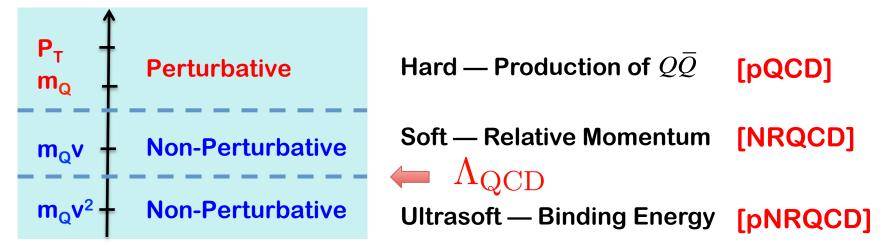


J/Ψ Production and Polarization within a Jet

Jianwei Qiu Theory Center, Jefferson Lab November 9, 2017

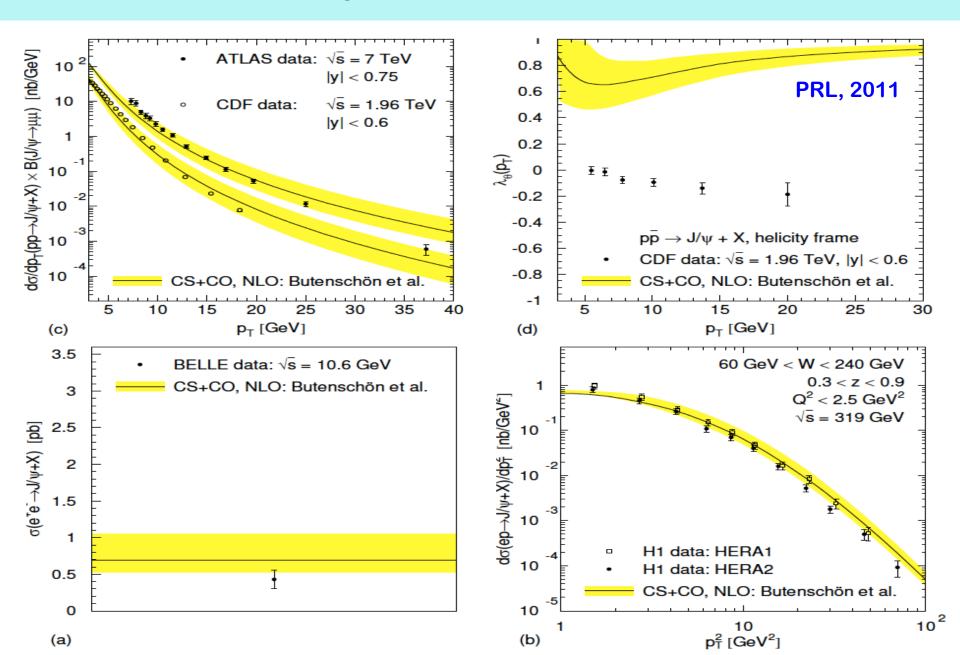


□ One of the simplest QCD bound states:

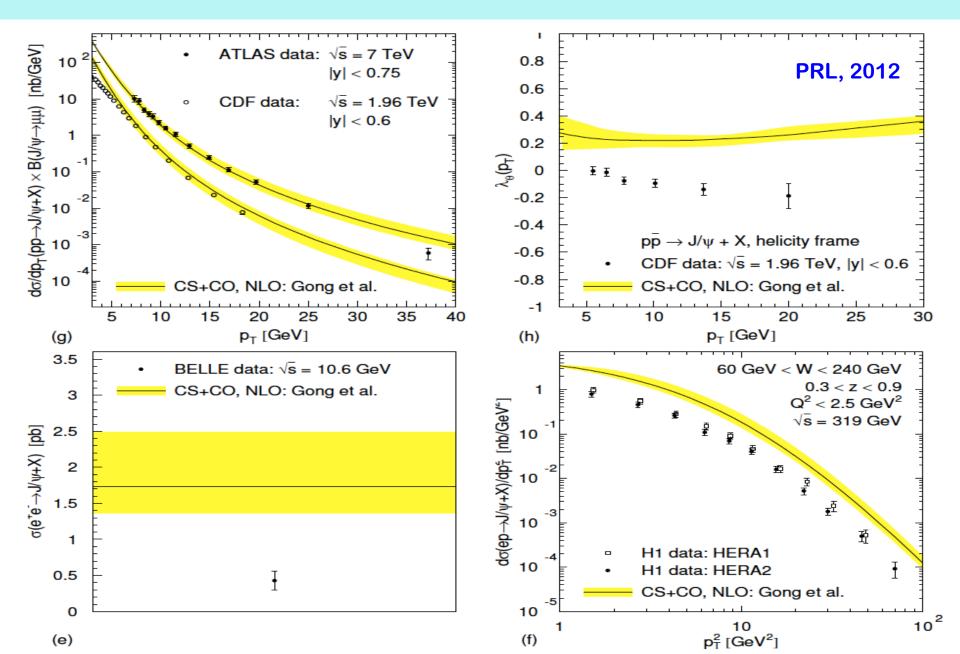
Localized color charges (heavy mass), non-relativistic relative motion

