}^z(
u=p_z\xi_z,-\xi_z^2)$

TMDs:

$$\xi^{\mu} = (0^+, \xi^-, \xi_{\perp})$$

$$\mathcal{P}(x, -\xi_{\perp}^2) \equiv \int d^2k_{\perp} \, e^{i\vec{k}_{\perp} \cdot \vec{\xi}_{\perp}} \mathcal{F}(x, k_{\perp}^2)$$
 TMDs with a straight gauge link

Pseudo-PDFs

Pseudo-PDFs:

Orginos, et al, 2017 1706.05373

Remove UV!

 \diamond Lattice calculation with $\alpha=0$:

$$\mathcal{M}^{\alpha}(\nu = p \cdot \xi, \xi^{2}) \equiv \langle p | \overline{\psi}(0) \gamma^{\alpha} \Phi_{v}(0, \xi, v \cdot A) \psi(\xi) | p \rangle$$

$$\equiv 2p^{\alpha} \mathcal{M}_{p}(\nu, \xi^{2}) + \xi^{\alpha}(p^{2}/\nu) \mathcal{M}_{\xi}(\nu, \xi^{2}) \approx 2p^{\alpha} \mathcal{M}_{p}(\nu, \xi^{2})$$

$$\mathcal{D}(x, \xi^{2}) = \int d\nu \, e^{ix \, \nu} \, \mathcal{M}_{p}(\nu, \xi^{2}) / \mathcal{M}_{p}(\nu, \xi^{2}) \, d\nu$$

$$\mathcal{P}(x,\xi^2) \equiv \int \frac{d\nu}{2\pi} e^{ix\nu} \mathcal{M}_{p=p^0}(\nu,\xi^2) / \mathcal{M}_{p=p^0}(0,\xi^2)$$

ightharpoonup Model quasi-PDFs: with $\xi^{\mu}=(0,0_{\perp},\xi_z)$

□ Numerical results:

