
Transverse hadron structure in QCD
and chiral dynamics
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• Spatial structure of nucleon

Light-front view

Transverse charge and current densities

Transverse quark and gluon distributions (GPDs)

• Chiral dynamics at large distances

Spontaneous symmetry breaking

Effective field theory

• Peripheral charge and current densities

Quantum-mechanical interpretation

ρ meson in unitarity-based approach

• Peripheral quark/gluon distributions

Peripheral gluons and nucleon size

Peripheral high-energy processes in ep at EIC



Spatial structure: Light–front view 2
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• Non–relativistic quantum system

Particle number fixed, time absolute

ψ(x1, ..xN ; t) Schrödinger WF

ρ(x) =
∑
ψ†(..x..; t)ψ(..x..; t) Densities

• Relativistic quantum system

Vacuum fluctuations: Particles appear/disappear

Time not absolute: How to synchronize clocks?

Light-front time x+ = x0 + x3

Wave function at fixed x+: boost-invariant
QCD: UV divergences, renormalization

Densities at fixed x+: boost-invariant

• Light-front view

Objective notion of spatial structure

Connection with high–energy scattering:
Probes system at fixed LF time



Spatial structure: Transverse densities 3
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• Current matrix element parametrized
by invariant form factors

〈N ′|Jµ|N〉 → F1(t), F2(t) Dirac, Pauli

• Transverse charge/magnetization densities

ρ1,2(b) =

∫
d2∆T

(2π)2
e
−i∆T b

F1,2(t = −∆2
T )

b displacement from transverse center-of-mass
Soper 76, Burkardt 00, Miller 07

• Interpretation in polarized nucleon state

〈J+(b)〉y−pol = ρ1(b) + (2Sy) cosφ ρ̃2(b)

Spin-independent and -dependent current

ρ1, ρ̃2 = 〈J+〉right ± 〈J+〉left left-right asymmetry



Spatial structure: Transverse parton distributions 4
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• Generalized parton distribution

〈N ′| ψ̄(0)...ψ(z)
︸ ︷︷ ︸

|N〉 → H(x1, x2; t), E(...), ...

QCD light-ray operator, z2 = 0, scale µ2

• Transverse distribution of partons

H(x, x; t) =

∫
d2b ei∆T b f(x, b) x1 = x2 = x

Transverse spatial distribution of partons
with LC momentum xP+: “Tomography”
Burkardt 00

• Transverse charge density as reduction

ρ1(b) =
∑

q eq

∫ 1

0

dx [fq(x, b)− fq̄(x, b)] etc.

Dual role of transverse densities:
Accessible through low–energy elastic FFs,
interpretable in context of QCD partons



Spatial structure: Empirical densities 5
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Transverse charge density

Miller, Strikman, Weiss 11.
Belushkin 07 FF parametrization

• Empirical transverse densities

Experimental and incompleteness errors
Venkat, Arrington, Miller, Zhan 10

Recent low– and high–|t| FF data
MAMI Mainz, JLab Hall A

• Many interesting questions

Neutron charge density

Flavor/isospin decomposition

Charge vs. magnetization densities



Spatial structure: Peripheral distances 6

∼ 1/ Mπ

ρ ( )b

b

1,2

chiral
component

• Peripheral distances b = O(M−1π )

Densities governed by chiral dynamics

Calculable from first principles

• Theoretical interest

Use distance b≫ Rhad as parameter

Study space–time picture of EFT dynamics

Quantify chiral and non-chiral contributions

• Practical interest

Connection with low–|t| form factors,
proton charge radius
Atomic physics and electron scattering measurements; much activity

Peripheral quark/gluon structure
in high-energy processes



Chiral dynamics: Spontaneous symmetry breaking 7

• Rotational symmetry in spin system

Rotational M = 〈
∑

S〉 6= 0 spin wave
invariance O(3) order parameter massless excitation

• Chiral symmetry in QCD

L,R independent 〈ψ̄LψR〉 6= 0 〈...〉 ∼ eiτπ(x)

flavor rotations chiral condensate pion wave
SU(2)L × SU(2)R

• Determines large-distance, low-energy behavior



Chiral dynamics: Effective dynamics 8
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• Effective dynamics

Valid at momenta pπ ∼Mπ ≪ Λχ ∼ 1GeV

Structure determined by chiral invariance

Couplings parametrize short-distance dynamics

Pions couple weakly ∝ pµπ
Nucleon as external source

• Constructed and solved using EFT methods

Parametric expansion in pπ/Λχ

Controled accuracy, uncertainty estimates
Gasser, Leutwyler 83; Weinberg 90. Extensive work

• Large-distance behavior of strong interactions

ππ scattering

NN interaction at distances ∼ 1/Mπ

πN scattering, EM processes near threshold



Peripheral densities: Dispersive representation 9
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Isovector: ππ (incl. ρ), 4π, . . .
Isoscalar: 3π (incl.ω), KK̄ (incl. φ), . . .

