The curious case of 30 hadron structure

Andrea Signori
PSU Berks
Science Division Colloquium
Nov. 32017

Jefferson Lab

Outline of curiosities

1) how to organize and "map" the study of hadron structure

2] asymmetries associated to hadron structure as a non abelian AB effect

3] some research lines and a focus on my work

The speaker

Jefferson Lab

Nov. 2016 - present |
postdoc
Jefferson Lab (VA, USA)

2012-2016 |

PhD candidate
Nikhef and Vrije Universiteit
Amsterdam [NL]

Nikef
 VU

2012 |Summer intern
DESY - Hermes collaboration [GE]

2012 |undergrad
"Hadron structure and QCD" group
Pavia U. (IT]

The research line

credit picture : Ohio State Univ.

Hadron physics \& QCD

Why the proton?

- building blocks of our world: at the core of the atomic nucleus;
~ 99.97% of the mass of the world we live in is accounted by protons +neutrons [hadrons)
- connection between chemistry, atomic, nuclear physics and the elementary building blocks of Nature

Why the proton?

- building blocks of our world: at the core of the atomic nucleus;
~ 99.97% of the mass of the world we live in is accounted by protons +neutrons (hadrons)
- connection between chemistry, atomic, nuclear physics and the elementary building blocks of Nature

HOW WELL DO WE KNOW THE PROTON?

Transuerse looks at hadrons

How to map hadron structure in 3D momentum space in terms of quarks and gluons

Wigner distributions

$$
W(q, \stackrel{p}{p})=\frac{1}{\pi h} \int_{-\infty}^{+\infty}
$$

$$
d y\langle q-y| \hat{\rho}|q+y\rangle e^{2 i p y / h}
$$

In 1932, Wigner formulated quantum mechanics in terms of a distribution $W[q, p]$, the marginals of which yield the quantum probabilities for q and p separately.

- It provides a re-expression of quantum mechanics in terms of classical concepts
- quantum mechanical expectation values are now expressed as averages over phasespace distributions:

$$
\operatorname{Tr}(\hat{\rho} \hat{A}) \longrightarrow \int d p d q A(q, p) W(q, p)
$$

Wigner, TMDs, GPDs

In 1932, Wigner formulated quantum mechanics in terms of a distribution $W[q, p]$, the marginals of which yield the quantum probabilities for q and p separately.

In perturbative QCD we do not know how to calculate the density matrix of quarks/gluons inside a proton, which is of nonperturbative nature.

We can define projections of Wigner distributions, as the TMDs and the GPDs, and link it to information accessible in experimental data.

Wigner, TMDs, GPDs

each projection
carries only a portion of the
complete picture
complementary information
[TMDs, GPDs, etc.]
is essential to have a global understanding of hadron structure

Proton tomography

Semi-inclusive DIS

TMD PDFs

TMD PDFs

of the structure
with coordinates :

TMD PDFs

of the structure
quark pol.

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

TMDs
with coordinates :

knowledge of the proton structure in
three-dimensional momentum space

Geametry meets experiments

What generates the hadronic matter?
The color force is responsible for the generation of hadronic properties:
connection between the geometrical description of the theory and experimental measurements

A matter of connections

Ehrenberg and Siday Aharonov and Bohm [1950s]

It is possible to show that the amplitude of the
interference pattern on the screen is proportional to a phase
involving the integral of the
electromagnetic potential
[connection]

$$
\exp \{-i e \oint d x \cdot A(x)\}
$$

effect induced by the connection
U(1)!

A matter of connections

Single Spin Asymmetries in QCD

$$
p p^{\uparrow} \rightarrow W^{-} \rightarrow \ell^{-} \bar{\nu}
$$

Flipping the direction of the transverse spin, we observe an asymmetry (A_{N}) in the cross section

A matter of connections

Single Spin Asymmetries : the first investigations

[144] A. Lesnik, D. M. Schwartz, I. Ambats, E. Hayes, W. T. Meyer, C. E. W. Ward, T. M. Knasel, E. C. Swallow, R. Winston, and T. A. Romanowski, Observation of a Difference Between Polarization and Analyzing Power in Λ^{0} Production with 6 GeV/c Polarized Protons, Phys. Rev. Lett. 35 (1975) 770.
[145] G. Bunce et al., Λ^{0} Hyperon Polarization in Inclusive Production by 300 GeV Protons on Beryllium., Phys. Rev. Lett. 36 (1976) 1113-1116.
[146] E704, E581, D. L. Adams et al., Comparison of spin asymmetries and cross sections in π^{0} production by 200 GeV polarized anti-protons and protons, Phys. Lett. B261 (1991) 201-206.
[147] FNAL-E704, D. L. Adams et al., Analyzing power in inclusive π^{+}and π^{-}production at high $x(F)$ with a 200 GeV polarized proton beam, Phys. Lett. B264 (1991) 462-466.
[148] E704, E581, D. L. Adams et al., Large $x(F)$ spin asymmetry in π° production by 200 GeV polarized protons, Z. Phys. C56 (1992) 181-184.
[149] K. Krueger et al., Large analyzing power in inclusive $\pi^{ \pm}$production at high $x(F)$ with a 22 GeV/c polarized proton beam, Phys. Lett. B459 (1999) 412-416.

