Intersections of hadronic spectroscopy and partonic structure

C. Weiss (JLab), Future Directions in Spectroscopy Analysis, Mexico City, 09-Nov-17

Jefferson Lab

• How we describe hadron structure in QCD

QCD operators, matrix elements, measurements, interpretation

- How we can extend the concepts/methods to resonances $\langle N^* | \mathcal{O} | N \rangle, \ \langle N^* | \mathcal{O} | N^* \rangle, \ \langle h^* | \mathcal{O} | 0 \rangle, \ldots$
- How amplitude analysis methods can contribute to hadron structure extraction and calculation

Analyticity, dispersion relations, unitarity, . . .

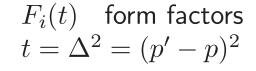
Outline

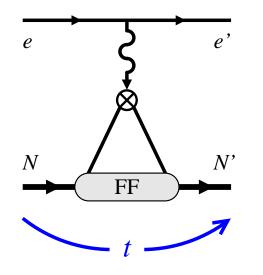
• Hadron structure in QCD

Current operators and form factors Light-ray operators and generalized parton distributions (GPDs) QCD factorization of hard exclusive processes Interpretation in light-front quantization Extension to resonances

• Form factors and transverse densities

Nucleon transverse densities Dispersion analysis and peripheral structure $N \to N^*$ and $N^* \to N^*$ densities


• Exclusive processes and GPDs


Hard exclusive production of photons/mesons $N \to N^* \text{ transition GPDs}$ Meson structure

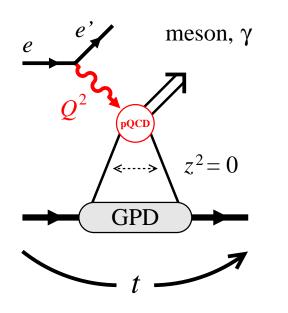
Hadron structure: Current operators

Vector/axial current Local composite operator Scale-independent (conserved)

 $\left< p' \right| J^{\mu} \left| p \right>$

 $J^{\mu} = \bar{\psi}\gamma^{\mu}\psi \quad (\gamma^{\mu}\gamma^5)$

Elastic scattering $eN \rightarrow e'N'$ $|t| \sim \mu_{had}^2 \sim 1 \,\text{GeV}^2$


Hadron structure: Light-ray operators

$$\mathcal{O}(z) = \bar{\psi}(0) \, z \cdot \gamma \dots \psi(z) \mid_{z^2 = 0}$$

Light-ray operator, twist-2 Non-local; local limit $z \to 0$ gives current Logarithmic scale dependence, calculable

 $\langle p'|\mathcal{O}(z)|p\rangle$

 $F_i(P \cdot z, \Delta \cdot z, t)$ Generalized form factors (or GPDs)

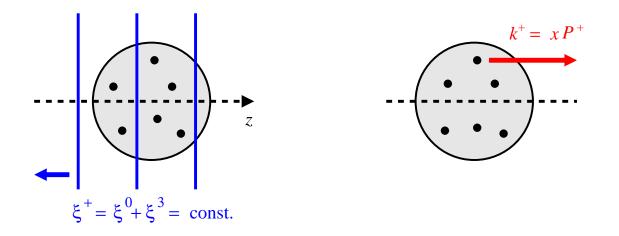
Exclusive production $eN \rightarrow e'NM$ Factorization in limit $Q^2, W^2 \gg \mu_{had}^2$

 $\begin{array}{ll} {\rm momenta}\gg \mu_{\rm had}^2 & {\rm in} & {\rm pQCD\ subprocess}\\ & \sim \mu_{\rm had}^2 & {\rm in} & {\rm operator\ matrix\ element} \end{array}$

Momentum transfer $|t| \sim \mu_{\rm had}^2 \sim 1 \,{\rm GeV}^2$

Müller et al. 94; Frankfurt Collins Strikman 96; Ji 96; Radyushkin 96

Hadron structure: Factorization

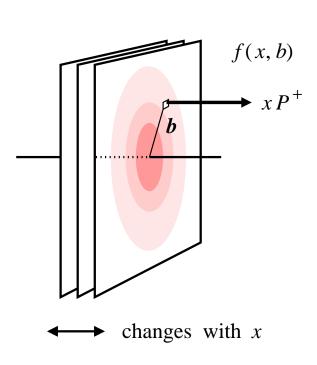

- High-energy, short-distance process only serves to define operator. Matrix element at scale μ_{had}^2 describes low-energy, long-distance structure.
- Operators with new quantum number available for hadron structure