• Dispersive representation of form factor

F (t) =

∞∫

4M2
π

dt′

t′ − t− i0
ImF (t′)

π

Process: Current→ hadronic states→ NN̄

Unphysical region: ImF (t′) from theory
Frazer, Fulco 60; Höhler et al 74

• Transverse densities

ρ(b) =

∞∫

4M2
π

dt

2π
K0(
√
tb)

ImF (t)

π

Exponential suppression of large t

Distance b selects masses
√
t . 1/b

Peripheral densities←→ low–mass states
Strikman, CW 10; Miller, Strikman, CW 11



Peripheral densities: Chiral component 10
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• Spectral functions from χEFT

ππ exchange, isovector channel

LO results; higher-order corrections
Gasser et al. 87; Bernard et al. 96, Kubis, Meissner 00, Kaiser 03

• Chiral component of isovector densities

ρV1 , ρ̃
V
2 (b) = e−2Mπb × fun(MN ,Mπ; b)

Yukawa tail with range 2Mπ, rich structure

ρV1 , ρ̃
V
2 of same order in Mπ/MN

Inequality ρ̃V2 (b) ≤ ρV1 (b) — explain?

Strikman, CW 10; Granados CW 13



Peripheral densities: Time–ordered formulation 11

time
N

ππ

x+
N

ψ
πN
L=0,1(y, rT) =

〈πN |Lχ|N〉
p−π + p−N ′ − p

−
N

︸ ︷︷ ︸
energy denominator

ρV1 (b) =

1∫

0

dy
[
|ψ0|2 + |ψ1|2

]

rT=b/ȳ

+ contact term

ρ̃V2 (b) = ... ψ∗0ψ1 + ψ∗1ψ0

• Evolution in LF time x+ = x0 + x3

• Wave function of chiral πN system

Describes transition N → Nπ in χEFT,
calculable from chiral Lagrangian

Universal, frame–independent
Also in high–energy processes, ū− d̄, etc.

Pion momentum fraction y ∼ Mπ/MN ,
transverse distance rT ∼ M−1

π

Orbital angular momentum Lz = 0, 1

• Densities as wave function overlap

Explains inequality |ρV2 | < ρV1 Granados, CW 13

Contact terms δ(y) represent high–mass
interm. states. Coefficient (1− g2A)

Equivalent to invariant formulation
Granados, CW 13. See also Ji, Melnitchouk et al. 09+



Peripheral densities: Mechanical picture 12
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• χEFT process as time sequence

Rest frame, nucleon polarized in y–direction

Bare N fluctuates into πN system
via χEFT interaction

Peripheral densities result from J+ current
carried by orbiting pion

• Explains peripheral densities

ρ1, ρ̃2 = 〈J+〉right ± 〈J+〉left

〈J+〉left ≫ 〈J+〉right large asymmetry

Pion motion relativistic kπ ∼Mπ

• Quantitative picture based on χEFT



Peripheral densities: ∆ isobar 13

N,N N∆

x

b

x

z

x

z

x

y

z

y

y

y

z

y

intermediate state

initial/final state

right

left

= 1/2

1/2τ = −

τ = +3/2

τ = −1/2
N

τ1
τ2

∆

+1=L

−1=L

+1=L

∆

• Intermediate ∆ isobar

Large coupling to πN , low mass

Included in relativistic χEFT
Rarita-Schwinger formalism, small-scale expansion

Contributes to peripheral transverse densities
Strikman, CW 10, Granados, CW 13

• Mechanical picture with ∆

More spin-isospin states, reverse pion motion

• Large-Nc limit of QCD

N,∆ degenerate, M∆ −MN = O(N−1c )

N + ∆ χEFT densities have correct Nc-scaling
Granados, CW 13; see also Cohen, Broniowski 92; Cohen 96



Peripheral densities: Vector meson 14
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• Region of applicability of χEFT?

Corrections?

• Dispersive representation

Density ρ(b)↔ spectral function ImF (t)

Soft ππ exchange near threshold t ∼ 4M2
π

ρ resonance at t ∼ 30M2
π

ρ dominates peripheral densities
up to distances b ∼ 1.5M−1

π ∼ 2 fm

• Include ρ in systematic fashion

New unitarity-based approach
Alarcon, Blin, Vicente Vacas, Weiss, NPA 964 18 (2017)
NLO: Alarcon, Weiss, arXiv:1710.06430; in progress.



Peripheral densities: Elastic unitarity 15

N

=
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t > 4Mπ
2
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Fi iΓ

ImFi(t) =
k3cm√
t
Γi(t) F ∗π(t)

=
k3cm√
t

Γi(t)

Fπ(t)
︸ ︷︷ ︸

|Fπ(t)|2

︸ ︷︷ ︸
χEFT Data

• Elastic unitarity relation

Timelike pion FF Fπ(t), ππ → NN̄ partial-wave amplitude Γi

Functions have same phase — Watson’s theorem

Includes ρ as ππ resonance

• Combine unitarity and χEFT

Calculate Γi/Fπ in χEFT — free of ππ rescattering, well convergent

Multiply with |Fπ|2 from e+e− data — includes ππ rescattering, ρ resonance

N/D method. Frazer, Fulco 60; Höhler et al 74. Many theoretical advantages. Predictive!
Alarcon, Hiller Blin, Vicente Vacas, Weiss, NPA 964, 18 (2017); Alarcon, Weiss, arXiv:1707.07682; arXiv:1710.06430.