Charmonium: $v^2 \approx 0.3$ **Bottomonium:** $v^2 \approx 0.1$

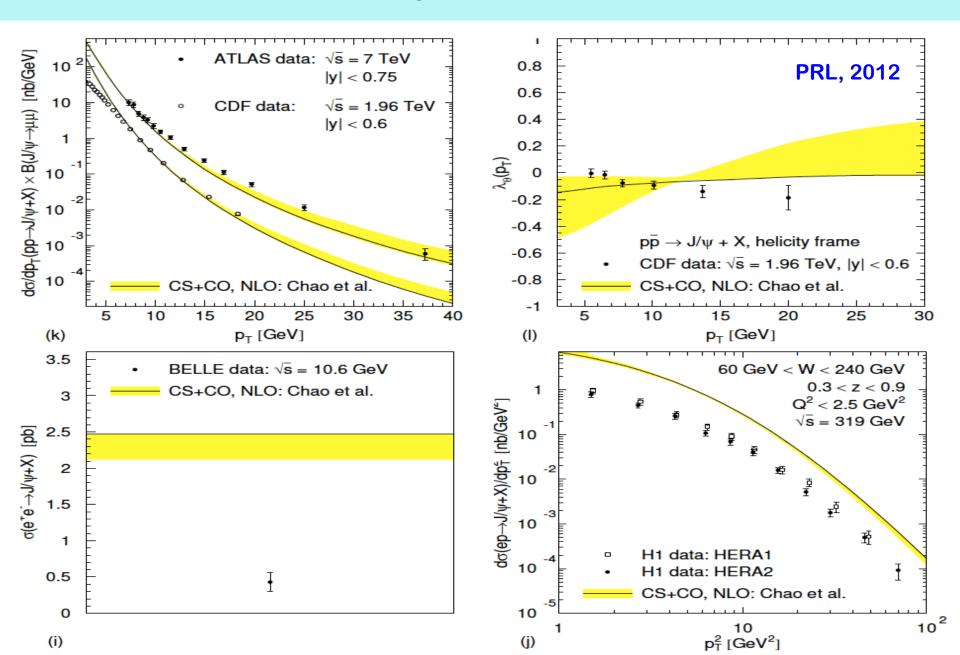
Well-separated momentum scales – effective theory:

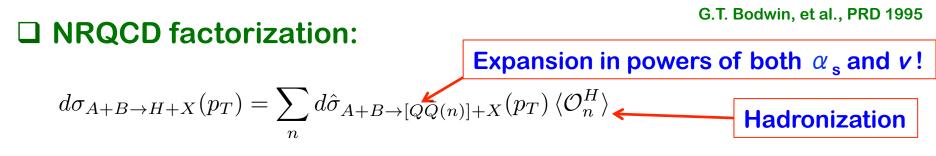

Cross sections and observed mass scales:

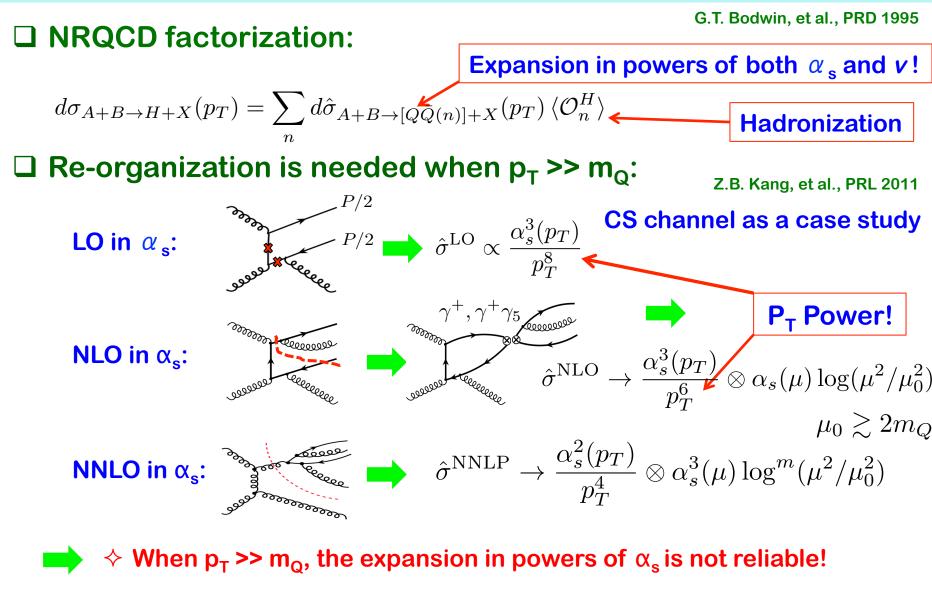
 $\frac{d\sigma_{AB\to H(P)X}}{dydP_T^2} \qquad \sqrt{S}, \qquad P_T, \qquad M_H,$