 $\mathcal{O}(z) = \sum_{n} z_{\mu_1} ... z_{\mu_n} T^{\mu_1 ... \mu_n}$ local tensor operators

Contains QCD energy-momentum tensor n=2: Mass, angular momentum, forces ______ Ji 96; Polyakov 00

- Similar factorization for heavy quarkonium production with gluonic operators
- Forward matrix elements of some light-ray operators from inclusive electroproduction cross section $eN \rightarrow X$ (DIS)
- Factorization is asymptotic expansion. Need to quantify region of applicability, calculate corrections

Hadron structure: Interpretation


• Light-front quantization

 $\xi^+ = \xi^0 + \xi^3$ Light-front time, boost-invariant $k^+ = k^0 + k^3, \mathbf{k}_T$ Light-front momentum, longitudinal/transverse expressed as $k^+ = xP^+$

• Light-ray operator as number operator

 $\mathcal{O}(z^{-}) \stackrel{\text{Fourier}}{\longleftrightarrow} N_{q,\bar{q}}(k^{+} = xP^{+})$ Number operator of quarks/antiquarks

Hadron structure: Interpretation II

• Transverse density of quarks/antiquarks $\begin{array}{c} & & \mathsf{Fourier} \ \Delta_T \\ & & \longleftarrow \\ & & f_{q,\bar{q}}(x,b) \end{array}$

• Transverse density of charge

Fourier Δ_T $\langle p'|J^+|p\rangle|_{\Delta^+=0} \quad \longleftrightarrow \quad \rho(b)$

$$ho(b) = \sum_q e_q \int dx \, [f_q - f_{ar q}](x,b)$$

EM current matrix element (form factor) directly connected with transverse distribution of quarks

• Tomographic images of hadron in x, b

Include spin: Distorted spatial distributions, quark polarization

Hadron structure: Interpretation

• Light-front representation is frame-independent, as appropriate for relativistic systems (\equiv QCD)

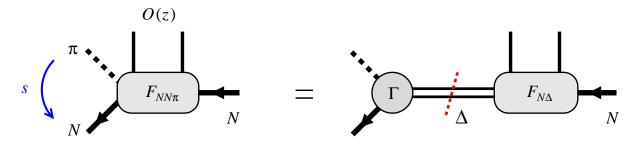
Can consider hadron rest frame: Orbital motion, angular momentum

No "infinite momentum" is needed

• Light-front representation is used for interpretation, but not needed for calculation/extraction of the matrix elements

Use invariant methods: χ EFT, dispersion theory, amplitude analysis

• Can be extended to resonances!

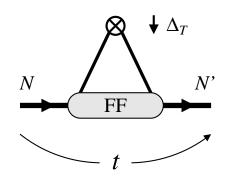

Hadron structure: Interpretation

• Matrix elements of light-ray operators between resonance states $\langle N^*|\mathcal{O}|N\rangle, \langle N^*|\mathcal{O}|N^*\rangle, \langle h^*|\mathcal{O}|0\rangle, \ldots$