A matter of connections

Single Spin Asymmetries in QCD
the first proposal relied on interactions of soft gluons
from the target remnants with the active partons in the initial state
collinear twist-3 matrix elements

Qiu-Sterman [QS] function

$$
\underline{T_{F}\left(x_{q}, x_{g}\right)}
$$

$$
p p^{\uparrow} \rightarrow W^{-} \rightarrow \ell^{-} \bar{\nu}
$$

As in a non-abelian Aharonov-Bohm effect, the quark "feels the connection" *color, SU[3]* associated to the other hadron

A matter of connections

Single Spin Asymmetries in QCD

Later, D. Sivers proposed an explanation based on the correlation
between the transverse momentum k_{T} of the quark and
the transverse spin S_{t} of the proton
introducing the Sivers TMD PDF

$$
p p^{\uparrow} \rightarrow W^{-} \rightarrow \ell^{-} \bar{\nu}
$$

A matter of connections

Single Spin Asymmetries in QCD

It turns out that to satisfy the time reversal invariance and gauge invariance of QCD, a gluon exchange is needed also in
the case of the Sivers function:
formal introduction of gauge links
in TMD PDFs

TMD and collinear twist-3 pictures are related!

$$
p p^{\uparrow} \rightarrow W^{-} \rightarrow \ell^{-} \bar{\nu}
$$

$$
\overrightarrow{k_{T}} \times \overrightarrow{S_{T}} \underline{f_{1 T}^{\perp}\left(x, k_{T}^{2}\right)}
$$

A matter of connections

Single Spin Asymmetries in QCD

The common feature: the gluon exchange between the active parton and the remnant of the
polarized hadron generates an imaginary phase, required for having a non-vanishing asymmetry

$$
p p^{\uparrow} \rightarrow W^{-} \rightarrow \ell^{-} \bar{\nu}
$$

$\mathcal{P} \exp \left\{-i g \int_{c} d s_{\mu} A^{\mu, a}(s)\right\}$
asymmetry induced by non-abelian connection NON ABELIAN AB effect

A matter of connections

Single Spin Asymmetries in QCD

$$
T_{F}\left(x_{q}, x_{g}\right)
$$

$$
p p^{\uparrow} \rightarrow W^{-} \rightarrow \ell^{-} \bar{\nu}
$$

$$
f_{1 T}^{\perp}\left(x, k_{T}^{2}\right)
$$

- matched at large transverse momentum [OPE]
- also work in progress in PSU Berks, JLab

Experimental investigations

Experimental investigations

Same research lines

Hot topics

how does confinement work ?

Hot topics

how to describe the proton spin?

What about the proton mass?

Hot topics

how are the elementary constituents distributed inside the proton?

How do they move?

How different is the motion of gluons vs quarks? What about the flavor?

Internal tomography

Hot topics

Impact of the structure on
high-energy scattering experiments

My focus

how does confinement work?

Evolution effects

Evolution effects

What happens if we change the resolution
of the picture?

QCD evolution equations

Evolution effects

The roots of this question are inside
factorization theorems

What happens if we change the resolution of the picture?

QCD evolution equations

Impact on high-energy physics experiments?
Interplay with flavor effects?

Need of TMD evolution

Drell-Yan

Flavor effects

Flavor effects

What does the

Flavor effects

Hot topics

Impact of the structure on
high-energy scattering experiments

EW precision measurements

Eur.Phys.J. C74 [2014] 3046

After the measurement of the Higgs mass, all the free parameters of the Standard Model are known.

Precise measurements of electroweak quantities allow:

1) Stringent tests of the self consistency of the SM
2) Looking for hints of physics beyond the SM

In particular the values of the masses of the gauge bosons, the Higgs and the top quark can help in discriminating among different BSM scenarios.

H, Z, t : direct determinations more precise than indirect; not for W!
see:

* S. Camarda - Measurement of the W mass with ATLAS EPS 2017
- Measurement

W mass

Experimental measurements

$$
m_{W}=80370 \pm 19 \mathrm{MeV}
$$

(7 stat, $11 \exp , 14$ th)

Global EW fit

$$
m_{W}=80356 \pm 8 \mathrm{MeV}
$$

Need to better control the uncertainties associated to direct determinations of mW

Is it possible to reduce the uncertainty to less than 10 MeV ?

Are we estimating all the uncertainties of hadronic nature in the best way possible?

Z vs W : flavor content

hadronic uncertainties have been estimated on Z data
and used to predict the W distribution, assuming they are the same for Z and W

This reflects a flavor independent approach and might not be optimal because of the different flavor content:
the intrinsic contributions
are different in Z and $\mathrm{W} \pm$ production

Backup

Gluon TMDs

$$
e p \rightarrow e \text { jet jet } X \quad p p \rightarrow J / \psi \gamma X \quad \quad p p \rightarrow \eta_{c} X
$$

EIC!