PQCD is "expected" to work for the production of heavy quarks

Emergence of a quarkonium from a heavy quark pair?


NLO theory fits – Butenschoen et al.




NLO theory fits – Gong et al.

NLO theory fits – Chao et al.

♦ Leading order in α_{s} -expansion =\= leading power in 1/p_T-expansion!

G.T. Bodwin, et al., PRD 1995 **Expansion in powers of both** α_{s} and v! $d\sigma_{A+B\rightarrow H+X}(p_{T}) = \sum_{n} d\hat{\sigma}_{A+B\rightarrow [Q\bar{Q}(n)]+X}(p_{T}) \langle \mathcal{O}_{n}^{H} \rangle$ **PQCD factorization:** $d\sigma_{A+B\rightarrow H+X}(p_{T}) = \sum_{i} d\tilde{\sigma}_{A+B\rightarrow i+X}(p_{T}/z,\mu) \otimes D_{H/i}(z,\mu)$ **LP NLP** $+ \sum d\tilde{\sigma}_{A+B\rightarrow [Q\bar{Q}(n)]+X}(p_{T}/z,\zeta_{1},\zeta_{2},\mu) \otimes D_{H/[Q\bar{Q}(n)]}(z,\zeta_{1},\zeta_{2},\mu)$

□ NRQCD factorization:

G.T. Bodwin, et al., PRD 1995

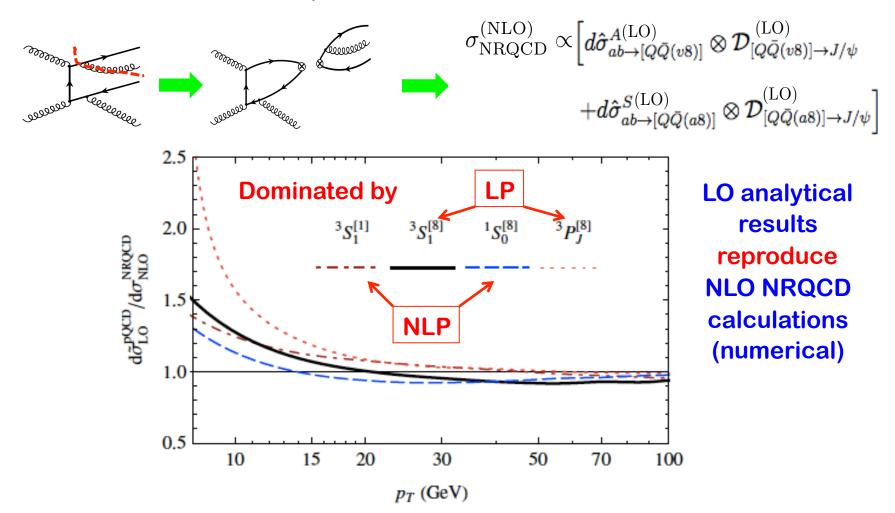
Expansion in powers of both α_s and v!

$$d\sigma_{A+B\to H+X}(p_T) = \sum_n d\hat{\sigma}_{A+B\to [QQ(n)]+X}(p_T) \langle \mathcal{O}_n^H \rangle$$

PQCD factorization:

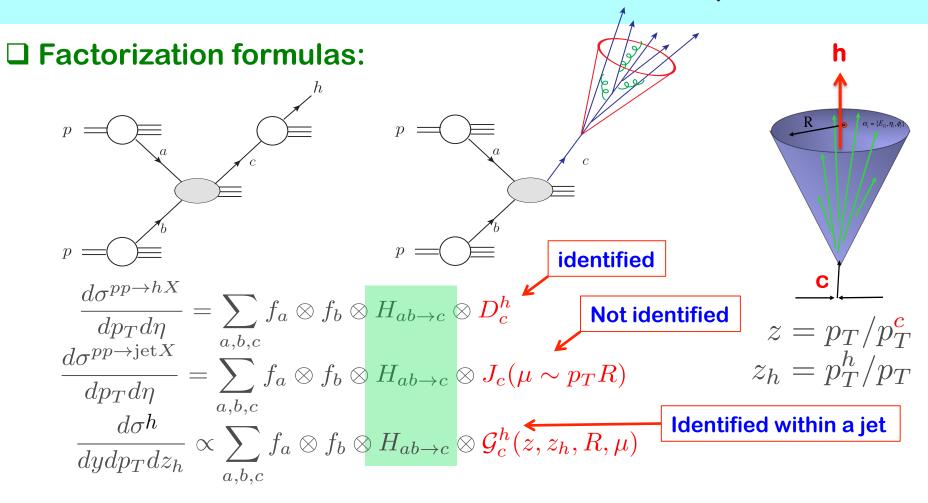
G.T. Nayak, et al., PRD2005 Z.B. Kang, et al., PRD2014

$$d\sigma_{A+B\to H+X}(p_T) = \sum_{i} d\tilde{\sigma}_{A+B\to i+X}(p_T/z,\mu) \otimes D_{H/i}(z,\mu) \leftarrow \mathsf{LP}$$
$$\mathsf{NLP} \longrightarrow + \sum_{n} d\tilde{\sigma}_{A+B\to [Q\bar{Q}(n)]+X}(p_T/z,\zeta_1,\zeta_2,\mu) \otimes \mathcal{D}_{H/[Q\bar{Q}(n)]}(z,\zeta_1,\zeta_2,\mu)$$

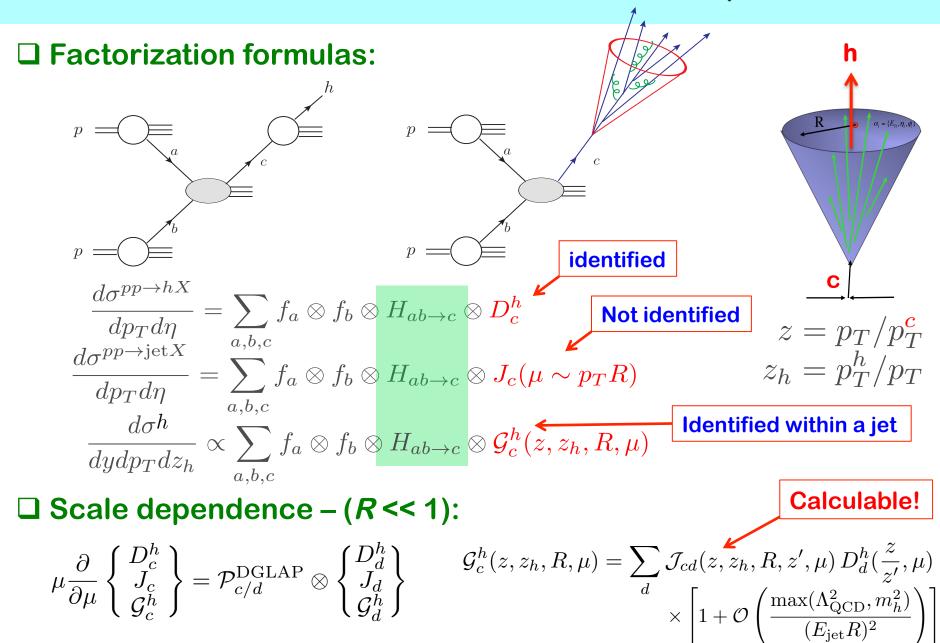

Model: Using NRQCD factorization for the INPUT fragmentation functions

$$\begin{split} D_{H/i}(z,\mu_0) &= \sum_n d_{i \to [Q\bar{Q}(n)]}(z,\mu_0) \left\langle \mathcal{O}_n^H \right\rangle & \text{Y.Q. Ma, et al., PRD2014} \\ \mathcal{D}_{H/[Q\bar{Q}(m)]}(z,\zeta_1,\zeta_2,\mu_0) &= \sum_n d_{[Q\bar{Q}(m)] \to [Q\bar{Q}(n)]}(z,\zeta_1,\zeta_2,\mu_0) \left\langle \mathcal{O}_n^H \right\rangle \end{split}$$