 \rightarrow QCD structure of resonances

 \rightarrow New operators for resonance exciation

• Matrix elements of resonance states

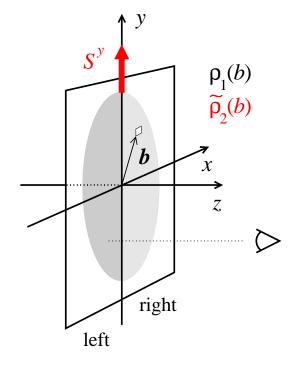

Transition matrix element between stable hadrons

Pole in invariant mass $s = s_{\rm res}$

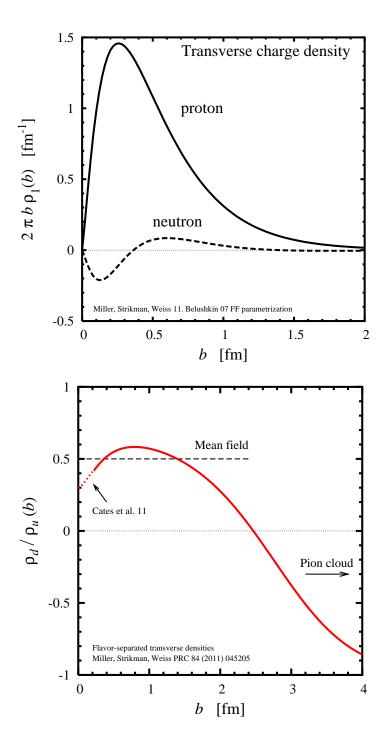
Residue factorization gives vertex function at pole

Form factors and transverse densities

Transverse densities: Nucleon


- Current matrix element parametrized by invariant form factors $\langle N'|J^{\mu}|N \rangle \rightarrow F_1(t), F_2(t)$ Dirac, Pauli
- Transverse charge/magnetization densities Soper 76, Burkardt 00, Miller 07

$$\rho_{1,2}(b) = \int \frac{d^2 \Delta_T}{(2\pi)^2} e^{-i\Delta_T b} F_i(t = -\Delta_T^2)$$


- **b** displacement from transverse center-of-mass
- Connection with quark distributions

$$ho_1(b) = \sum_q e_q^2 \int dx \, [f_q - f_{ar q}](x,oldsymbol b)$$

 $\widetilde{
ho}_2(b) =$ distortion due to transverse polarization

Transverse densities: Empirical densities

• Empirical densities from form factor data

Experimental and incompleteness errors Venkat, Arrington, Miller, Zhan 10

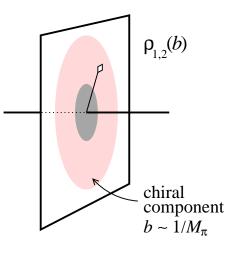
Many interesting questions: Neutron, flavor structure, charge vs. magnetization

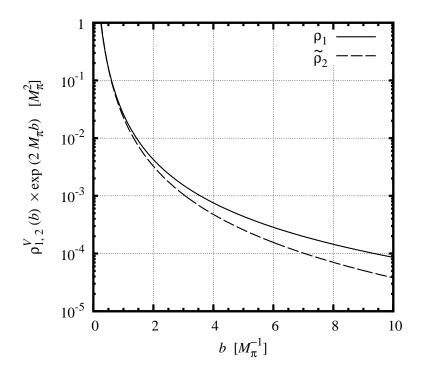
• Flavor-separated densities

$$ho_u(b) = \int dx \, [f_u - f_{ar u}](x, m b)$$
 etc.

 $b \sim 1 \, {\rm fm}$

$$\rho_d/\rho_u \approx 1/2$$


mean field picture cf. quark model


 $b > 3 \,\mathrm{fm}$

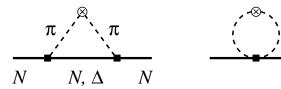
 $\rho_d/\rho_u \to -1$

pion cloud peripheral π^+

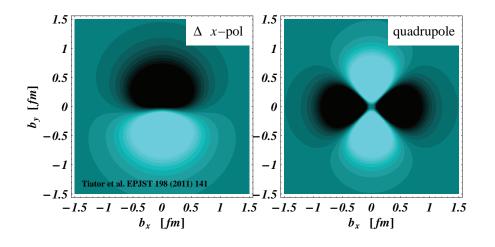
Transverse densities: Chiral periphery

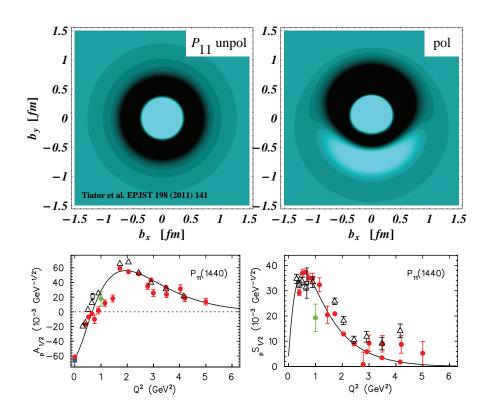
• Peripheral densities at $b = O(M_{\pi}^{-1})$

