

站得更高,才能眼界更高 居高临下 以通关全局的视野,审视一切

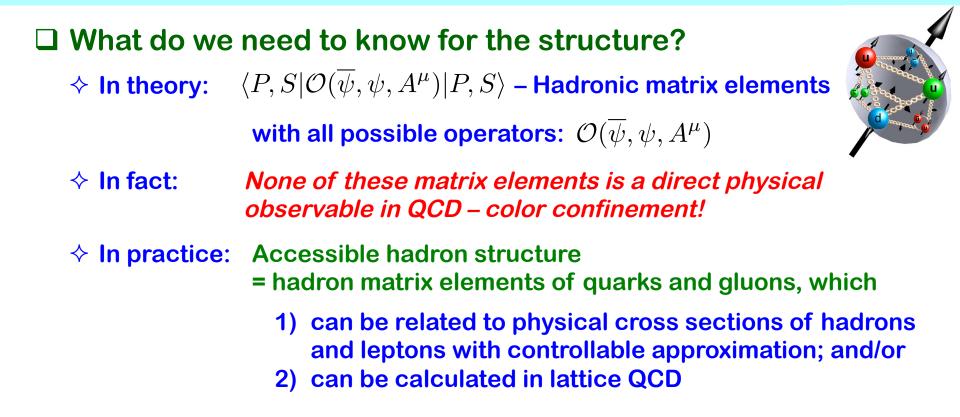
Hadron Structure from Lattice QCD Calculations

Jianwei Qiu Theory Center, Jefferson Lab

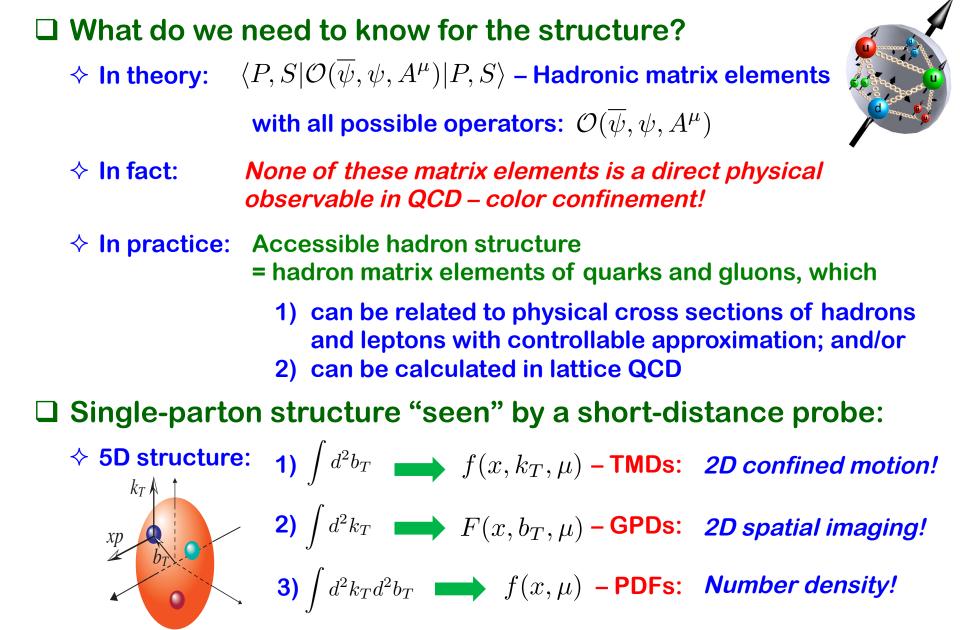
> Based on work done with T. Ishikawa, Y.-Q. Ma, K. Orginos, S. Yoshida, ... and work by many others, ...

TD Lee Institute and Center for High Energy Physics Joint Workshop on Parton Distributions in Modern Era 14-16 July, 2017, Peking University, China

Hadron structure in QCD



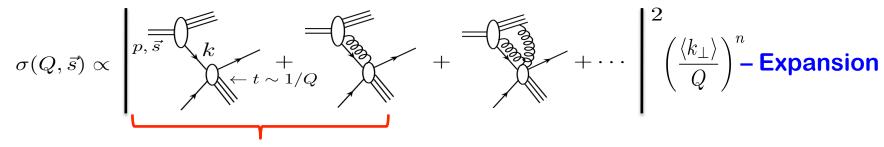
Hadron structure in QCD



Hadron structure in QCD

What do we need to know for the structure? \Rightarrow In theory: $\langle P, S | \mathcal{O}(\overline{\psi}, \psi, A^{\mu}) | P, S \rangle$ – Hadronic matrix elements with all possible operators: $\mathcal{O}(\overline{\psi}, \psi, A^{\mu})$ \diamond In fact: None of these matrix elements is a direct physical observable in QCD – color confinement! ♦ In practice: Accessible hadron structure = hadron matrix elements of quarks and gluons, which 1) can be related to physical cross sections of hadrons and leptons with controllable approximation; and/or 2) can be calculated in lattice QCD

Multi-parton correlations:



Quantum interference

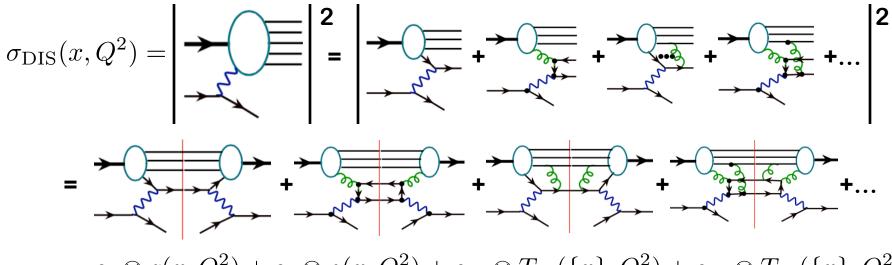
3-parton matrix element – not a probability!

□ Cross section with identified hadron(s) is NON-Perturbative!

□ Cross section with identified hadron(s) is NON-Perturbative!

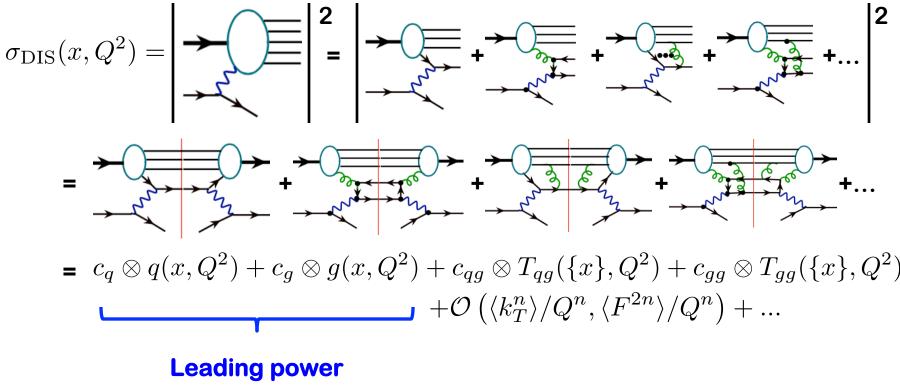
$$\sigma_{\text{DIS}}(x,Q^2) = \left| \begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\$$

Cross section with identified hadron(s) is NON-Perturbative!



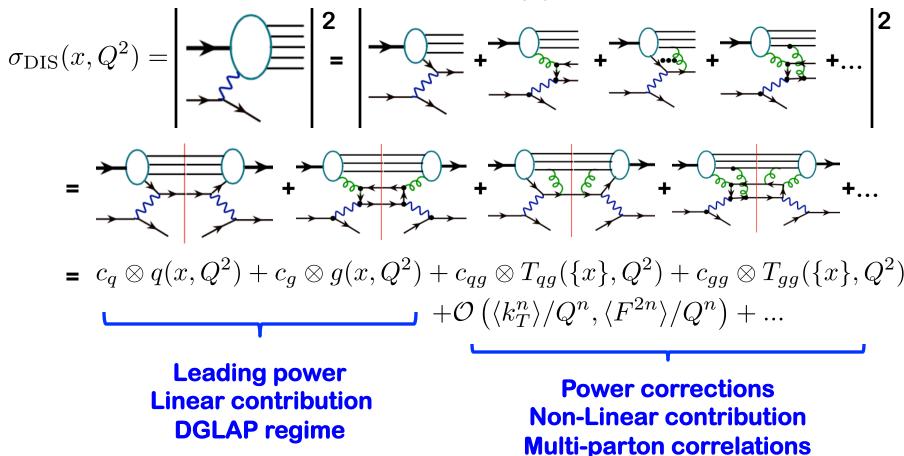
 $= c_q \otimes q(x, Q^2) + c_g \otimes g(x, Q^2) + c_{qg} \otimes T_{qg}(\{x\}, Q^2) + c_{gg} \otimes T_{gg}(\{x\}, Q^2) + \mathcal{O}\left(\langle k_T^n \rangle / Q^n, \langle F^{2n} \rangle / Q^n\right) + \dots$

Cross section with identified hadron(s) is NON-Perturbative!