G.T. Bodwin, et al., PRD 1995 NRQCD factorization: **Expansion in powers of both** α_s and v! $d\sigma_{A+B\to H+X}(p_T) = \sum_{n} d\hat{\sigma}_{A+B\to [QQ(n)]+X}(p_T) \langle \mathcal{O}_n^H \rangle$ G.T. Nayak, et al., PRD2005 PQCD factorization: Z.B. Kang, et al., PRD2014 $d\sigma_{A+B\to H+X}(p_T) = \sum_{i} d\tilde{\sigma}_{A+B\to i+X}(p_T/z,\mu) \otimes D_{H/i}(z,\mu) \leftarrow \mathbf{LP}$ $\mathsf{NLP} \longrightarrow + \sum d\tilde{\sigma}_{A+B \to [Q\bar{Q}(n)]+X}(p_T/z,\zeta_1,\zeta_2,\mu) \otimes \mathcal{D}_{H/[Q\bar{Q}(n)]}(z,\zeta_1,\zeta_2,\mu)$ Model: Using NRQCD factorization for the INPUT fragmentation functions $D_{H/i}(z,\mu_0) = \sum d_{i \to [Q\bar{Q}(n)]}(z,\mu_0) \left\langle \mathcal{O}_n^H \right\rangle$ Y.Q. Ma, et al., PRD2014 $\mathcal{D}_{H/[Q\bar{Q}(m)]}(z,\zeta_1,\zeta_2,\mu_0) = \sum d_{[Q\bar{Q}(m)]\to[Q\bar{Q}(n)]}(z,\zeta_1,\zeta_2,\mu_0) \langle \mathcal{O}_n^H \rangle$ □ PQCD improved NRQCD factorization: **Evolution** = resummation $d\hat{\sigma}_{A+B\to[Q\bar{Q}(n)]+X}(p_T) = \sum_{i} d\tilde{\sigma}_{A+B\to i+X}(p_T/z) \otimes d_{i\to[Q\bar{Q}(n)]}(z)$ + $\sum d\tilde{\sigma}_{A+B\to [Q\bar{Q}(m)]+X}(p_T/z,\zeta_1,\zeta_2)\otimes d_{[Q\bar{Q}(m)]\to [Q\bar{Q}(n)]}(z,\zeta_1,\zeta_2)$


Channel-by-channel comparison

□ NRQCD vs. PQCD improved NRQCD:



P_T – distribution is not sufficient for fixing all NRQCD matrix elements Need more physical observables!

Hadron distributions at high P_T

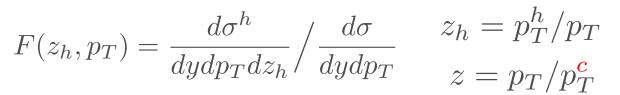
Hadron distributions at high P_T

Jet fragmentation function

□ Ratio of two physical observables:

$$F(z_h, p_T) = \frac{d\sigma^h}{dydp_T dz_h} / \frac{d\sigma}{dydp_T} \qquad z_h = p_T^h / p_T$$
$$z = p_T / p_T^c$$

First produce a jet, and then look further for a hadron inside the jet!


Favor the contribution initiated by a single energetic parton!

$$F_{A+B\to H+X}(z_h, p_T) \propto \sum_{n} \tilde{\mathcal{F}}_{A+B\to [Q\bar{Q}(n)]+X}(z_h, p_T) \langle \mathcal{O}_n^H \rangle$$

Different relative size of the coefficients, and different weights of the matrix elements

Jet fragmentation function

□ Ratio of two physical observables:

First produce a jet, and then look further for a hadron inside the jet!

Favor the contribution initiated by a single energetic parton!

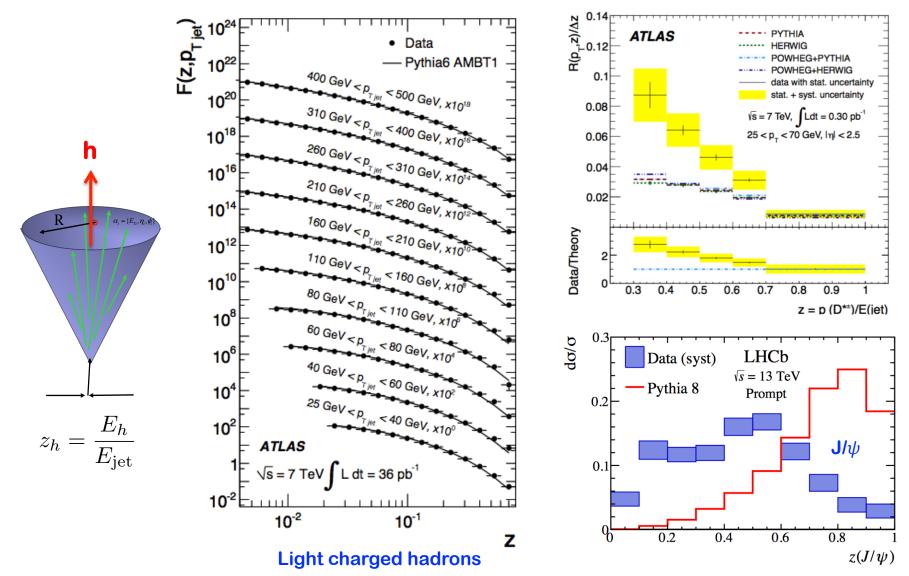
$$F_{A+B\to H+X}(z_h, p_T) \propto \sum_n \tilde{\mathcal{F}}_{A+B\to [Q\bar{Q}(n)]+X}(z_h, p_T) \langle \mathcal{O}_n^H \rangle$$

