Transverse densities of nucleons and resonances

C. Weiss (JLab), Exploring hadrons with EM probes, JLab, 02-Nov-17 based on work with J.M. Alarcon, A. Hiller Blin, C. Granados

Objective: Explain/predict structure of nucleon and baryon resonances using model-independent methods of strong interaction physics

Chiral effective field theory	large-distance dynamics, controled accuracy, predictive
Dispersion theory	analyticity, global properties, spectrum \leftrightarrow structure
$Large-N_c QCD$	parametric expansion, $N\leftrightarrow\Delta$, connection with QCD

Structures

EM form factors and transverse densities $N \to N, N \to N^*, N^* \to N^*$ Form factors of scalar, axial, twist-2 operators (GPDs) πNN^* vertices, $NN \to NN^*$ amplitudes

Granados, Weiss, JHEP 1401, 092 (2014); PRC 92, 025206 (2015); JHEP 1507, 170 (2015); JHEP 1606, 075 (2016). Alarcon, Hiller Blin, Vicente Vacas, Weiss, NPA 964, 18 (2017) Alarcon, Weiss, arXiv:1707.07682; arXiv:1710.06430.

Outline

- Form factors and transverse densities
- Peripheral transverse densities $b = \mathcal{O}(M_{\pi}^{-1})$
 - Dispersive representation

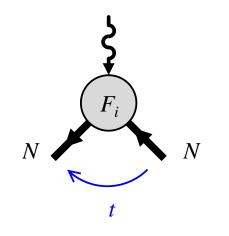
 $\chi {\rm EFT}$ calculation

Nucleon EM densities

SU(3) flavor and octet baryons

Large- N_c relations

• Resonance form factors and densities


Unstable particles, $N \to N^*, N^* \to N^*$

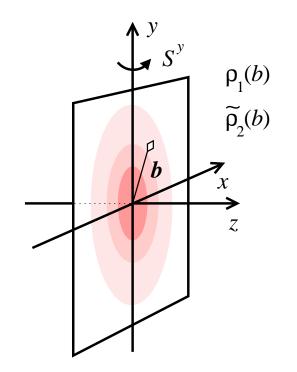
• Applications and extensions

Scalar, axial form factor, EM tensor

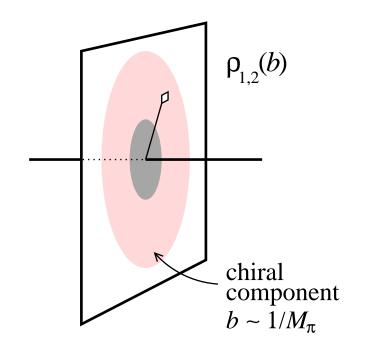
Dispersively Improved χ EFT (DI χ EFT)

Form factors and transverse densities

- Current matrix element $\langle N'|J_{\mu}|N\rangle \rightarrow F_{1}(t), F_{2}(t)$ invariant FFs
- Transverse densities Soper 76, Burkardt 00, Miller 07 $F_{1,2}(t=-\Delta_T^2) = \int d^2b \ e^{i\Delta_T b} \
 ho_{1,2}(b)$ Fourier


Charge/magnetization density, or spin-indep/dependent

Density at fixed light-front time $x^+ = x^0 + x^3$, boost-invariant, appropriate for relativistic systems


• Connection with GPDs/QCD

$$ho_1(b) = \sum_q e_q \int_0^1 dx \ [q(x,b) - \bar{q}(x,b)]$$

Dual role of transverse densities: Accessible through low-energy elastic FFs, interpretable in terms of QCD DoF

Peripheral densities

• Peripheral densities $b = \mathcal{O}(M_{\pi}^{-1})$

Governed by chiral dynamics: universal, model-independent

Calculable using $\chi {\rm EFT}$ + dispersion theory Strikman, CW 10; Granados CW 13

• Theoretical interest

Distance as parameter

Proper definition of mesonic component

Space-time picture of chiral dynamics

• Practical interest

Low–|t| form factors, proton size

Connection w. peripheral quark/gluon structure

Dispersive representation

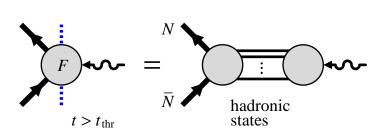
timelike

• Dispersive representation of form factor

$$F(t) = \int_{4M_{\pi}^2}^{\infty} \frac{dt'}{t' - t - i0} \frac{\text{Im } F(t')}{\pi}$$

Process: Current \rightarrow hadronic states $\rightarrow N\bar{N}$

Unphysical region: ${
m Im}\,F(t')$ from theory Frazer, Fulco 60; Höhler et al 74; Hoferichter et al 14


• Transverse densities

$$\rho(b) = \int_{4M_{\pi}^2}^{\infty} \frac{dt}{2\pi} K_0(\sqrt{t}b) \frac{\operatorname{Im} F(t)}{\pi}$$

 $K_0 \sim e^{-b\sqrt{t}}$ exponential suppression of large t

Distance b selects masses $\sqrt{t} \sim 1/b$: Filter Strikman, CW 10; Miller, Strikman, CW 11

Peripheral densities \longleftrightarrow low-mass states

 $4M_{\pi}^{2}$

spacelike

Isovector: $\pi \pi$ (incl. ρ), 4π , ... Isoscalar: 3π (incl. ω), KK (incl. ϕ), ...

