Transverse hadron structure in QCD and chiral dynamics

C. Weiss (JLab), Penn State Theory Seminar, 06-Dec-17

• Spatial structure of nucleon

Light-front view

Transverse charge and current densities

Transverse quark and gluon distributions (GPDs)

- Chiral dynamics at large distances
 Spontaneous symmetry breaking
 Effective field theory
- Peripheral charge and current densities Quantum-mechanical interpretation ρ meson in unitarity-based approach
- Peripheral quark/gluon distributions Peripheral gluons and nucleon size Peripheral high-energy processes in ep at EIC

Spatial structure: Light-front view

• Relativistic quantum system Vacuum fluctuations: Particles appear/disappear

Time not absolute: How to synchronize clocks?

Light-front time $x^+ = x^0 + x^3$

Wave function at fixed x^+ : boost-invariant QCD: UV divergences, renormalization

Densities at fixed x^+ : boost-invariant

• Light-front view

Objective notion of spatial structure

Connection with high–energy scattering: Probes system at fixed LF time

Spatial structure: Transverse densities

• Current matrix element parametrized by invariant form factors

 $\langle N'|J_{\mu}|N
angle
ightarrow F_1(t), F_2(t)$ Dirac, Pauli

- Transverse charge/magnetization densities $\rho_{1,2}(b) = \int \frac{d^2 \Delta_T}{(2\pi)^2} e^{-i\Delta_T b} F_{1,2}(t = -\Delta_T^2)$
 - **b** displacement from transverse center-of-mass Soper 76, Burkardt 00, Miller 07
- Interpretation in polarized nucleon state

 $\langle J^+(\boldsymbol{b}) \rangle_{y-\mathrm{pol}} = \rho_1(b) + (2S^y) \cos \phi \, \widetilde{\rho}_2(b)$

Spin-independent and -dependent current

 $ho_1, \widetilde{
ho}_2 = \langle J^+ \rangle_{
m right} \pm \langle J^+ \rangle_{
m left}$ left-right asymmetry

Spatial structure: Transverse parton distributions 4

- Generalized parton distribution $\langle N' | \underline{\psi}(0) \dots \psi(z) | N \rangle \rightarrow H(x_1, x_2; t), E(\dots), \dots$ QCD light-ray operator, $z^2 = 0$, scale μ^2
- Transverse distribution of partons $H(x, x; t) = \int d^2b \ e^{i\Delta_T b} \ f(x, b) \qquad x_1 = x_2 = x$

Transverse spatial distribution of partons with LC momentum xP^+ : "Tomography" Burkardt 00

• Transverse charge density as reduction

$$ho_1(b) \;=\; \sum_q e_q \; \int_0^1 \! dx \; [f_q(x,b) - f_{ar q}(x,b)] \qquad ext{etc.}$$

Dual role of transverse densities: Accessible through low–energy elastic FFs, interpretable in context of QCD partons

Spatial structure: Empirical densities

• Empirical transverse densities

Experimental and incompleteness errors Venkat, Arrington, Miller, Zhan 10

Recent low– and high–|t| FF data MAMI Mainz, JLab Hall A

• Many interesting questions

Neutron charge density

Flavor/isospin decomposition

Charge vs. magnetization densities

Spatial structure: Peripheral distances

• Peripheral distances $b = O(M_{\pi}^{-1})$

Densities governed by chiral dynamics

Calculable from first principles

• Theoretical interest

Use distance $b \gg R_{
m had}$ as parameter

Study space-time picture of EFT dynamics

Quantify chiral and non-chiral contributions

• Practical interest

Connection with low-|t| form factors, proton charge radius Atomic physics and electron scattering measurements; much activity

Peripheral quark/gluon structure in high-energy processes

Chiral dynamics: Spontaneous symmetry breaking 7

• Rotational symmetry in spin system

Rotational invariance O(3)

 $oldsymbol{M} = \langle \sum oldsymbol{S}
angle
eq 0$ order parameter

spin wave massless excitation

• Chiral symmetry in QCD

L, R independent flavor rotations $SU(2)_L \times SU(2)_R$ $\langle \bar{\psi}_L \psi_R \rangle \neq 0$ chiral condensate

 $\langle ... \rangle \sim e^{i \boldsymbol{\tau} \boldsymbol{\pi}(x)}$ pion wave

• Determines large-distance, low-energy behavior

Chiral dynamics: Effective dynamics

• Effective dynamics

Valid at momenta $p_{\pi} \sim M_{\pi} \ll \Lambda_{\chi} \sim 1 \,\text{GeV}$ Structure determined by chiral invariance Couplings parametrize short-distance dynamics Pions couple weakly $\propto p_{\pi}^{\mu}$ Nucleon as external source

• Constructed and solved using EFT methods

Parametric expansion in p_{π}/Λ_{χ}

Controled accuracy, uncertainty estimates Gasser, Leutwyler 83; Weinberg 90. Extensive work

• Large-distance behavior of strong interactions

 $\pi\pi$ scattering

NN interaction at distances $\sim 1/M_{\pi}$

 πN scattering, EM processes near threshold

Peripheral densities: Dispersive representation

• Dispersive representation of form factor

$$F(t) = \int_{4M_{\pi}^2}^{\infty} \frac{dt'}{t' - t - i0} \frac{\text{Im} F(t')}{\pi}$$

Process: Current \rightarrow hadronic states $\rightarrow N\bar{N}$

Unphysical region: ${\rm Im}\,F(t')$ from theory $_{\rm Frazer,\ Fulco\ 60;\ H\"ohler\ et\ al\ 74}$

