# The curious case of 3D hadron structure

#### Andrea Signori

#### PSU Berks Science Division Colloquium

Nov. 3 2017







1) how to organize and "map" the study of hadron structure

2) asymmetries associated to hadron structure as a non abelian AB effect

3) some research lines and a focus on my work



### The speaker



Nov. 2016 - present | postdoc Jefferson Lab (VA, USA)

2012 - 2016 | PhD candidate Nikhef and Vrije Universiteit Amsterdam (NL)





**2012 | Summer intern** DESY - Hermes collaboration (GE)

**2012 | undergrad** "Hadron structure and QCD" group Pavia U. (IT)







## The research line



## Hadron physics & QCD





## Why the proton?



 building blocks of our world: at the core of the atomic nucleus;
 99.97% of the mass of the world we live in is accounted by protons +neutrons (hadrons)

- **connection** between chemistry, atomic, nuclear physics and the elementary building blocks of Nature



## Why the proton?



 building blocks of our world: at the core of the atomic nucleus;
 99.97% of the mass of the world we live in is accounted by protons +neutrons (hadrons)

- **connection** between chemistry, atomic, nuclear physics and the elementary building blocks of Nature

#### HOW WELL DO WE KNOW THE PROTON ?



Transverse looks at hadrons

How to map hadron structure in 3D momentum space in terms of quarks and gluons



## Wigner distributions



In 1932, Wigner formulated **quantum mechanics** in terms of a distribution W (q, p), the marginals of which yield the quantum probabilities for q and p separately.

It provides a re-expression of quantum mechanics in terms of classical concepts
 quantum mechanical expectation values are now expressed as averages over phase-space distributions:

$$\operatorname{Tr}(\hat{\rho}\hat{A}) \longrightarrow \int dp \ dq \ A(q,p) \ W(q,p)$$



# Wigner, TMDs, GPDs



In 1932, Wigner formulated quantum mechanics in terms of a distribution W(q, p), the marginals of which yield the quantum probabilities for q and p separately.

In perturbative **QCD** we do not know how to calculate the **density matrix of quarks/gluons** inside a proton, which is of **nonperturbative** nature.

We can define **projections** of **Wigner distributions**, as the **TMDs** and the **GPDs**, and link it to information **accessible in experimental data**.



## Wigner, TMDs, GPDs



each projection carries only a portion of the complete picture

complementary information (TMDs, GPDs, etc.) is essential to have a global understanding of hadron structure



## Proton tomography



## Semi-inclusive DIS



## TMD PDFs





## TMD PDFs



## TMD PDFs



Geometry meets experiments

What **generates** the hadronic matter?

The color force is responsible for the generation of hadronic properties:

connection between the geometrical description of the theory and experimental measurements





screen with interference pattern

Ehrenberg and Siday -Aharonov and Bohm (1950s)

It is possible to show that the amplitude of the interference pattern on the screen is proportional to a phase involving the integral of the electromagnetic potential (connection)

$$\exp\left\{-ie\oint dx\cdot A(x)\right\}$$

effect induced by the connection U(1) !





 $pp^{\uparrow} \to W^- \to \ell^- \bar{\nu}$ 



Flipping the direction of the transverse spin, we observe an asymmetry (A<sub>N</sub>) in the cross section