Governed by chiral dynamics, universal


Calculable in chiral EFT + dispersion theory Strikman, Weiss PRC 82, 042201 (2010); Granados, Weiss, JHEP 1401, 092 (2014). New N/D method for $\pi\pi$ rescattering: Alarcon, Hiller Blin, Vicente Vacas, Weiss, NPA 964, 18 (2017)

• Interesting insights


"Yukawa tail," rich structure


Relation between spin-independent and -dependent densities $\tilde{\rho}_2(b) < \rho_1(b)$ Granados, Weiss JHEP 1507, 170 (2015); JHEP 1606, 075 (2016)

Space-time picture of chiral dynamics

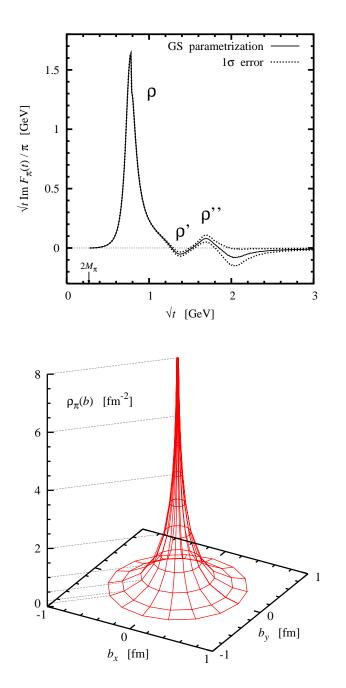
Transverse densities: Resonances

• Transition densities $N \to \Delta, N^*$ $\langle N^* | J^\mu | N \rangle \ \sim \ \rho^S_{N^*N}(b)$

Spin components

Empirical densities extracted from transition form factors Carlson, Vanderhaeghen 09; Tiator et al. 11

• Resonance structure in QCD


Polarization effects: Spin–orbit interactions, deformation

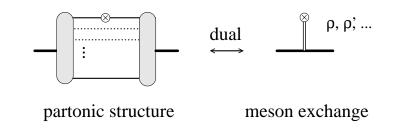
Comparison of N and N^* : More central or more peripheral?

Lattice QCD results Alexandrou et al. 08; Aubin et al 08

Effective models: Quark orbital angular momentum Lorce, Pasquini et al.

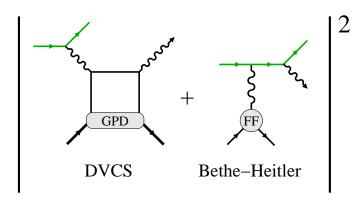
Transverse densities: Pion

 $\bullet\,$ Timelike pion FF from $e^+e^- \to \pi^+\pi^-$


Precise data on $|F_{\pi}|^2$, phase from fits/theory Bruch, Khodjamirian, Kuhn 04. New data CLEO 05+

• Transverse density as dispersion integral Miller, Strikman, Weiss, PRD 83, 013006 (2011)

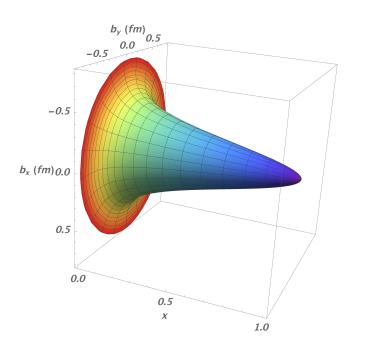
$$\rho_{\pi}(b) = \int_{4M_{\pi}^2}^{\infty} \frac{dt}{2\pi^2} K_0(\sqrt{t}b) \operatorname{Im} F_{\pi}(t)$$