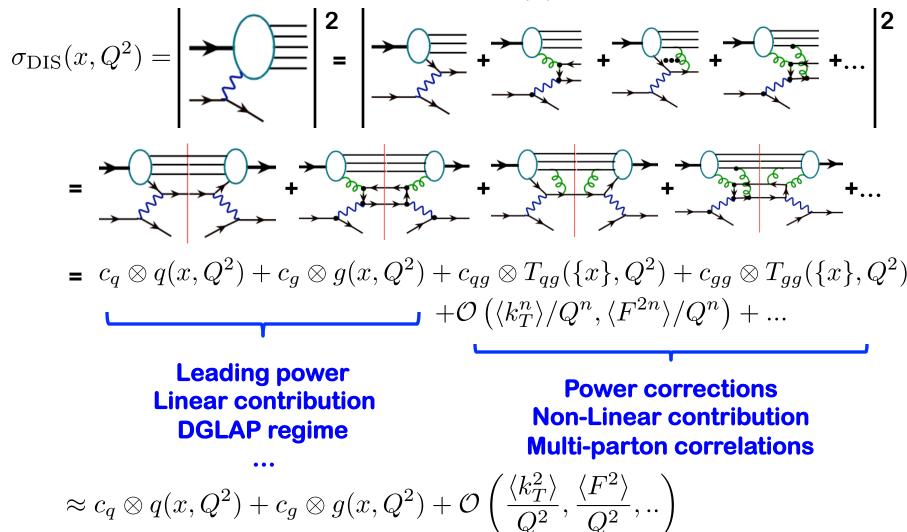
Linear contribution DGLAP regime

Cross section with identified hadron(s) is NON-Perturbative!



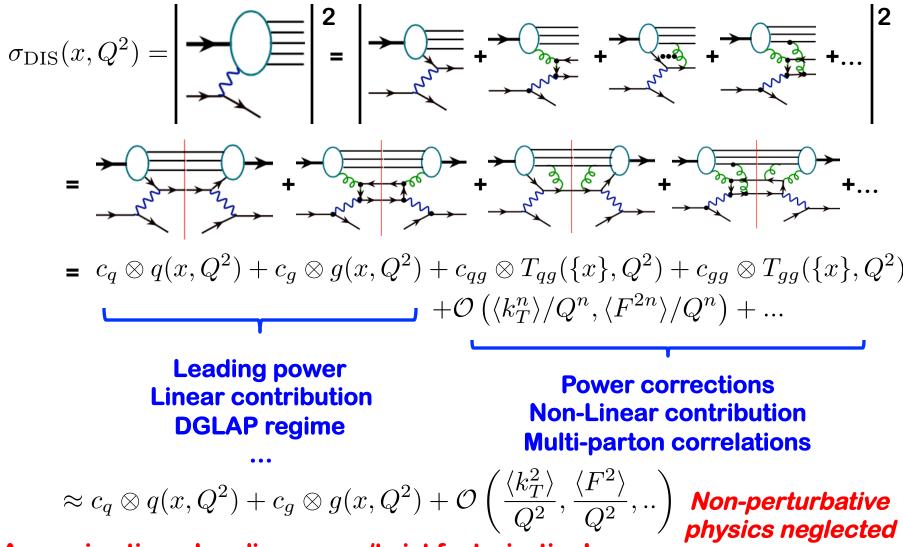
•••

Cross section with identified hadron(s) is NON-Perturbative!



Approximation – Leading power/twist factorization!

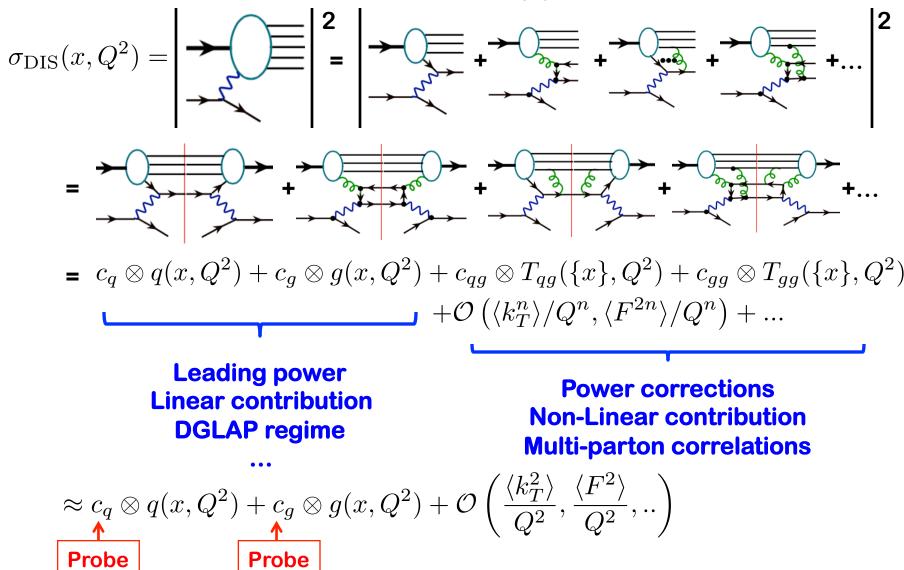
Cross section with identified hadron(s) is NON-Perturbative!



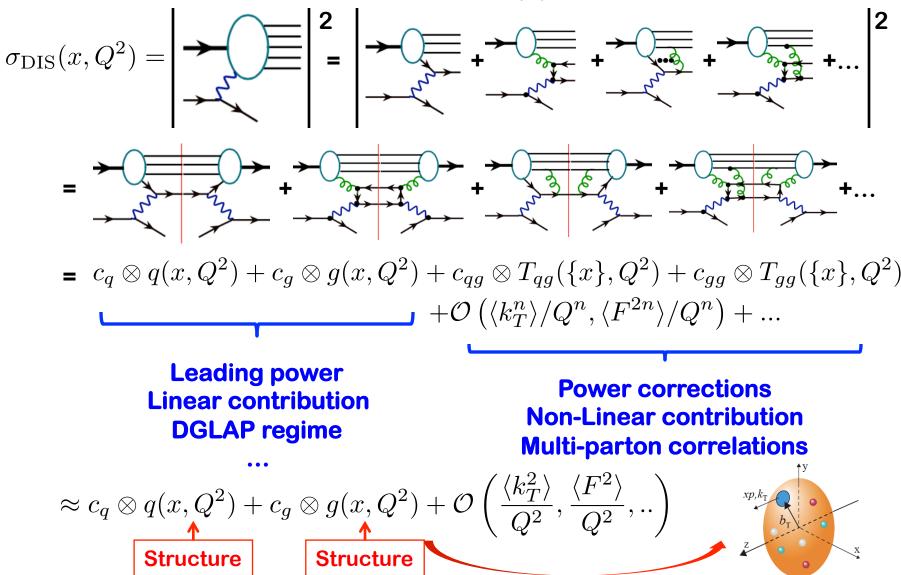
Approximation – Leading power/twist factorization!

or in input PDFs!

Cross section with identified hadron(s) is NON-Perturbative!

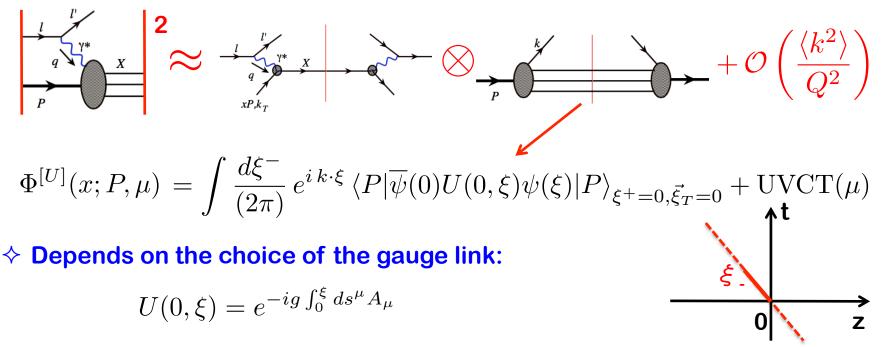


Cross section with identified hadron(s) is NON-Perturbative!



Operator definition of PDFs

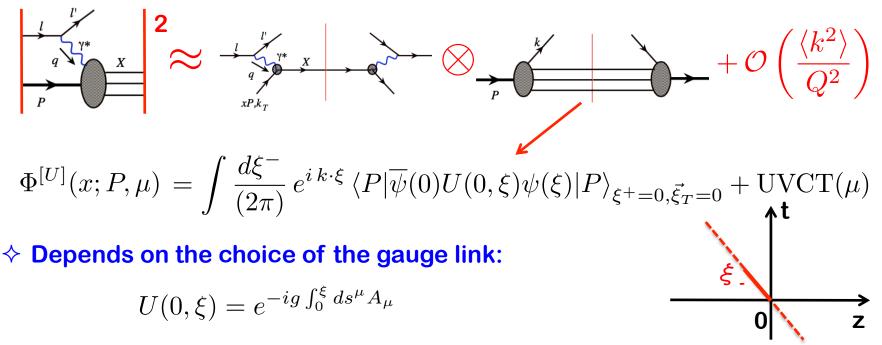
Definition – from QCD factorization:



PDFs are not direct physical observables, but, well defined in QCD

Operator definition of PDFs

Definition – from QCD factorization:



PDFs are not direct physical observables, but, well defined in QCD

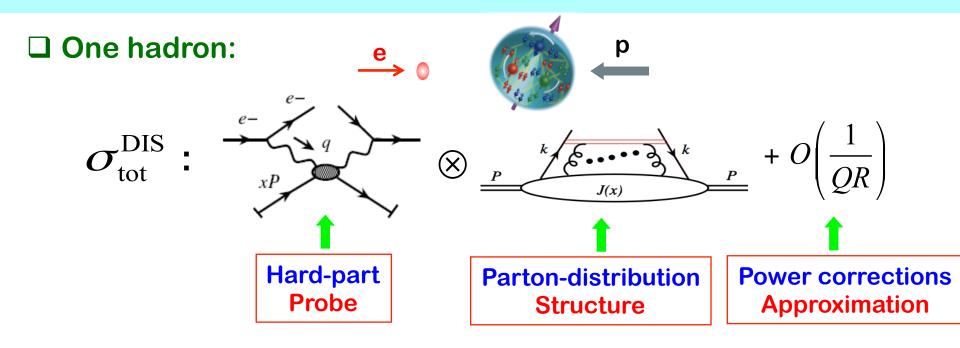
0

□ Transverse momentum dependent PDFs (TMDs):