Single Spin Asymmetries : the first investigations

- [144] A. Lesnik, D. M. Schwartz, I. Ambats, E. Hayes, W. T. Meyer, C. E. W. Ward, T. M. Knasel, E. C. Swallow, R. Winston, and T. A. Romanowski, Observation of a Difference Between Polarization and Analyzing Power in Λ<sup>0</sup> Production with 6 GeV/c Polarized Protons, Phys. Rev. Lett. 35 (1975) 770.
- [145] G. Bunce et al., Λ<sup>0</sup> Hyperon Polarization in Inclusive Production by 300 GeV Protons on Beryllium., Phys. Rev. Lett. 36 (1976) 1113–1116.
- [146] E704, E581, D. L. Adams et al., Comparison of spin asymmetries and cross sections in π<sup>0</sup> production by 200 GeV polarized anti-protons and protons, Phys. Lett. B261 (1991) 201-206.
- [147] FNAL-E704, D. L. Adams et al., Analyzing power in inclusive π<sup>+</sup> and π<sup>-</sup> production at high x(F) with a 200 GeV polarized proton beam, Phys. Lett. B264 (1991) 462-466.
- [148] E704, E581, D. L. Adams et al., Large x(F) spin asymmetry in π<sup>0</sup> production by 200 GeV polarized protons, Z. Phys. C56 (1992) 181–184.
- [149] K. Krueger et al., Large analyzing power in inclusive π<sup>±</sup> production at high x(F) with a 22 GeV/c polarized proton beam, Phys. Lett. B459 (1999) 412-416.



Single Spin Asymmetries in QCD

the first proposal relied on interactions of soft gluons from the target remnants with the active partons in the initial state

collinear twist-3 matrix elements

Qiu-Sterman [QS] function

 $T_F(x_q, x_g)$ 



 $pp^{\uparrow} \to W^- \to \ell^- \bar{\nu}$ 

As in a non-abelian Aharonov-Bohm effect, the quark "feels the connection" \*color, SU(3)\* associated to the other hadron



Single Spin Asymmetries in QCD

Later, D. Sivers proposed an explanation based on the **correlation** between the **transverse momentum k**<sub>T</sub> of **the quark** and the **transverse spin S**<sub>T</sub> of the proton

introducing the Sivers TMD PDF







Single Spin Asymmetries in QCD

It turns out that to satisfy the **time reversal invariance** and **gauge invariance** of QCD, a gluon exchange is needed also in the case of the Sivers function: formal introduction of **gauge links** in TMD PDFs

TMD and collinear twist-3 pictures are related!











- matched at large transverse momentum (OPE)

- also work in progress in PSU Berks, JLab



## Experimental investigations



#### Experimental investigations



Some research lines





how does confinement work?





how to describe the proton spin ?

What about the proton mass ?





how are the elementary constituents distributed inside the proton?

How do they move ?

How different is the motion of gluons vs quarks? What about the flavor?

Internal tomography





Impact of the structure on high-energy scattering experiments



## My focus





...



#### **Evolution** effects





#### **Evolution** effects



What happens if we change the resolution of the picture?

**QCD** evolution equations



## **Evolution** effects



The roots of this question are inside factorization theorems



What happens if we change the resolution of the picture?

**QCD** evolution equations

Impact on high-energy physics experiments? Interplay with flavor effects?







### Drell-Yan













### Hot topics



Impact of the structure on high-energy scattering experiments



### EW precision measurements

#### Eur.Phys.J. C74 (2014) 3046

After the measurement of the Higgs mass, all the free parameters of the Standard Model are known.

Precise measurements of electroweak quantities allow:

- 1) Stringent **tests** of the self consistency of the SM
- 2) Looking for hints of physics **beyond** the SM

In particular the values of the **masses** of the gauge bosons, the Higgs and the top quark can help in discriminating among different BSM scenarios.

H, Z, t : direct determinations more precise than indirect; **not for W** !

see:

\* S. Camarda - Measurement of the W mass with ATLAS EPS 2017



### W mass

ATLAS, arxiv:1701.07240





hadronic uncertainties have been estimated on Z data and used to predict the W distribution, assuming they are the same for Z and W

This reflects a flavor independent approach and might not be optimal because of the different flavor content:

the intrinsic contributions are **different in Z and W± production** 



 $\mathcal{U}$ 

Conclusions & outlook

### FLAVOR AND EVOLUTION EFFECTS IN TMD PHENOMENOLOGY

Andrea Signori

ects TMD phenomenolog

### Backup



# Gluon TMDs

 $e \ p \to e \ \text{jet jet } X$ 

 $p p \to J/\psi \gamma X$ 

 $p \ p \to \eta_c \ X$ 





### .. and why would you do that ?

#### unpolarized TMD PDF:

- test of factorization formalism
   improve our description of qT spectra (e.g. at W at LHC)
  - baseline to extract polarized TMDs from asymmetries

#### collinear twist 3 PDF e(x):

insights in quark-gluon-quark correlations
 scalar charge of the nucleon
 nucleon sigma term ?