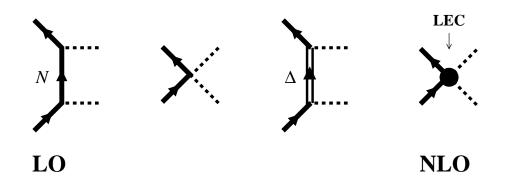
Spectral functions

• Elastic unitarity relation

Timelike pion FF $F_{\pi}(t)$, $\pi\pi \to N\bar{N}$ partial-wave amplitude Γ_i

Functions have same phase — Watson's theorem

Relation valid up to $t=16~M_\pi^2$, in practice up to $t\sim 1~{\rm GeV}^2$


Includes ρ as $\pi\pi$ resonance

• New χ EFT-based approach

Calculate Γ_i/F_{π} in χEFT — free of $\pi\pi$ rescattering, well convergent Multiply with $|F_{\pi}|^2$ from e^+e^- data — includes $\pi\pi$ rescattering, ρ resonance

N/D method. Many theoretical advantages. Predictive!

Spectral functions II

 $\pi\pi \to N\bar{N}$ amplitude in $\chi {\rm EFT}$

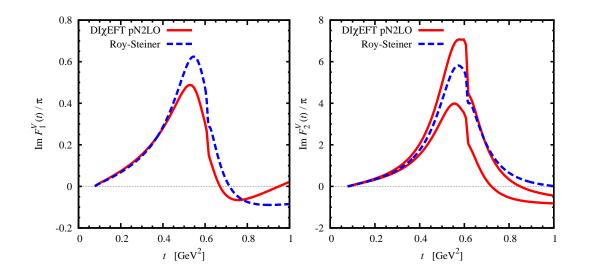
• Relativistic χEFT

Expansion in $(M_\pi,k_\pi)/\Lambda_\chi$

Controlled accuracy, systematic improvement

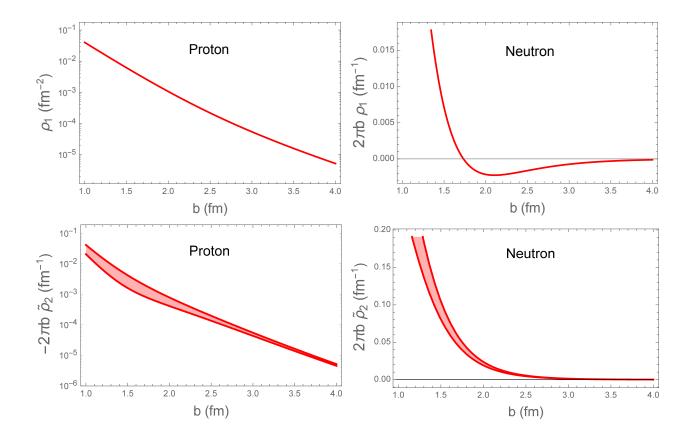
 π, N, Δ as effective DoF

• Spectral function results

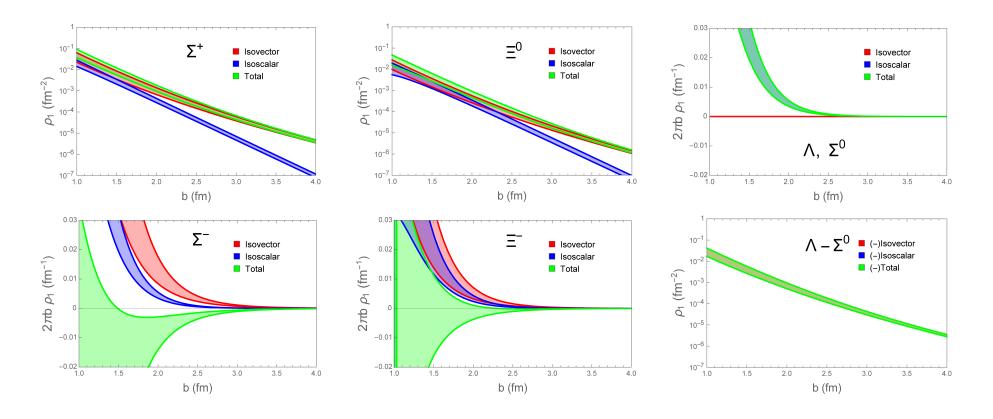

New method includes $\pi\pi$ rescattering, ρ resonance

Dramatic improvement over conventional $\chi {\rm EFT}$ calculations

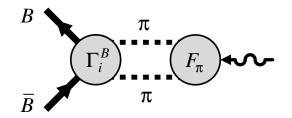
Good convergence in higher orders


Possible to compute spectral functions up to $\sim 1~{\rm GeV}^2$

Many applications!