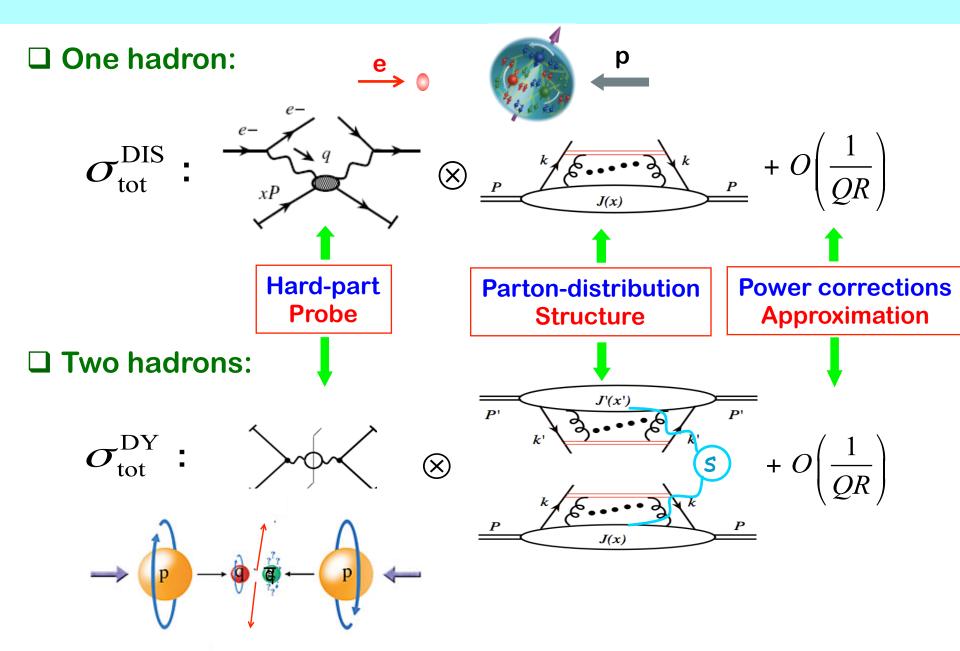
$$\Phi^{[U]}(x,k_T;P,\mu) = \int \frac{d\xi^- d^2 \xi_T}{(2\pi)^3} e^{i \, k \cdot \xi} \, \langle P | \overline{\psi}(0) U(0,\xi) \psi(\xi) | P \rangle_{\xi^+=0} + \text{UVCT}(\mu)$$

♦ General gauge link:

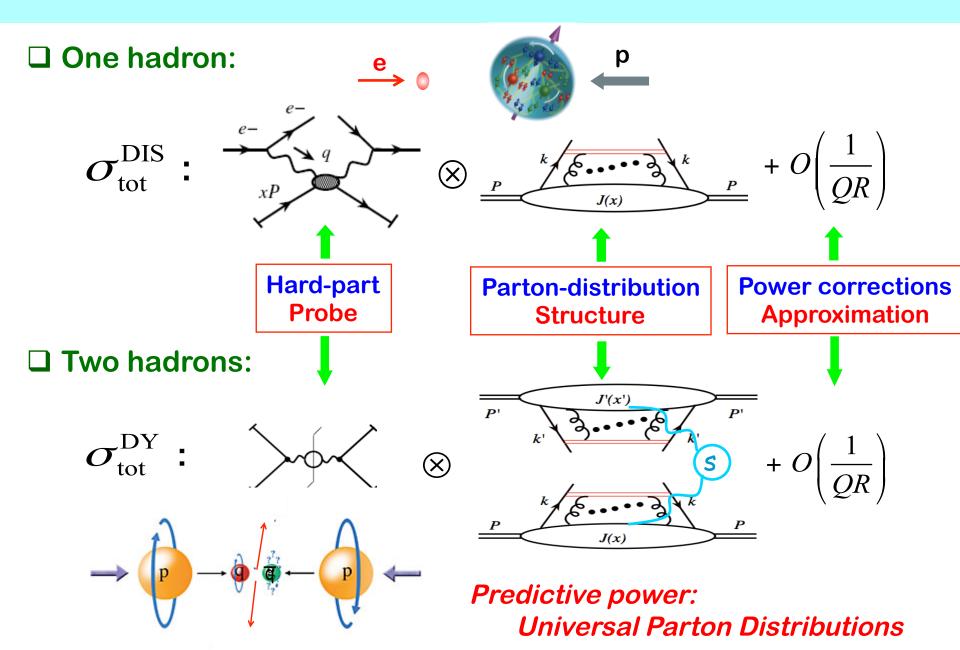
Hard probe and QCD factorization



Hard probe and QCD factorization



Hard probe and QCD factorization



Global QCD analyses – a successful story

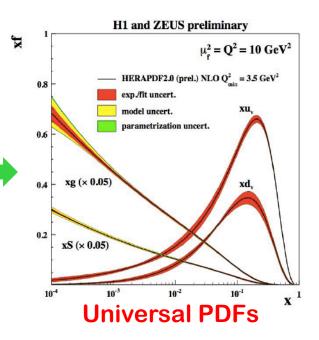
World data with "Q" > 2 GeV + Factorization:

DIS:
$$F_2(x_B, Q^2) = \Sigma_f C_f(x_B/x, \mu^2/Q^2) \otimes f(x, \mu^2)$$

H-H:
$$\frac{d\sigma}{dydp_T^2} = \Sigma_{ff'}f(x) \otimes \frac{d\hat{\sigma}_{ff'}}{dydp_T^2} \otimes f'(x')$$

+ DGLAP Evolution:

$$\frac{\partial f(x,\mu^2)}{\partial \ln \mu^2} = \sum_{f'} P_{ff'}(x/x') \otimes f'(x',\mu^2)$$



Global QCD analyses – a successful story

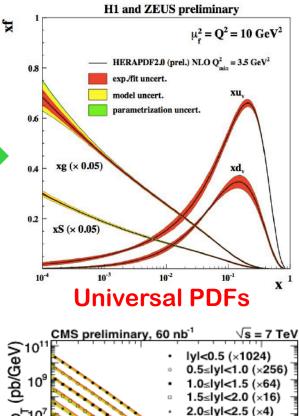
World data with "Q" > 2 GeV + Factorization:

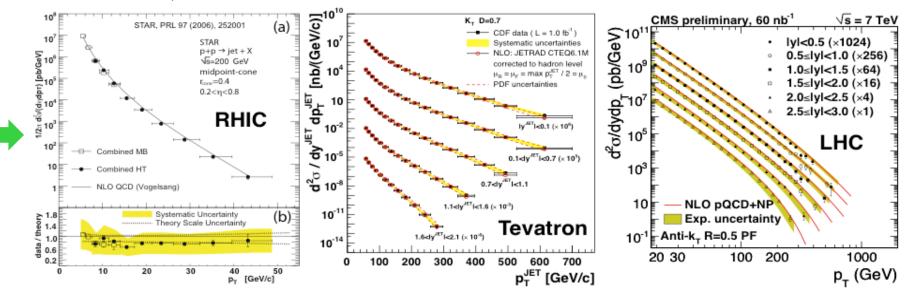
DIS:
$$F_2(x_B, Q^2) = \Sigma_f C_f(x_B/x, \mu^2/Q^2) \otimes f(x, \mu^2)$$

H-H:
$$\frac{d\sigma}{dydp_T^2} = \Sigma_{ff'}f(x) \otimes \frac{d\hat{\sigma}_{ff'}}{dydp_T^2} \otimes f'(x')$$

+ DGLAP Evolution:

$$\frac{\partial f(x,\mu^2)}{\partial \ln \mu^2} = \sum_{f'} P_{ff'}(x/x') \otimes f'(x',\mu^2)$$



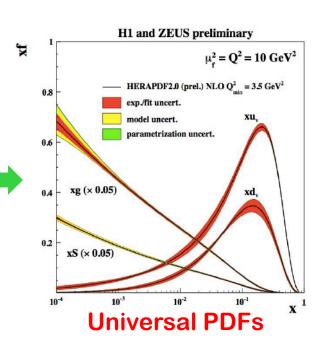


Global QCD analyses – a successful story

DIS:
$$F_2(x_B, Q^2) = \Sigma_f C_f(x_B/x, \mu^2/Q^2) \otimes f(x, \mu^2)$$

H-H:
$$\frac{d\sigma}{dydp_T^2} = \Sigma_{ff'}f(x) \otimes \frac{d\hat{\sigma}_{ff'}}{dydp_T^2} \otimes f'(x')$$

$$\frac{\partial f(x,\mu^2)}{\partial \ln \mu^2} = \sum_{f'} P_{ff'}(x/x') \otimes f'(x',\mu^2)$$



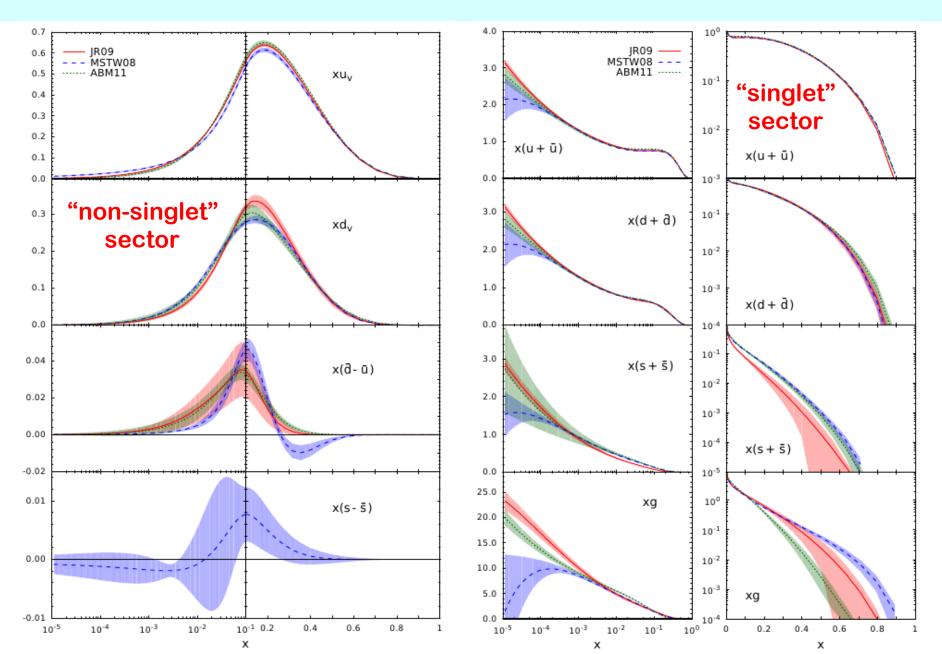
□ The "BIG" question(s)

Why these PDFs behave as what have been extracted from the fits?