Polarization: Different relative size of the coefficients,

Different relative size of the coefficients, and different weights of the matrix elements

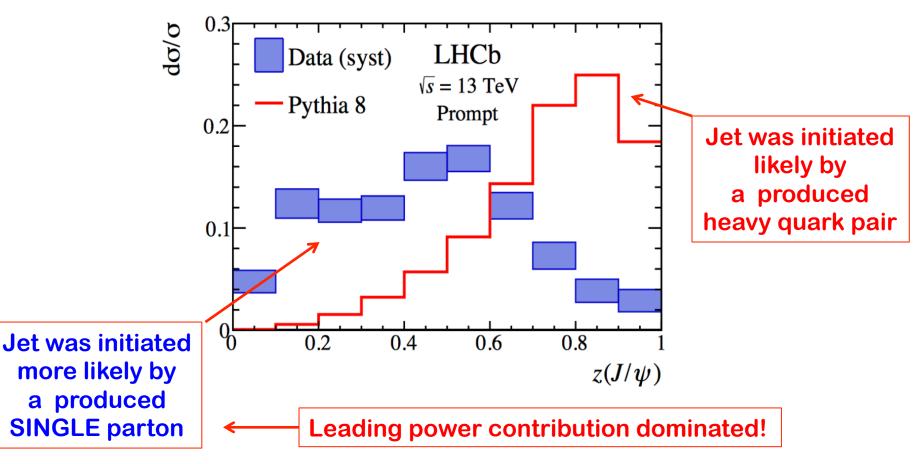
In the helicity frame: Kang, Qiu, Ringer, Xing, Zhang, PRL 2017

$$\frac{d\sigma^{J/\psi(\to\ell^+\ell^-)}}{d\cos\theta} \propto 1 + \lambda_F \cos^2\theta.$$

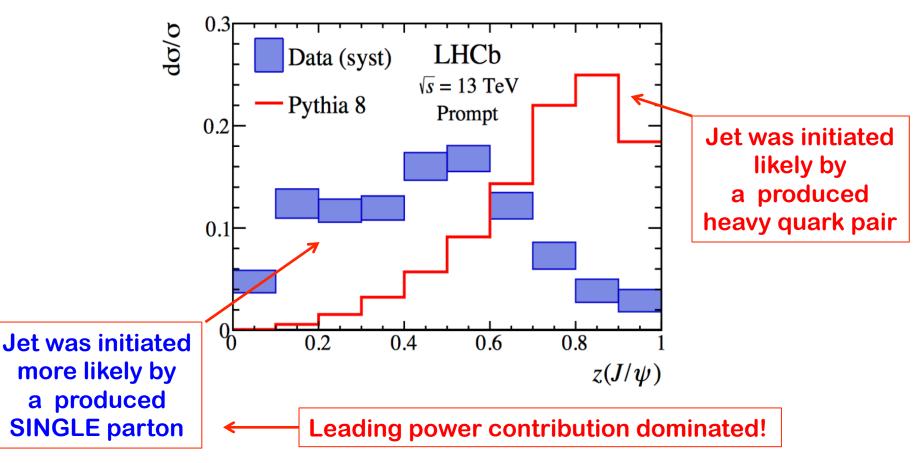

$$E_{\pi}^{J/\psi} - E_{\pi}^{J/\psi} = (\pm 1)$$

 $\lambda_F(z_h, p_T) = \frac{F_T^{J/\psi} - F_L^{J/\psi}}{F_T^{J/\psi} + F_L^{J/\psi}} = \begin{cases} +1, & \text{Transverse} \\ -1, & \text{Longitudinal} \end{cases}$

with


Jet fragmentation function at the LHC

□ A puzzle (or opportunity) for heavy flavor?