Alarcon, Blin, Vicente Vacas, Weiss, NPA 964 18 (2017) NLO: Alarcon, Weiss, arXiv:1710.06430; in progress.

Peripheral densities in nucleon



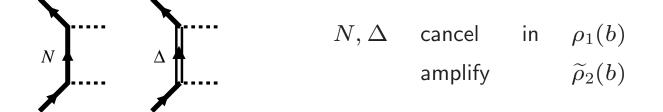
- Use $DI\chi EFT$ spectral functions to calculate peripheral transverse densities
- Peripheral isovector densities predicted down to $b\sim 1$ fm with controled accuracy Isoscalar densities from empirical parametrization with ω,ϕ
- Peripheral nucleon structure can be computed from first principles! Alarcon, Blin, Vicente Vacas, Weiss, NPA 964 18 (2017). NLO: Alarcon, Weiss, arXiv:1710.06430; in progress.

SU3 flavor and octet baryons

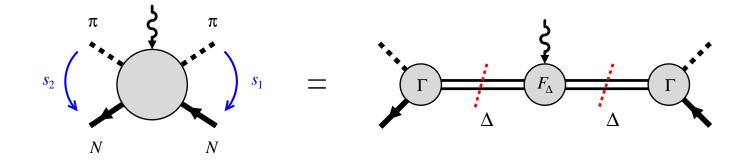
- $DI\chi EFT$ extended to SU(3) flavor
- $\pi\pi$ spectral functions of octet baryon FFs $K\bar{K}$ negligible at peripheral distances
- Peripheral densities of octet baryons, quark flavor separation u/d/sAlarcon, Blin, Vicente Vacas, CW, 2017

Large- N_c limit of QCD

• Study scaling behavior of non-perturbative QCD quantities with N_c : Meson and baryon masses, current matrix elements, hadronic couplings, \ldots 'tHooft 73, Witten 79


 $N_{c}\xspace$ scaling can be established on general grounds

Parametric classification, hierarchy of structures, qualitative insight


• N_c scaling of nucleon transverse densities

$$\rho_1(b) = \mathcal{O}(N_c^0), \quad \widetilde{\rho}_2(b) = \mathcal{O}(N_c), \quad \text{for } b = \mathcal{O}(N_c^0)$$

• χ EFT results have correct N_c scaling if Δ isobar included as dynamical DoF Cohen, Broniowski 92. Transverse densities and GPDs: Strikman CW 04, 09, 11; Granados, CW 13

Resonance form factors and densities

• Structure of unstable particle

S-matrix theory: Stable-particle amplitude $\pi N \to \pi N$, Δ as pole in 2-particle channels $s_{1,2} = M_{\Delta}^2$ complex, residue factorizes

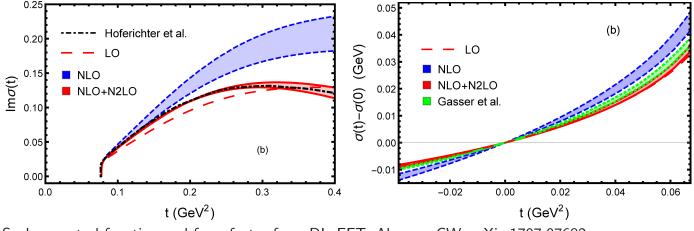
Resonance structure defined at complex pole

Can be implemented in χEFT

Ledwig et al 10. Alarcon, Blin, CW, in progress

• Form factors and densities of Δ isobar

New spin structures beacuse of $S=rac{3}{2}$


Lorce 09

LQCD results

Alexandrou et al 08; Aubin, Orginos, Pascalutsa, Vanderhaegehen 08

Applications and extensions

- Electromagnetic form factors at low t < 0 and derivatives Alarcon, CW, arXiv:1710.06430
- Scalar form factor and mass distribution in nucleon Alarcon, CW, arXiv:1707.07682
- Energy-momentum tensor form factors and angular momentum Granados, CW 2017
- Peripheral GPDs and high-energy processes
- Isoscalar-vector form factor from 3-body unitarity Alarcon, Passemar, Pilloni, CW; in progress

Scalar spectral function and form factor from DI χ EFT. Alarcon, CW, arXiv:1707.07682

Strikman, CW 04

Summary

- Transverse densities are an essential tool for hadron structure studies
 Provide objective spatial representation of relativistic system
 Connect low-energy dynamics with partonic structure in QCD
- Peripheral transverse densities can be computed with controled accuracy by combining $\chi {\rm EFT}$ and dispersion theory (DI $\chi {\rm EFT}$)

Includes $\pi\pi$ rescattering and ρ resonance

• Numerous applications and extensions

[• Not covered here: Light-front time-ordered formulation of chiral dynamics, chiral $N \rightarrow \pi N$ wave functions, quantum-mechanical interpretation] Granados, Weiss, PRC 92, 025206 (2015); JHEP 1507, 170 (2015); JHEP 1606, 075 (2016).