What have been tested is the evolution from μ_1 to μ_2 But, does not explain why they have the shape to start with!

Can QCD calculate and predict the shape of PDFs at the input scale, and other parton correlation functions?

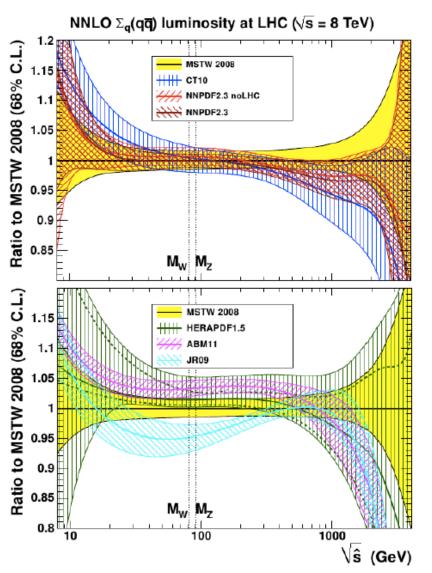
Uncertainties of PDFs

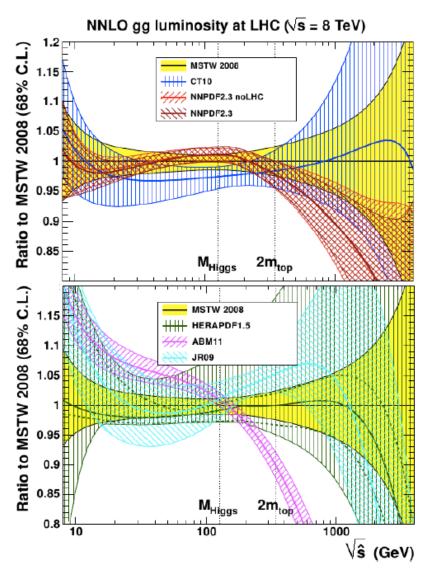


Partonic luminosities

q - qbar

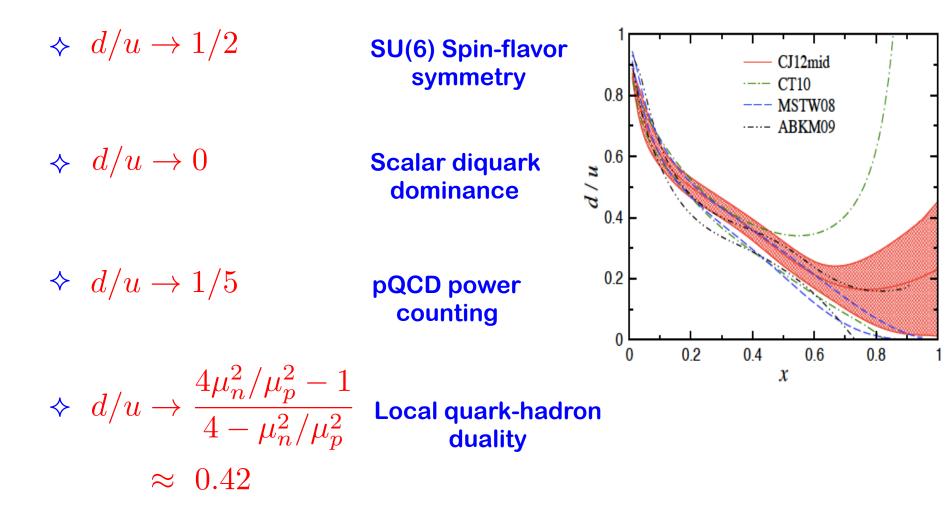
g - **g**





PDFs at large x

\Box Testing ground for hadron structure at $x \rightarrow 1$:



PDFs at large x

\Box Testing ground for hadron structure at $x \rightarrow 1$:

 $\diamond d/u \rightarrow 1/2$

SU(6) Spin-flavor symmetry

 $\diamond d/u \rightarrow 0$

Scalar diquark dominance

 $\diamond \Delta u/u \rightarrow 2/3$ $\Delta d/d \rightarrow -1/3$

 $\diamond \Delta u/u \rightarrow 1$ $\Delta d/d \rightarrow -1/3$

 $\diamond d/u \rightarrow 1/5$

pQCD power counting

 $\diamond \Delta u/u \rightarrow 1$ $\Delta d/d \rightarrow 1$

 $\label{eq:d_alpha} \diamond \ d/u \rightarrow \frac{4\mu_n^2/\mu_p^2-1}{4-\mu_n^2/\mu_n^2} \ \ {\rm Local \ quark-hadron}$

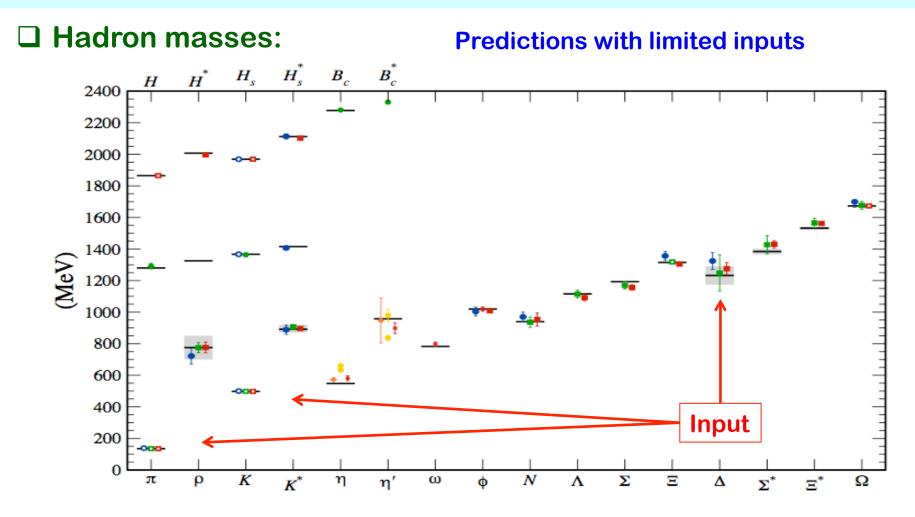
duality

 $\diamond \Delta u/u \rightarrow 1$ $\Delta d/d \rightarrow 1$

 ≈ 0.42

Can lattice QCD help?

Lattice QCD



D Lattice "time" is Euclidean: $\tau = i t$

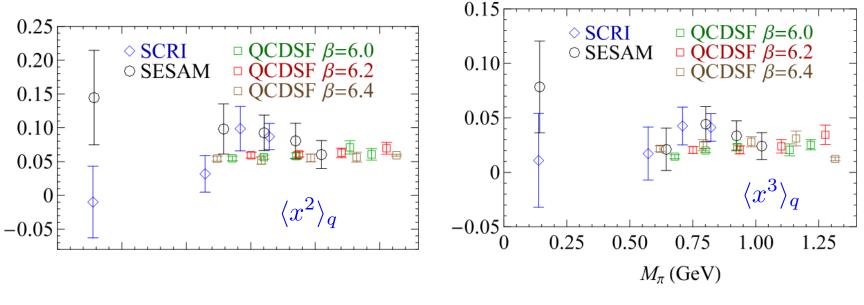
Cannot calculate PDFs, TMDs, ..., directly, whose operators are time-dependent

PDFs from lattice QCD

❑ Moments of PDFs – matrix elements of local operators

$$\langle x^n(\mu^2) \rangle_q \equiv \int_0^1 dx \, x^n \, q(x,\mu^2)$$

Works, but, hard and limited moments:



Dolgov et al., hep-lat/0201021

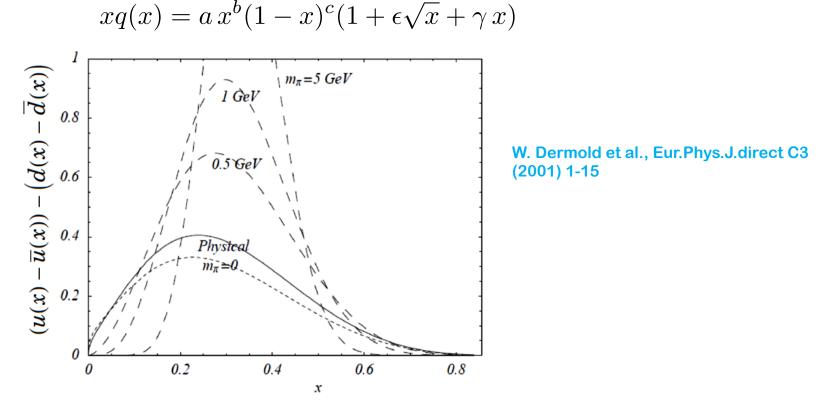
Gockeler et al., hep-ph/0410187

Limited moments – hard to get the full x-dependent distributions!