#### T-odd Boer-Mulders and Sivers TMD PDFs:

- rigorous tests of the symmetry properties of QCD (sign change between SIDIS and Drell-Yan)

#### transversity (TMD) PDF:

access to the tensor charge of the nucleon
window on BSM physics
also accessible in inclusive DIS ?

#### collinear (?) spin-1 function:

- another rigorous test of QCD symmetries - T-odd effects in **spin-1** hadrons



 $h_{1}^{\perp} , f_{1T}^{\perp}$ 

 $f_1$ 

e

 $h_1$ 

 $h_{1LT}$ 







Jefferson Lab

25



Width of TMDs changes of one order of magnitude: we can we explain this with TMD evolution











### W pT & mass

The **W pT spectrum** is sensitive to:

\* perturbative and non-perturbative parts of TMDs

in particular the **flavor decomposition** of the TMDs in the **transverse momentum** has **not been taken into account yet!** 

Observable sensitive to the **W mass** are:

\* the lepton pT distribution (very sensitive to the treatment of W pT distribution)

\* the transverse mass, defined as 
$$m_T = \sqrt{2} \; p_T^\ell \; p_T^
u \; (1 - \cos(\phi_\ell - \phi_
u))$$

(less sensitive to W pT distribution, due to its high sensitivity to detector effects)

see: S. Camarda - Measurement of the W mass with ATLAS - EPS 2017 G. Bozzi - Flavor dependent effects on the determination of mW (INT 17-68W)



### Nonperturbative effects

AS - PhD thesis



### Uncertainties: peak

AS - PhD thesis

|  |                                                                              | $W^+$ |       | $W^-$ |       | Z       |       |
|--|------------------------------------------------------------------------------|-------|-------|-------|-------|---------|-------|
|  | $\mu_R=\mu_c/2,2\mu_c$                                                       | +0.30 | -0.09 | +0.29 | -0.06 | +0.23   | -0.05 |
|  | pdf (90% cl)                                                                 | +0.03 | -0.05 | +0.06 | -0.02 | +0.05   | -0.02 |
|  | $\alpha_S=0.121, 0.115$                                                      | +0.14 | -0.12 | +0.14 | -0.14 | +0.15   | -0.15 |
|  | f.i. $\left< \mathbf{k}_{\scriptscriptstyle T}^2 \right> = 1.0, 1.96$        | +0.16 | -0.16 | +0.16 | -0.14 | +0.16   | -0.15 |
|  | f.d. $\left< \mathbf{k}_{\scriptscriptstyle T}^2 \right>$ (max $W^+$ effect) | +0.09 |       |       | -0.06 | $\pm 0$ |       |
|  | f.d. $\left< \mathbf{k}_{\scriptscriptstyle T}^2 \right>$ (max $W^-$ effect) |       | -0.03 | +0.05 | 1     | $\pm 0$ |       |

**Table 7.2**. Summary of the shifts in GeV for the peak position for  $q_T$  spectra of  $W^{\pm}/Z$  arising from different sources. The colors for the flavor dependent (f.d.) and independent (f.i.) variations match the ones in Sec. 7.4.6.

anticorrelated shifts for W±, which keep the Z peak unchanged

the flavor dependence of the intrinsic partonic transverse momentum is inspired to the results in 10.1007/JHEP11(2013)194 (AS et al.)