Singular charge density at center of pion: Small–size $q\bar{q}$ configurations

Dual to vector meson exchange

Exclusive processes and GPDs

GPDs: Deeply-virtual Compton scattering



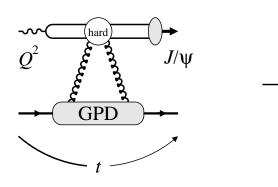
• Exclusive electroproduction $eN \rightarrow e'N'\gamma$

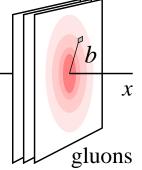
Interference of DVCS and Bethe-Heitler procs

QCD factorization extensively studied

Experiments at HERMES, COMPASS, JLab6; dedicated program with JLab12

• First tomographic images of nucleon


Valence quark region x>0.2 Combined analysis of JLab6 Hall A and CLAS data. Dupre, Guidal, Niccolai, Vanderhaeghen 17.

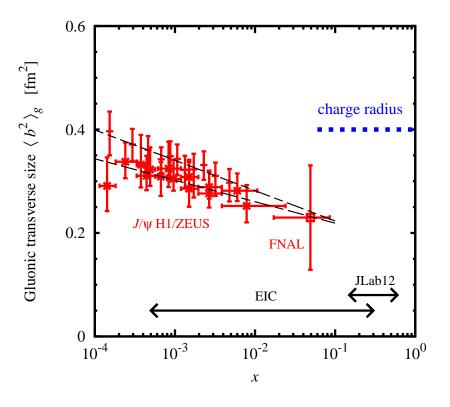

- Could be extended to $N \to \Delta$

Quark structure of $N \to \Delta$ transition

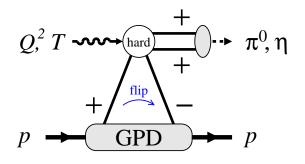
Large- N_c relations for $N \to \{N, \Delta\}$ GPDs Polyakov, Vanderhaeghen 00

GPDs: Gluons with heavy vector mesons

- Gluon GPD with J/ψ and ϕ
 - $x < 10^{-1}$ HERA, COMPASS, EIC
 - x > 0.2 JLab 12 GeV ϕ
- Gluonic size of nucleon


Increases with $x \to 0$

 $\langle b^2\rangle_g<\langle b^2\rangle_{q+\bar{q}}~~$ at $x>10^{-2}$ Gluons more central than valence quarks


Input for pp@LHC, saturation models

- Could be extended to $N \to N^*$

Gluonic structure of resonance transition?

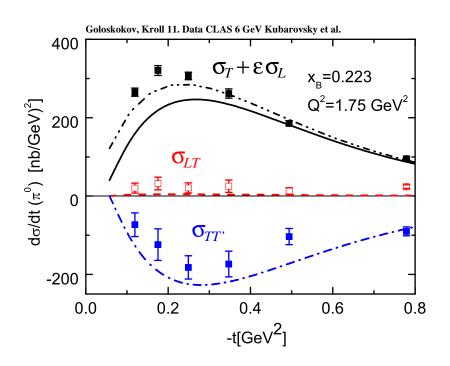
Hard exclusive processes: Transversity with π,η 19

• Quark helicity flip in pion WF

Chiral symmetry breaking in QCD

Dominates σ_T at $W\sim {\rm few~GeV}$ Goldstein Liuti 08, Goloskokov, Kroll 11

Probes quark transversity GPD cf. transversity in SIDIS, Drell–Yan


• π^0, η production at JLab6/12

Flavor separation of transversity GPDs Kubarovsky 16

Large- N_c predictions Schweitzer, Weiss PRC94, 045202 (2016)

 $\bullet~\mbox{Could}$ be extended to $N \to N^*$

Chirality flip in resonance excitation?

Summary

- Light-ray operators are an essential tool for hadron structure
 Generalization of local current operators
 Measured in hard processes thanks to factorization
 Interpretation in terms of QCD DoF at fixed light-front time
- Tomographic images of hadron structure

Current operators/FFs \rightarrow transverse densities $\rho(b)$, $\int dx$

Light-ray operators \rightarrow transverse parton densities f(x, b)

• Concepts and methods can be extended to resonances

```
Rigorous definition of resonance structure in QCD
```

Calculable theoretically: EFT, dispersion theory

Accessible experimentally