PDFs from lattice QCD

□ How to get x-dependent PDFs with a limited moments?

Assume a smooth functional form with some parameters
 Fix the parameters with the lattice calculated moments



Cannot distinguish valence quark contribution from sea quarks

From quasi-PDFs to PDFs (Ji's idea)

□ "Quasi" quark distribution (spin-averaged):

 $\tilde{q}(x,\mu^{2},P_{z}) \equiv \int \frac{d\xi_{z}}{4\pi} e^{-ixP_{z}\xi_{z}} \langle P|\overline{\psi}(\xi_{z})\gamma_{z} \exp\left\{-ig\int_{0}^{\xi_{z}} d\eta_{z}A_{z}(\eta_{z})\right\} \psi(0)|P\rangle + \text{UVCT}(\mu^{2})$ Quasi-PDFs =\= PDFs
Proposed matching: $\tilde{q}(x,\mu^{2},P_{z}) = \int_{x}^{1} \frac{dy}{y} Z\left(\frac{x}{y},\frac{\mu}{P_{z}}\right) q(y,\mu^{2}) + \mathcal{O}\left(\frac{\Lambda^{2}}{P_{z}^{2}},\frac{M^{2}}{P_{z}^{2}}\right)$

Ji, arXiv:1305.1539

Quasi-PDFs \rightarrow Normal PDFs when $P_z \rightarrow \infty$?

From quasi-PDFs to PDFs (Ji's idea)

□ "Quasi" quark distribution (spin-averaged):

 $\tilde{q}(x,\mu^{2},P_{z}) \equiv \int \frac{d\xi_{z}}{4\pi} e^{-ixP_{z}\xi_{z}} \langle P|\overline{\psi}(\xi_{z})\gamma_{z} \exp\left\{-ig\int_{0}^{\xi_{z}} d\eta_{z}A_{z}(\eta_{z})\right\}\psi(0)|P\rangle + \text{UVCT}(\mu^{2})$ Quasi-PDFs =\= PDFs $\int \mathbf{Proposed matching:}$ $\tilde{q}(x,\mu^{2},P_{z}) = \int_{x}^{1} \frac{dy}{y} Z\left(\frac{x}{y},\frac{\mu}{P_{z}}\right)q(y,\mu^{2}) + \mathcal{O}\left(\frac{\Lambda^{2}}{P_{z}^{2}},\frac{M^{2}}{P_{z}^{2}}\right)$

Ji, arXiv:1305.1539

Quasi-PDFs \rightarrow Normal PDFs when $P_z \rightarrow \infty$?

Excellent idea and great potential:

IDEA: Calculate something =\= PDFs, but, carry all the information of PDFs CHALLENGES:

Quasi-PDFs could be calculated using the lattice QCD method

♦ Extract PDFs from what you can calculate, …

"Quasi-PDFs" have no parton interpretation

□ Normal PDFs conserve parton momentum:

$$\begin{split} M &= \sum_{q} \left[\int_{0}^{1} dx \, x f_{q}(x) + \int_{0}^{1} dx \, x f_{\bar{q}}(x) \right] + \int_{0}^{1} dx \, x f_{g}(x) \\ &= \sum_{q} \int_{-\infty}^{\infty} dx \, x f_{q}(x) + \frac{1}{2} \int_{-\infty}^{\infty} dx \, x f_{g}(x) \\ &= \frac{1}{2(P^{+})^{2}} \langle P | T^{++}(0) | P \rangle = \text{constant} \end{split} \begin{array}{c} T^{\mu\nu} \\ \text{Energy-momentum} \\ \text{tensor} \end{split}$$

□ "Quasi-PDFs" do not conserve "parton" momentum:

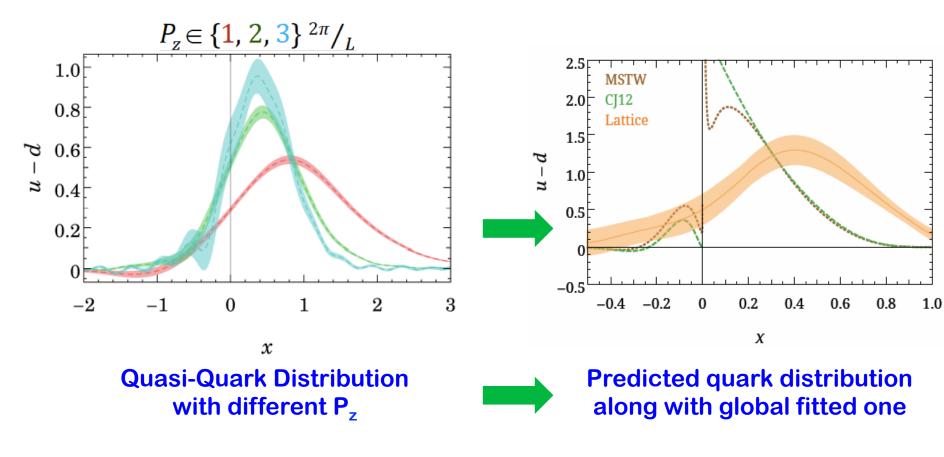
$$\begin{split} \widetilde{\mathcal{M}} &= \sum_{q} \left[\int_{0}^{\infty} d\tilde{x} \, \tilde{x} \tilde{f}_{q}(\tilde{x}) + \int_{0}^{\infty} d\tilde{x} \, \tilde{x} \tilde{f}_{\bar{q}}(\tilde{x}) \right] + \int_{0}^{\infty} d\tilde{x} \, \tilde{x} \tilde{f}_{g}(\tilde{x}) \\ &= \sum_{q} \int_{-\infty}^{\infty} d\tilde{x} \, \tilde{x} \tilde{f}_{q}(\tilde{x}) + \frac{1}{2} \int_{-\infty}^{\infty} d\tilde{x} \, \tilde{x} \tilde{f}_{g}(\tilde{x}) \\ &= \frac{1}{2(P_{z})^{2}} \langle P | \left[T^{zz}(0) - g^{zz}(...) \right] | P \rangle \neq \text{constant} \end{split}$$

Note: "Quasi-PDFs" are not boost invariant

Lattice calculation of quasi-PDFs

Lin *et al.*, arXiv:1402.1462

Exploratory study:



Matching – taking into account:

Target mass: $(M_N/P_z)^2$ High twist: $a+b/P_z^2$

Quasi-PDFs are NOT defined by "twist-2" operators:

$$\tilde{q}(x,\mu^2,P_z) \equiv \int \frac{d\xi_z}{4\pi} e^{-ixP_z\xi_z} \langle P|\overline{\psi}(\xi_z)\gamma_z \exp\left\{-ig\int_0^{\xi_z} d\eta_z A_z(\eta_z)\right\}\psi(0)|P\rangle + \text{UVCT}(\mu^2)$$

Twist = Dimension - Spin

□ Renormalization scale dependence does not obey DGLAP:

$$\mu^2 \frac{d}{d\mu^2} \widetilde{q}(x,\mu^2,P_z) \neq \text{DGLAP}$$

Quasi-PDFs are NOT defined by "twist-2" operators:

$$\tilde{q}(x,\mu^2,P_z) \equiv \int \frac{d\xi_z}{4\pi} e^{-ixP_z\xi_z} \langle P|\overline{\psi}(\xi_z)\gamma_z \exp\left\{-ig\int_0^{\xi_z} d\eta_z A_z(\eta_z)\right\}\psi(0)|P\rangle + \text{UVCT}(\mu^2)$$

Twist = Dimension - Spin

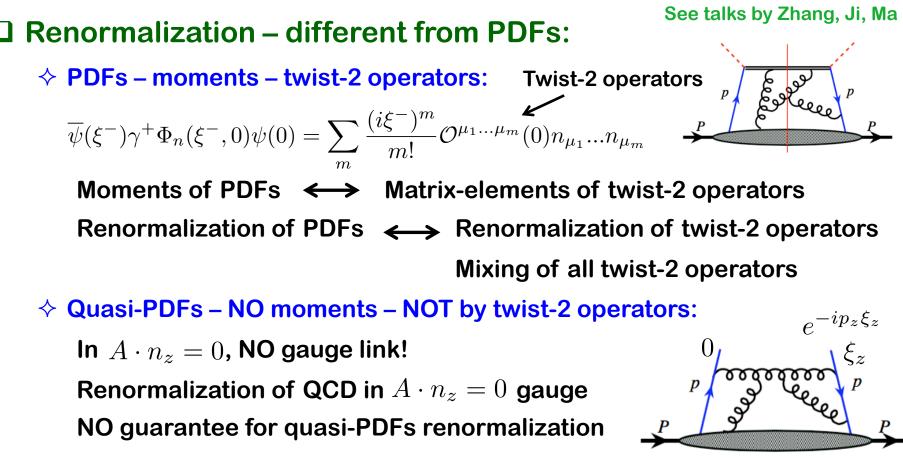
□ Renormalization scale dependence does not obey DGLAP:

$$\mu^2 \frac{d}{d\mu^2} \widetilde{q}(x,\mu^2,P_z) \neq \text{DGLAP}$$

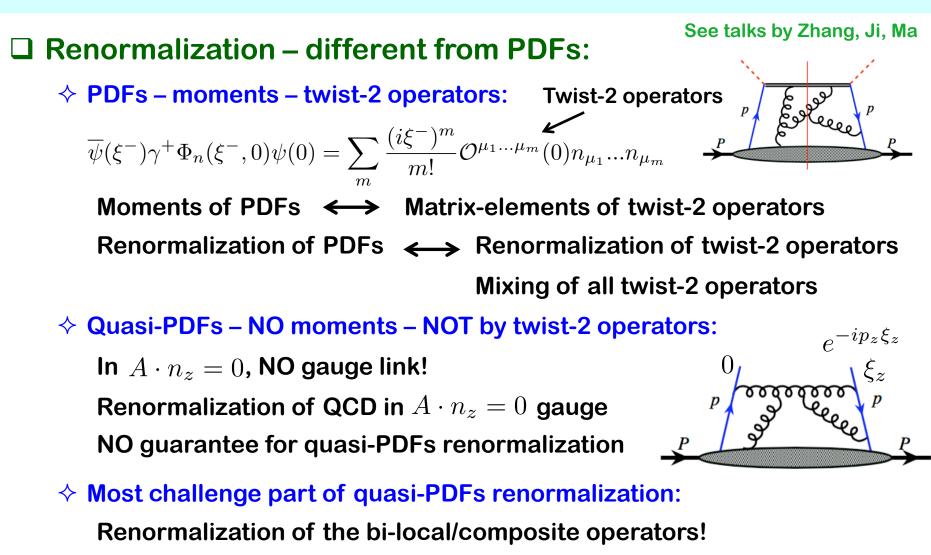
Questions to ask:

- The operators defining quasi-PDFs renormalizable?
- $\diamond\,$ The renormalization mix with other operators? within a close set?
- $\diamond\,$ The renormalized quasi-PDFs and PDFs share the same CO properties?
- ♦ Reliability to extract PDFs from the renormalized quasi-PDFs?
- ♦ Lattice calculation: nonperturbative renormalization?
 ♦ ...?

Extract hadron structure beyond quasi-DPFs?



 Most challenge part of quasi-PDFs renormalization: Renormalization of the bi-local/composite operators!



Conclusion from arXiv:1707.03107:

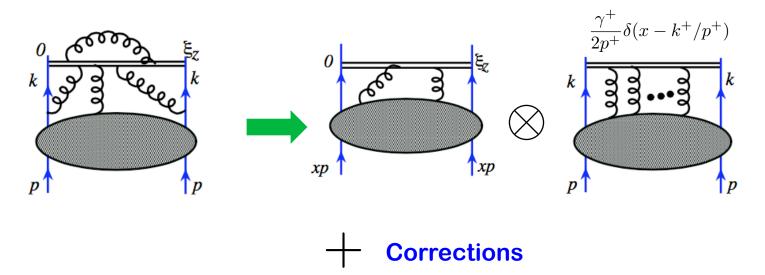
 $\tilde{F}_{i/p}^{R}(\xi_{z},\tilde{\mu}^{2},p_{z}) = e^{-C_{i}|\xi_{z}|} Z_{wi}^{-1} Z_{vi}^{-1} \tilde{F}_{i/p}^{b}(\xi_{z},\tilde{\mu}^{2},p_{z}),$

See Ma's talk tomorrow No mix with other flavors or gluon!

The goal for the rest of my talk

Does the renormalized quasi-PDFs and PDFs share the same CO properties?

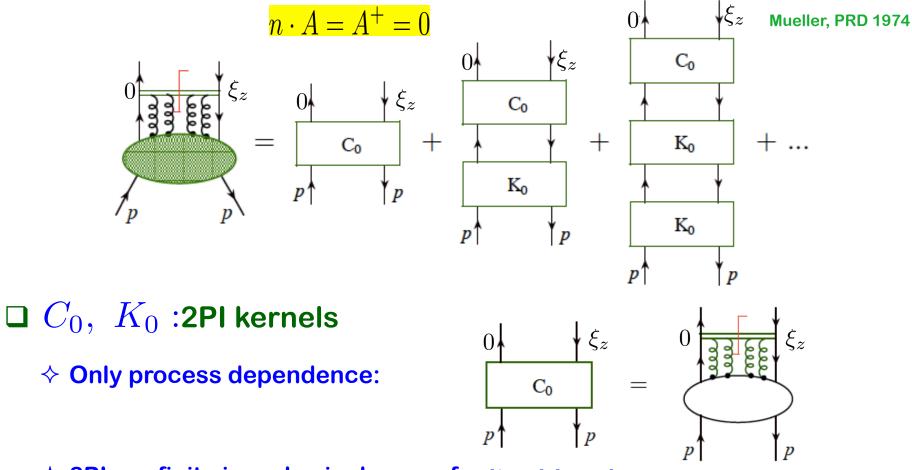
Can we extract PDFs from renormalized quasi-PDFs reliably?



Factorization of CO divergence

Ma and Qiu, arXiv:1404.6860

Generalized ladder decomposition in a physical gauge

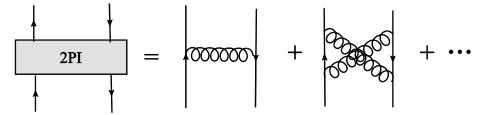


 \diamond 2PI are finite in a physical gauge for fixed *k* and *p*:

Ellis, Georgi, Machacek, Politzer, Ross, 1978, 1979

Factorization of CO divergence

2PI kernels – Diagrams:



lacksquare Ordering in virtuality: $P^2 \ll k^2 \lesssim ilde{\mu}^2$ – Leading power in $\frac{1}{\tilde{\mu}}$ **∀**k C₀ C₀ $\leftarrow \frac{1}{2}\gamma \cdot p$ $\leftarrow \frac{\gamma \cdot n}{2p \cdot n} \, \delta \left(x_i - \frac{k_i \cdot n}{p \cdot n} \right) \quad \text{+ power suppressed}$ (ki k, K₀ K₀ Cut-vertex for normal quark distribution p p р Logarithmic UV and CO divergence

Renormalized kernel - UV & IR safe - parton PDF:

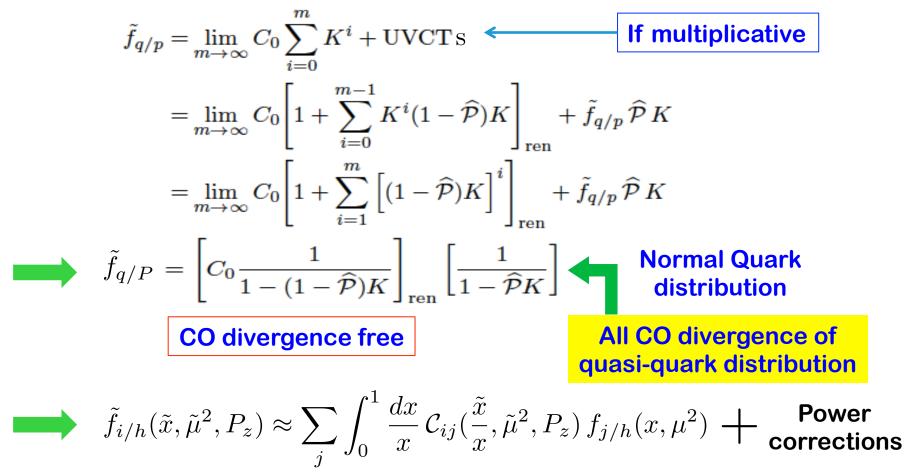
$$K \equiv \int d^4k_i \,\delta\left(x_i - \frac{k^+}{p^+}\right) \operatorname{Tr}\left[\frac{\gamma \cdot n}{2p \cdot n} \,K_0 \,\frac{\gamma \cdot p}{2}\right] + \operatorname{UVCT}_{\operatorname{Logarithmic}}$$

Factorization of CO divergence

Projection operator for CO divergence:

 $\widehat{\mathcal{P}} K$ Pick up the logarithmic CO divergence of K

Factorization of CO divergence:



One-loop example: quark \rightarrow quark

Ma and Qiu, arXiv:1404.6860

Expand the factorization formula:

$$\begin{split} \tilde{f}_{i/h}(\tilde{x}, \tilde{\mu}^2, P_z) &\approx \sum_j \int_0^1 \frac{dx}{x} \, \mathcal{C}_{ij}(\frac{\tilde{x}}{x}, \tilde{\mu}^2, P_z) \, f_{j/h}(x, \mu^2) \\ \text{To order } \alpha_s : \\ \tilde{f}_{q/q}^{(1)}(\tilde{x}) &= f_{q/q}^{(0)}(x) \otimes \mathcal{C}_{q/q}^{(1)}(\tilde{x}/x) + f_{q/q}^{(1)}(x) \otimes \mathcal{C}_{q/q}^{(0)}(\tilde{x}/x) \\ & \longrightarrow \quad \mathcal{C}_{q/q}^{(1)}(t, \tilde{\mu}^2, \mu^2, P_z) = \tilde{f}_{q/q}^{(1)}(t, \tilde{\mu}^2, P_z) - f_{q/q}^{(1)}(t, \mu^2) \end{split}$$

One-loop example: quark \rightarrow quark

Ma and Qiu, arXiv:1404.6860

Expand the factorization formula:

$$\begin{split} \tilde{f}_{i/h}(\tilde{x}, \tilde{\mu}^2, P_z) &\approx \sum_j \int_0^1 \frac{dx}{x} \, \mathcal{C}_{ij}(\frac{\tilde{x}}{x}, \tilde{\mu}^2, P_z) \, f_{j/h}(x, \mu^2) \\ \text{To order } \alpha_s: \\ \tilde{f}_{q/q}^{(1)}(\tilde{x}) &= f_{q/q}^{(0)}(x) \otimes \mathcal{C}_{q/q}^{(1)}(\tilde{x}/x) + f_{q/q}^{(1)}(x) \otimes \mathcal{C}_{q/q}^{(0)}(\tilde{x}/x) \end{split}$$