Peripheral densities: Improved spectral functions 16

LO Alarcon, Blin, Vicente Vacas, Weiss, NPA 964 18 (2017). NLO: Alarcon, Weiss, arXiv:1710.06430; in progress.

• Spectral functions computed in DIχEFT

• Method includes ππ rescattering, ρ resonance, applicable up to ∼ 1 GeV2

• Dramatic improvement over conventional χEFT calculations

• Good convergence in higher orders (NLO, partial N2LO), uncertainty estimates



Peripheral densities: Improved densities 17

Isovector

Empirical

NLO + partial N2LO: Alarcon, Weiss, arXiv:1710.06430; in progress.

• Use DIχEFT spectral functions to calculate peripheral transverse densities

• Peripheral isovector densities predicted down to b < 1 fm with controled accuracy
Isoscalar densities from empirical parametrization with ω, φ

• Peripheral transverse nucleon structure can be computed from first principles!



Peripheral partons: Chiral component 18
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"Core"

Chiral

• Transverse spatial distribution (GPD)

f(x, b) longitudinal momentum
transverse position

• Chiral component

b ∼ M−1
π transverse distance

y ∼Mπ/MN momentum fraction
of soft pion

x < y quark/gluon in pion

Peripheral, slow partons

• Calculable model-independently

Pion distribution in nucleon
from chiral dynamics

Parton distribution in pion
from independent measurements

Strikman, CW, PRD 69, 054012 (2004); PRD 80, 114029 (2009)



Peripheral partons: Gluon density 19
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Strikman, CW 04 / 14

chiral

core

chiral,  N + ∆
core, Bg = 4.0 GeV-2

core, Bg = 3.0 GeV-2

• Gluon transverse density

Chiral component calculated
Strikman, CW 04

Nonchiral core modeled
empirically using J/ψ data
HERA, FNAL

• Chiral component is distinct
only at distances b & 2 fm

• O(1%) contribution to overall
gluon density in nucleon

Model-independent feature!



Peripheral partons: Gluonic transverse size 20
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• Average transverse size

〈b2〉f(x) =

∫
d2b b2 f(x, b)∫
d2b f(x, b)

cf. EM charge radius

Changes with x and Q2 (DGLAP)

• Chiral component causes
increase below x ∼Mπ/MN
Strikman, CW 04 / 09

• Faster increase for quarks than
for gluons 〈b2〉q+q̄ > 〈b2〉g

• Size changes also due
to non-chiral effects,
〈b2〉 cannot discriminate



Peripheral partons: Chiral vs. small–x dynamics 21
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• Non–chiral core size grows
due to Gribov diffusion

Slow because α′gluon(Q
2)≪ α′soft

if Q2 ∼ few GeV2

• Pion size can grow due to
higher–order chiral effects

Logarithmic terms resummed
using functional methods
Polyakov, Kivel 08; PK + Vladimirov 09; Perevalova et al 11

Could become important at x≪ 10−2

• “Single–step” chiral component
should be safe for x > 10−3



Peripheral partons: Hard exclusive processes 22
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• Hard exclusive processes:
Transverse imaging of nucleon

dσ

dt
→ Hf(x1, x2, t)

Fourier
x1 = x2

−→ f(x, b)

〈b2〉f = 4
∂

∂t

Hf(x, x, t)

Hf(x, 0)

∣∣∣∣
t=0

• Effect of chiral component

Numerically small

Visible at −t < 0.1GeV2

Simple model estimate,
needs detailed simulation!

• Caution when extracting 〈b2〉
from measurements at finite −t

Very challenging!



Peripheral partons: Pion knockout processes 23
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suppressed!

• Hard exclusive process on soft pion

k2
π = O(M2

π) pion soft

Requires x≪Mπ/MN ∼ 0.1

• Kinematics with pT (π) ≫ pT (N)
suppresses production on nucleon

FπNN(t) softer than GPDπ(t)

• Probe pion GPD at |tπ| ∼ 1GeV2

Fundamental interest

Moments calculable in LQCD

• Detection requirements

Forward nucleon pT ∼ 100MeV

Forward pion pT . 1GeV

Direct probe of chiral component!
Needs detailed simulation...
Strikman, CW PRD69, 054012 (2004)



Summary 24

• Light–front view provides spatial representation of relativistic system

Elastic FFs reveal transverse densities

Independent of dynamics — can be applied to QCD, χEFT, ...

• Peripheral transverse densities from χEFT

Chiral expansion justified by b = O(M−1
π ) — new parameter

Quantum-mechanical picture of low–energy chiral nucleon structure

New unitarity-based approach includes ππ rescattering, predicts densities at b & 1 fm

Many applications and extensions: Form factors of energy-momentum tensor 2π,
isoscalar vector current 3π, axial current 3π

• Peripheral partons in nucleon

Chiral dynamics expressed in partonic structure

Could be probed in pion knockout processes at EIC