.. and why would you do that?

$$
\begin{gathered}
\text { unpolarized TMD PDF: } \\
\text { - test of factorization formalism } \\
\text { - improve our description of qT spectra [e.g. at } \mathbf{W} \text { at LHC] } \\
\text { - baseline to extract polarized TMDs from asymmetries } \\
\text { collinear twist 3 PDF e[x]: } \\
\text { - insights in quark-gluon-quark correlations } \\
\text { - scalar charge of the nucleon } \\
\text { - nucleon sigma term? } \\
\text { T-odd Boer-Mulders and Sivers TMD PDFs: } \\
\text { - rigorous tests of the symmetry properties of QCD } \\
\text { [sign change between SIDIS and Drell-Yan] } \\
\text { transversity [TMD] PDF: } \\
\text { - access to the tensor charge of the nucleon } \\
\text { - window on BSM physics } \\
\text { - also accessible in inclusive DIS ? } \\
\text { collinear [?] spin-1 function: } \\
\text { - another rigorous test of QCD symmetries } \\
\text { - T-odd effects in spin-1 hadrons } \\
49 \quad \text { JefferSOM Lab }
\end{gathered}
$$

Need of TMD evolution

HERMES, $Q \approx 1.5 \mathrm{GeV}$

Airapetian et al., PRD87 (2013)

Need of TMD evolution

HERMES, $Q \approx 1.5 \mathrm{GeV}$

Airapetian et al., PRD87 (2013)
$C D F, Q \approx 91 \mathrm{GeV}$

Need of TMD evolution

HERMES, $Q \approx 1.5 \mathrm{GeV}$

CDF, $Q \approx 91 \mathrm{GeV}$

Width of TMDs changes of one order of magnitude: we can we explain this with TMD evolution

Flavor effects

lepton-proton

extraction

Flavor effects

lepton-proton

extraction
electron-positron

predictions

Flavor effects

extraction

proton-proton

uncertainties
associated to mw extractions

```
work in progress!
```


W pT \& mass

The W pT spectrum is sensitive to:

* perturbative and non-perturbative parts of TMDs
in particular the flavor decomposition of the TMDs in the transverse momentum has not been taken into account yet!

Observable sensitive to the \mathbf{W} mass are:

* the lepton pT distribution [very sensitive to the treatment of $\mathrm{W} \mathrm{p} T$ distribution)
* the transverse mass, defined as $\quad m_{T}=\sqrt{2 p_{T}^{\ell} p_{T}^{\nu}\left(1-\cos \left(\phi_{\ell}-\phi_{\nu}\right)\right)}$
[less sensitive to W pT distribution, due to its high sensitivity to detector effects]
see: S. Camarda - Measurement of the W mass with ATLAS - EPS 2017
G. Bozzi - Flavor dependent effects on the determination of mW (INT 17-68W)

Nonperturbative effects

$$
\frac{d \sigma^{Z / W^{ \pm}}}{d q_{T}} \sim \mathrm{FT} \sum_{i, j} \exp \left\{-g_{i j} b_{T}^{2}\right\} \quad g_{i j} \sim\left\langle k_{T}^{2}\right\rangle_{i}+\left\langle k_{T}^{2}\right\rangle_{j}+\text { soft gluons }
$$

Uncertainties: peak

	W^{+}					
$\mu_{R}=\mu_{c} / 2,2 \mu_{c}$	+0.30	-0.09	+0.29	-0.06	+0.23	-0.05
pdf $(90 \% \mathrm{cl})$	+0.03	-0.05	+0.06	-0.02	+0.05	-0.02
$\alpha_{S}=0.121,0.115$	+0.14	-0.12	+0.14	-0.14	+0.15	-0.15
f.i. $\left\langle\mathbf{k}_{T}^{2}\right\rangle=1.0,1.96$	+0.16	-0.16	+0.16	-0.14	+0.16	-0.15
f.d. $\left\langle\mathbf{k}_{T}^{2}\right\rangle\left(\max W^{+}\right.$effect $)$	+0.09			-0.06	± 0	
f.d. $\left\langle\mathbf{k}_{T}^{2}\right\rangle\left(\max W^{-}\right.$effect $)$		-0.03	+0.05		± 0	

Table 7.2. Summary of the shifts in GeV for the peal position for q_{T} spectra of $W^{ \pm} / Z$ arising from different sources. The colors for the flayor dependent (f.d.) and independent (f.i.) variations match the ones in Sec. 7.4.6.
anticorrelated shifts for $\mathrm{W} \pm$, which keep the Z peak unchanged
the flavor dependence of the intrinsic partonic transverse momentum is inspired to the results in 10.1007/JHEP11(2013)194 [AS et al.)