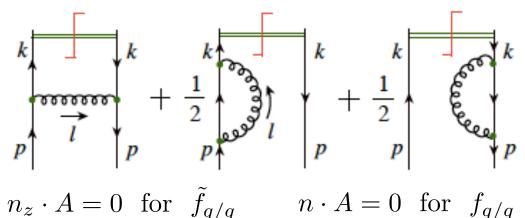
$$\mathcal{C}_{q/q}^{(1)}(t,\tilde{\mu}^2,\mu^2,P_z) = \tilde{f}_{q/q}^{(1)}(t,\tilde{\mu}^2,P_z) - f_{q/q}^{(1)}(t,\mu^2)$$

Feynman diagrams:

Same diagrams for both

$$ilde{f}_{q/q}$$
 and $f_{q/q}$

But, in different gauge:



Gluon propagator in n_z **. A = 0:**

$$\tilde{d}^{\alpha\beta}(l) = -g^{\alpha\beta} + \frac{l^{\alpha}n_z^{\beta} + n_z^{\alpha}l^{\beta}}{l_z} - \frac{n_z^2 \, l^{\alpha}l^{\beta}}{l_z^2}$$

with
$$n_z^2 = -1$$

One-loop "quasi-quark" distribution in a quark

Ma and Qiu, arXiv:1404.6860

Real + virtual contribution:

$$\begin{split} \tilde{f}_{q/q}^{(1)}(\tilde{x},\tilde{\mu}^{2},P_{z}) &= C_{F}\frac{\alpha_{s}}{2\pi}\frac{(4\pi)^{\epsilon}}{\Gamma(1-\epsilon)}\int_{0}^{\tilde{\mu}^{2}}\frac{dl_{\perp}^{2}}{l_{\perp}^{2+2\epsilon}}\int_{-\infty}^{+\infty}\frac{dl_{z}}{P_{z}}\left[\delta\left(1-\tilde{x}-y\right)-\delta\left(1-\tilde{x}\right)\right]\left\{\frac{1}{y}\left(1-y+\frac{1-\epsilon}{2}y^{2}\right)\right\} \\ &\times\left[\frac{y}{\sqrt{\lambda^{2}+y^{2}}}+\frac{1-y}{\sqrt{\lambda^{2}+(1-y)^{2}}}\right]+\frac{(1-y)\lambda^{2}}{2y^{2}\sqrt{\lambda^{2}+y^{2}}}+\frac{\lambda^{2}}{2y\sqrt{\lambda^{2}+(1-y)^{2}}}+\frac{1-\epsilon}{2}\frac{(1-y)\lambda^{2}}{[\lambda^{2}+(1-y)^{2}]^{3/2}}\right\} \end{split}$$

where $y = l_z/P_z, \ \lambda^2 = l_\perp^2/P_z^2, \ C_F = (N_c^2 - 1)/(2N_c)$

□ Cancelation of CO divergence:

$$\frac{y}{\sqrt{\lambda^2 + y^2}} + \frac{1 - y}{\sqrt{\lambda^2 + (1 - y)^2}} = 2\theta(0 < y < 1) - \left[\operatorname{Sgn}(y)\frac{\sqrt{\lambda^2 + y^2} - |y|}{\sqrt{\lambda^2 + y^2}} + \operatorname{Sgn}(1 - y)\frac{\sqrt{\lambda^2 + (1 - y)^2} - |1 - y|}{\sqrt{\lambda^2 + (1 - y)^2}}\right]$$

Only the first term is CO divergent for 0 < y < 1, which is the same as the divergence of the normal quark distribution – necessary!

One-loop "quasi-quark" distribution in a quark

Ma and Qiu, arXiv:1404.6860

Real + virtual contribution:

$$\begin{split} \tilde{f}_{q/q}^{(1)}(\tilde{x}, \tilde{\mu}^2, P_z) &= C_F \frac{\alpha_s}{2\pi} \frac{(4\pi)^{\epsilon}}{\Gamma(1-\epsilon)} \int_0^{\tilde{\mu}^2} \frac{dl_{\perp}^2}{l_{\perp}^{2+2\epsilon}} \int_{-\infty}^{+\infty} \frac{dl_z}{P_z} \left[\delta\left(1-\tilde{x}-y\right) - \delta\left(1-\tilde{x}\right)\right] \left\{ \frac{1}{y} \left(1-y+\frac{1-\epsilon}{2}y^2\right) \right\} \\ &\times \left[\frac{y}{\sqrt{\lambda^2+y^2}} + \frac{1-y}{\sqrt{\lambda^2+(1-y)^2}} \right] + \frac{(1-y)\lambda^2}{2y^2\sqrt{\lambda^2+y^2}} + \frac{\lambda^2}{2y\sqrt{\lambda^2+(1-y)^2}} + \frac{1-\epsilon}{2} \frac{(1-y)\lambda^2}{[\lambda^2+(1-y)^2]^{3/2}} \right\} \end{split}$$

where $y = l_z/P_z, \ \lambda^2 = l_\perp^2/P_z^2, \ C_F = (N_c^2 - 1)/(2N_c)$

□ Cancelation of CO divergence:

$$\frac{y}{\sqrt{\lambda^2 + y^2}} + \frac{1 - y}{\sqrt{\lambda^2 + (1 - y)^2}} = 2\theta(0 < y < 1) - \left[\operatorname{Sgn}(y)\frac{\sqrt{\lambda^2 + y^2} - |y|}{\sqrt{\lambda^2 + y^2}} + \operatorname{Sgn}(1 - y)\frac{\sqrt{\lambda^2 + (1 - y)^2} - |1 - y|}{\sqrt{\lambda^2 + (1 - y)^2}}\right]$$

Only the first term is CO divergent for 0 < y < 1, which is the same as the divergence of the normal quark distribution – necessary!

UV renormalization:

Different treatment for the upper limit of l_{\perp}^2 integration - "scheme" Here, a UV cutoff is used – other scheme is discussed in the paper

One-loop coefficient functions

Ma and Qiu, arXiv:1404.6860

 $\square \text{ MS scheme for } f_{q/q}(x,\mu^2):$ $\mathcal{C}_{q/q}^{(1)}(t,\tilde{\mu}^2,\mu^2,P_z) = \tilde{f}_{q/q}^{(1)}(t,\tilde{\mu}^2,P_z) - f_{q/q}^{(1)}(t,\mu^2) \qquad \text{CO, UV IR finite!}$ $\stackrel{\mathcal{C}_{q/q}^{(1)}(t)}{C_F \frac{\alpha_s}{2\pi}} = \left[\frac{1+t^2}{1-t}\ln\frac{\tilde{\mu}^2}{\mu^2} + 1 - t\right]_+ + \left[\frac{t\Lambda_{1-t}}{(1-t)^2} + \frac{\Lambda_t}{1-t} + \frac{\mathrm{Sgn}(t)\Lambda_t}{\Lambda_t + |t|} - \frac{1+t^2}{1-t}\left[\mathrm{Sgn}(t)\ln\left(1 + \frac{\Lambda_t}{2|t|}\right) + \mathrm{Sgn}(1-t)\ln\left(1 + \frac{\Lambda_{1-t}}{2|1-t|}\right)\right]\right]_N$

where $\Lambda_t = \sqrt{\tilde{\mu}^2/P_z^2 + t^2} - |t|$, $\operatorname{Sgn}(t) = 1$ if $t \ge 0$, and -1 otherwise.

□ Generalized "+" description: $t = \tilde{x}/x$ $\int_{-\infty}^{+\infty} dt \Big[g(t)\Big]_N h(t) = \int_{-\infty}^{+\infty} dt \, g(t) \left[h(t) - h(1)\right]$ For a testing function h(t)

Explicit verification of the CO factorization at one-loop

One-loop coefficient functions

Ma and Qiu, arXiv:1404.6860

 $\square \text{ MS scheme for } f_{q/q}(x,\mu^2):$ $\mathcal{C}_{q/q}^{(1)}(t,\tilde{\mu}^2,\mu^2,P_z) = \tilde{f}_{q/q}^{(1)}(t,\tilde{\mu}^2,P_z) - f_{q/q}^{(1)}(t,\mu^2) \qquad \text{CO, UV IR finite!}$ $\stackrel{\mathcal{C}_{q/q}^{(1)}(t)}{C_F \frac{\alpha_s}{2\pi}} = \left[\frac{1+t^2}{1-t}\ln\frac{\tilde{\mu}^2}{\mu^2} + 1 - t\right]_+ + \left[\frac{t\Lambda_{1-t}}{(1-t)^2} + \frac{\Lambda_t}{1-t} + \frac{\mathrm{Sgn}(t)\Lambda_t}{\Lambda_t + |t|} - \frac{1+t^2}{1-t}\left[\mathrm{Sgn}(t)\ln\left(1 + \frac{\Lambda_t}{2|t|}\right) + \mathrm{Sgn}(1-t)\ln\left(1 + \frac{\Lambda_{1-t}}{2|1-t|}\right)\right]\right]_N$

where $\Lambda_t = \sqrt{\tilde{\mu}^2/P_z^2 + t^2} - |t|$, $\operatorname{Sgn}(t) = 1$ if $t \ge 0$, and -1 otherwise.

□ Generalized "+" description: $t = \tilde{x}/x$ $\int_{-\infty}^{+\infty} dt \Big[g(t)\Big]_N h(t) = \int_{-\infty}^{+\infty} dt \, g(t) \, [h(t) - h(1)]$ For a testing function h(t)

Explicit verification of the CO factorization at one-loop

Note: $\Lambda_t \to \mathcal{O}\left(\frac{\widetilde{\mu}}{P_Z}\right)$ as $P_Z \to \infty$

the linear power UV divergence!