Quarkonium production inside a jet

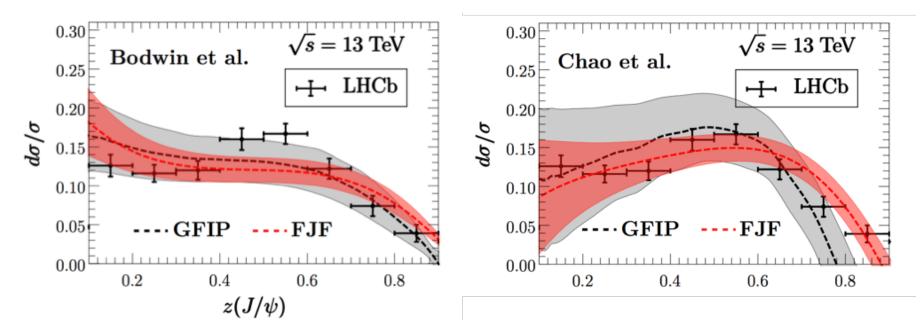
\Box J/ ψ -in-jet measurement from LHCb:

Quarkonium production inside a jet

\Box J/ ψ -in-jet measurement from LHCb:

Recall:

A delicate cancelation was required between ${}^{3}S_{1}^{[8]}$ and ${}^{3}P_{J}^{[8]}$ channels was required for fitting the high p_T-distribution!


Incomplete cancelation could lead to a "negative" $d\sigma$ or F , …

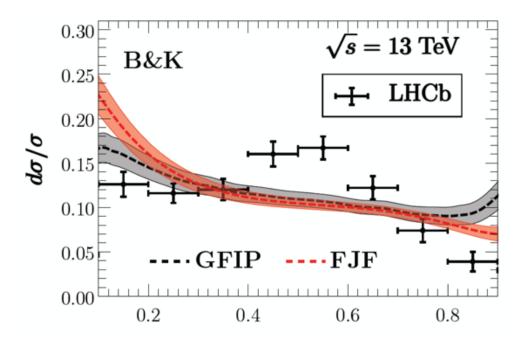
\mathbf{J}/ψ production in jets

□ Fitted NRQCD matrix elements:

Baumgart et al., JHEP14 Bain et al. PRL17

				$\langle {\cal O}^{J/\psi}({}^3P_0^{[8]}) \rangle /m_c^2$
	$\times \text{ GeV}^3$	$\times 10^{-2}~{\rm GeV^3}$	$ imes 10^{-2} { m GeV}^3$	$ imes 10^{-2} { m GeV}^3$
B & K [5, 6]	1.32 ± 0.20	0.224 ± 0.59	4.97 ± 0.44	-0.72 ± 0.88
Chao, et al. [12]	1.16 ± 0.20	0.30 ± 0.12	8.9 ± 0.98	0.56 ± 0.21
Bodwin et al. [13]	1.32 ± 0.20	1.1 ± 1.0	9.9 ± 2.2	0.49 ± 0.44

FJFs: fragmentation jet functions GFIP: gluon fragmentation improved PYTHIA

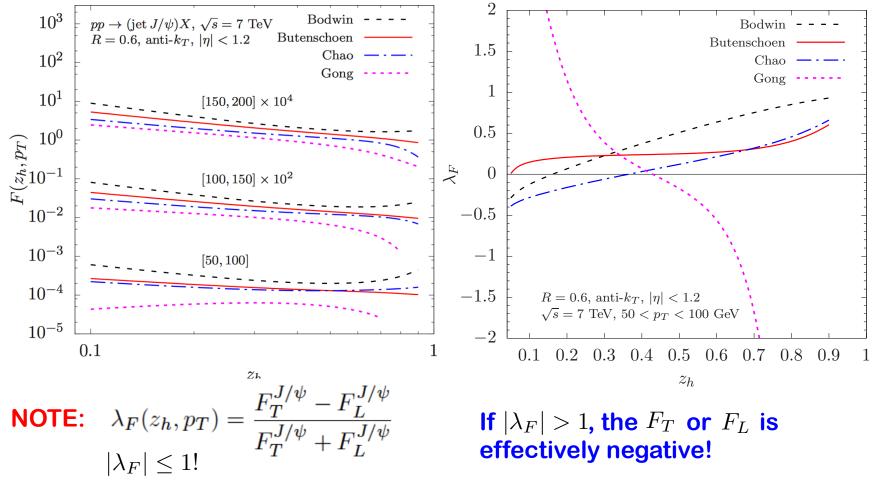

Two are consistent

J/ψ production in jets

□ Fitted NRQCD matrix elements:

Baumgart et al., JHEP14 Bain et al. PRL17

	$\langle \mathcal{O}^{J/\psi}({}^3S_1^{[1]})\rangle$	$\langle \mathcal{O}^{J/\psi}({}^3S_1^{[8]})\rangle$	$\langle \mathcal{O}^{J/\psi}({}^1S_0^{[8]})\rangle$	$\langle \mathcal{O}^{J/\psi}(^{3}P_{0}^{[8]})\rangle/m_{c}^{2}$
	$\times \text{ GeV}^3$	$\times 10^{-2}~{\rm GeV^3}$	$ imes 10^{-2} { m GeV}^3$	$ imes 10^{-2} { m GeV}^3$
B & K [5, 6]	1.32 ± 0.20	0.224 ± 0.59	4.97 ± 0.44	-0.72 ± 0.88
Chao, et al. [12]	1.16 ± 0.20	0.30 ± 0.12	8.9 ± 0.98	0.56 ± 0.21
Bodwin et al. [13]	1.32 ± 0.20	1.1 ± 1.0	9.9 ± 2.2	0.49 ± 0.44


FJFs: fragmentation jet functions GFIP: gluon fragmentation improved PYTHIA

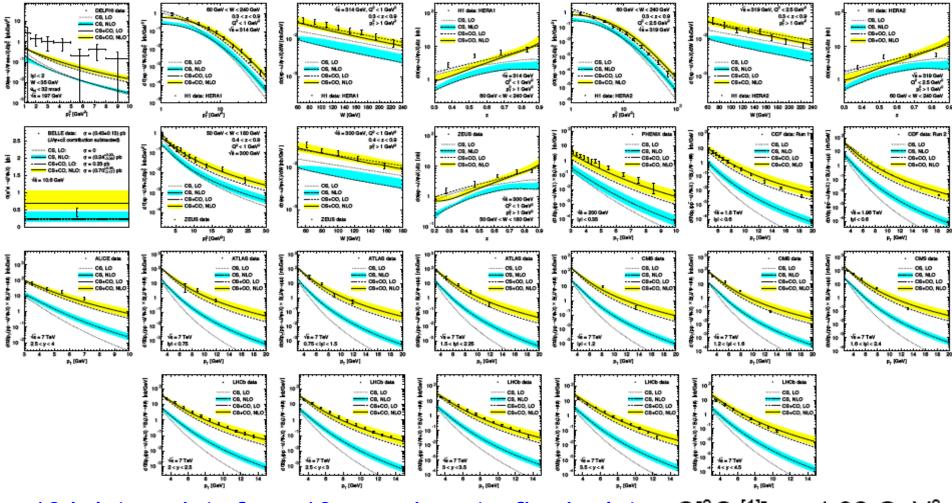
This fit has a poor agreement with jet data

J/ψ production and polarization in jets

Polarization:

Kang, Qiu, Ringer, Xing, Zhang, PRL 2017 See also Bain, et al, PRL 2017

More differential than inclusive $J/\psi p_T$ spectrum, and can better discriminate different NRQCD parameterizations!


Summary and outlook

- □ It has been over 40 years since the discovery of J/Ψ , we still have a lot of questions about their production mechanism
- When p_T (E) >> m_Q at collider energies, earlier model calculations for the production of heavy quarkonia are not perturbatively stable
 LO in α_s-expansion may not be the LP term in m_Q/p_T(E)-expansion
- QCD factorization works for both LP and NLP (α_s for each power)
 Sub-leading power is very important for the p_T-shape and polarization
 There are still a lot of unanswered questions related to quarkonium!
- Quarkonium production and polarization in the jet could be very good observables to help pin down the production mechanism

Thank you!

Backup slides

Global analysis of heavy quarkonium production

194 data points from 10 experiments, fix singlet $<O[^{3}S_{1}^{[1]}]> = 1.32 \text{ GeV}^{3}$

 $< O[^{1}S_{0}^{[8]}] > = (4.97 \pm 0.44) \cdot 10^{-2} \text{ GeV}^{3}$ $< O[^{3}S_{1}^{[8]}] > = (2.24 \pm 0.59) \cdot 10^{-3} \text{ GeV}^{3}$ $< O[^{3}P_{0}^{[8]}] > = (-1.61 \pm 0.20) \cdot 10^{-2} \text{ GeV}^{5}$

 $\chi^2/d.o.f. = 857/194 = 4.42$

Butenschoen and Kniehl, arXiv: 1105.0820