Pseudo-PDFs

Radyushkin, 2017

□ Pseudo-PDFs = generalization of PDFs:

♦ **Definition**: $\xi^2 < 0$

$$\mathcal{M}^{\alpha}(\nu = p \cdot \xi, \xi^{2}) \equiv \langle p | \overline{\psi}(0) \gamma^{\alpha} \Phi_{v}(0, \xi, v \cdot A) \psi(\xi) | p \rangle$$

$$\equiv 2p^{\alpha} \mathcal{M}_{p}(\nu, \xi^{2}) + \xi^{\alpha}(p^{2}/\nu) \mathcal{M}_{\xi}(\nu, \xi^{2}) \approx 2p^{\alpha} \mathcal{M}_{p}(\nu, \xi^{2})$$

$$\mathcal{P}(x, \xi^{2}) \equiv \int \frac{d\nu}{2\pi} e^{ix \nu} \frac{1}{2p^{+}} \mathcal{M}^{+}(\nu, \xi^{2})$$

♦ Interpretation:

with $\xi^{\mu} = (0^+, \xi^-, 0_{\perp})$ **Off-light-cone extension of PDFs:** $f(x) = \mathcal{P}(x, \xi^2 = 0)$

Quasi-PDFs:

$$\begin{aligned} \xi^{\mu} &= (0, 0_{\perp}, \xi_z) & \text{No longer Lorentz invariant} \\ \tilde{q}(x, \mu^2, p_z) &= \int \frac{d\nu}{2\pi} e^{ix\nu} \frac{1}{2p_z} \mathcal{M}^z (\nu = p_z \xi_z, -\xi_z^2) \end{aligned}$$

TMDs:

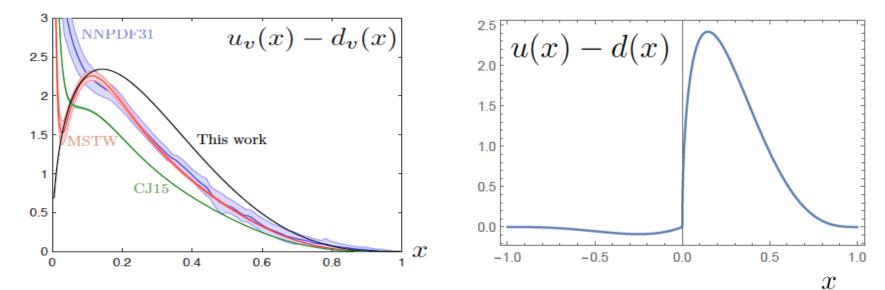
Pseudo-PDFs

Orginos, et al, 2017 1706.05373

 \diamond Lattice calculation with $\alpha = 0$:

□ Numerical results:

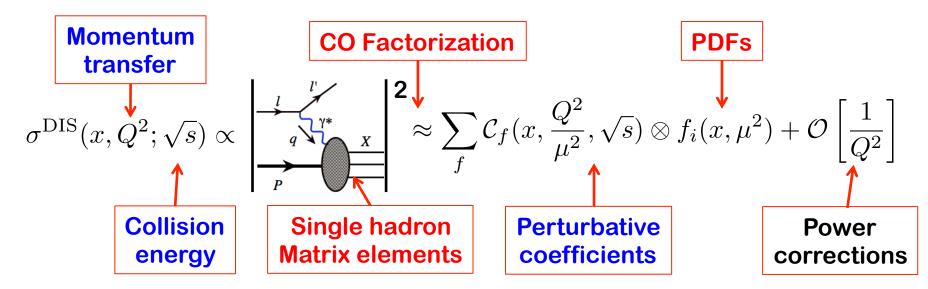
Pseudo-PDFs:



Ma and Qiu, arXiv:1404.6860

A pQCD factorization approach:

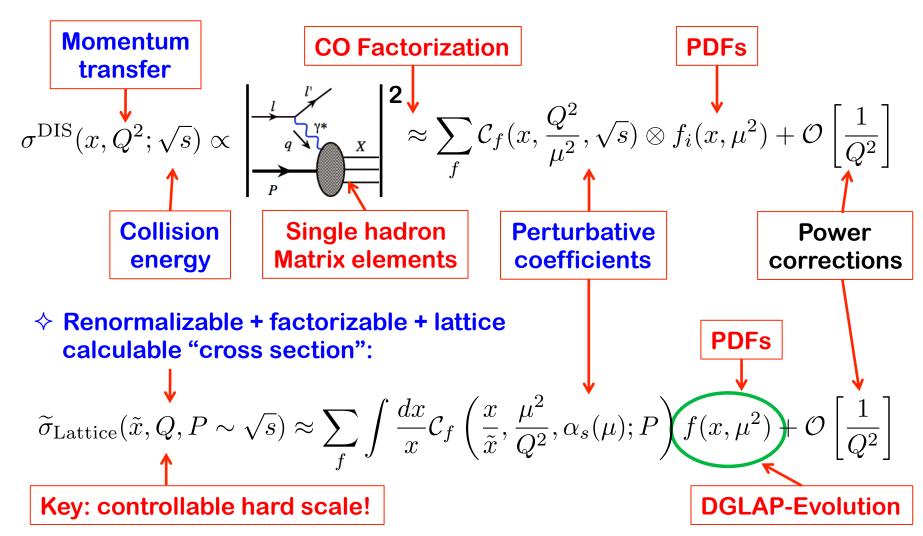
♦ Recall: Collinear factorization of DIS cross section – single hadron



Ma and Qiu, arXiv:1404.6860

A pQCD factorization approach:

♦ Recall: Collinear factorization of DIS cross section – single hadron



Ma and Qiu, arXiv:1404.6860

□ What is lattice "cross section"?

Single hadron matrix elements, with the following properties:

♦ Lattice calculable:

Calculable using lattice QCD with an Euclidean time

♦ UV Renormalizable:

Ensure a well-defined continuum limit, UV & IR finite!

♦ CO Factorizable:

Share the same perturbative collinear divergences with PDFs Factorizable to PDFs with IR-safe hard coefficients with controllable power corrections

Ma and Qiu, arXiv:1404.6860

□ What is lattice "cross section"?

Single hadron matrix elements, with the following properties:

♦ Lattice calculable:

Calculable using lattice QCD with an Euclidean time

♦ UV Renormalizable:

Ensure a well-defined continuum limit, UV & IR finite!

♦ CO Factorizable:

Share the same perturbative collinear divergences with PDFs Factorizable to PDFs with IR-safe hard coefficients with controllable power corrections

Key requirement:

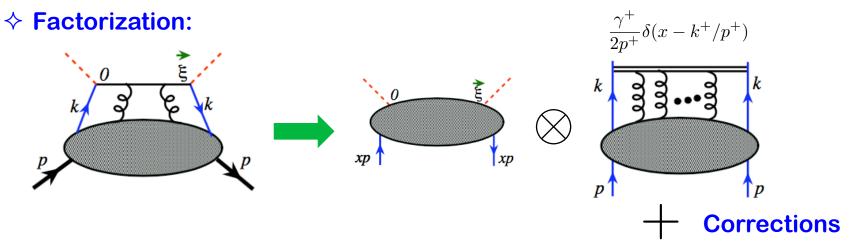
A controllable large momentum scale – conjugate to hadron momentum

to define the "collision" dynamics of the "cross section" to ensure the necessary condition for the factorization

Example: Current correlators

♦ Coordinate space:

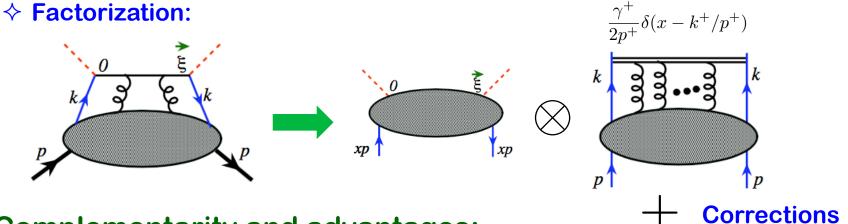
$$\mathcal{T}_{jj}(p,s,\xi) = \lim_{\xi^0 \to 0^+} \langle p, s | T\{ j_{\Gamma}(\xi^0,\vec{\xi}) j_{\Gamma}(0) \} | p, s \rangle$$



Example: Current correlators

♦ Coordinate space:

 $\mathcal{T}_{jj}(p,s,\xi) = \lim_{\xi^0 \to 0^+} \langle p, s | T\{ j_{\Gamma}(\xi^0,\vec{\xi}) j_{\Gamma}(0) \} | p, s \rangle$



Complementarity and advantages:

- \diamond Complementary to existing approaches for extracting PDFs, ...
- ♦ Go beyond quasi-PDFs with tremendous potentials:

Neutron PDFs, ... (no free neutron target!) Meson PDFs, such as pion, ... More direct access to gluons – gluonic current, ...

Summary and outlook

"Iattice cross sections" = single hadron matrix elements calculable in Lattice QCD, renormalizable + factorizable in QCD

Going beyond the quasi-PDFs

Extract PDFs by global analysis of data on "Lattice x-sections".
 Same should work for other distributions (TMDs, GPDs)

$$\widetilde{\sigma}_{\mathrm{E}}^{\mathrm{Lat}}(\widetilde{x}, \frac{1}{a}, P_z) \approx \sum_{i} \int_0^1 \frac{dx}{x} f_{i/h}(x, \mu^2) \widetilde{\mathcal{C}}_i(\frac{\widetilde{x}}{x}, \frac{1}{a}, \mu^2, P_z),$$

Conservation of difficulties – complementarity: High energy scattering experiments

- less sensitive to large x parton distribution/correlation

"Lattice factorizable cross sections"

- more suited for large x PDFs, but limited to large x for now

Quasi-PDFs are renormalizable & factorizable

□ Lattice QCD can be used to study hadron structure, but, more works are needed!

Thank you!