Transverse densities

$$\rho(b) = \int_{4M_{\pi}^2}^{\infty} \frac{dt}{2\pi} K_0(\sqrt{t}b) \frac{\operatorname{Im} F(t)}{\pi}$$

Exponential suppression of large t

Distance b selects masses $\sqrt{t} \lesssim 1/b$

Peripheral densities ↔ low-mass states Strikman, CW 10; Miller, Strikman, CW 11

Peripheral densities: Chiral component

• Spectral functions from χEFT

 $\pi\pi$ exchange, isovector channel

LO results; higher-order corrections Gasser et al. 87; Bernard et al. 96, Kubis, Meissner 00, Kaiser 03

• Chiral component of isovector densities $\rho_1^V, \tilde{\rho}_2^V(b) = e^{-2M\pi b} \times \operatorname{fun}(M_N, M_{\pi}; b)$

Yukawa tail with range $2M_{\pi}$, rich structure

 $ho_1^V, \widetilde{
ho}_2^V$ of same order in M_π/M_N

Inequality $\widetilde{\rho}_2^V(b) \leq \rho_1^V(b) - \text{explain}?$

Strikman, CW 10; Granados CW 13

10

Peripheral densities: Time–ordered formulation 11

$$\psi_{L=0,1}^{\pi N}(y, \boldsymbol{r}_T) = \frac{\langle \pi N | \mathcal{L}_{\chi} | N \rangle}{\underline{p_{\pi}^- + p_{N'}^- - p_N^-}}$$

energy denominator

$$ho_1^V(b) = \int\limits_0^1 dy \; \left[|\psi_0|^2 + |\psi_1|^2
ight]_{r_T = b/ar y}$$

$$\widetilde{
ho}_{2}^{V}(b) = \ ... \quad \psi_{0}^{*}\psi_{1} + \psi_{1}^{*}\psi_{0}$$

• Evolution in LF time $x^+ = x^0 + x^3$

• Wave function of chiral πN system

Describes transition $N \to N\pi$ in $\chi {\rm EFT},$ calculable from chiral Lagrangian

Universal, frame-independent Also in high-energy processes, $\bar{u} - \bar{d}$, etc.

Pion momentum fraction $y \sim M_{\pi}/M_N$, transverse distance $r_T \sim M_{\pi}^{-1}$

Orbital angular momentum $L_z = 0, 1$

• Densities as wave function overlap

Explains inequality $|
ho_2^V| <
ho_1^V$ Granados, CW 13

Contact terms $\delta(y)$ represent high–mass interm. states. Coefficient $(1-g_A^2)$

Equivalent to invariant formulation Granados, CW 13. See also Ji, Melnitchouk et al. 09+

Peripheral densities: Mechanical picture

• χEFT process as time sequence

Rest frame, nucleon polarized in y-direction

Bare N fluctuates into πN system via $\chi {\rm EFT}$ interaction

Peripheral densities result from $J^+ \mbox{ current}$ carried by orbiting pion

- Explains peripheral densities $\rho_1, \tilde{\rho}_2 = \langle J^+ \rangle_{\text{right}} \pm \langle J^+ \rangle_{\text{left}}$ $\langle J^+ \rangle_{\text{left}} \gg \langle J^+ \rangle_{\text{right}}$ large asymmetry Pion motion relativistic $k_\pi \sim M_\pi$
- Quantitative picture based on $\chi {\rm EFT}$

Peripheral densities: Δ isobar

initial/final state

intermediate state

• Intermediate Δ isobar

Large coupling to πN , low mass

Included in relativistic χ EFT Rarita-Schwinger formalism, small-scale expansion

Contributes to peripheral transverse densities Strikman, CW 10, Granados, CW 13

• Mechanical picture with Δ

More spin-isospin states, reverse pion motion

• Large- N_c limit of QCD N, Δ degenerate, $M_\Delta - M_N = O(N_c^{-1})$

 $N + \Delta \chi \text{EFT}$ densities have correct N_c -scaling Granados, CW 13; see also Cohen, Broniowski 92; Cohen 96

Peripheral densities: Vector meson

- Region of applicability of χEFT?
 Corrections?
- Dispersive representation

Density $\rho(b) \leftrightarrow$ spectral function ImF(t)

Soft $\pi\pi$ exchange near threshold $t\sim 4~M_{\pi}^2$

 ρ resonance at $t\sim 30\,M_\pi^2$

 ρ dominates peripheral densities up to distances $b\sim 1.5 M_\pi^{-1}\sim 2\,{\rm fm}$

• Include ρ in systematic fashion

New unitarity-based approach Alarcon, Blin, Vicente Vacas, Weiss, NPA 964 18 (2017) NLO: Alarcon, Weiss, arXiv:1710.06430; in progress.

Peripheral densities: Elastic unitarity

• Elastic unitarity relation

Timelike pion FF $F_{\pi}(t)$, $\pi\pi \to N\bar{N}$ partial-wave amplitude Γ_i

Functions have same phase — Watson's theorem

Includes ρ as $\pi\pi$ resonance

• Combine unitarity and χEFT

Calculate Γ_i/F_{π} in χEFT — free of $\pi\pi$ rescattering, well convergent

Multiply with $|F_{\pi}|^2$ from e^+e^- data — includes $\pi\pi$ rescattering, ρ resonance

N/D method. Frazer, Fulco 60; Höhler et al 74. Many theoretical advantages. Predictive! Alarcon, Hiller Blin, Vicente Vacas, Weiss, NPA 964, 18 (2017); Alarcon, Weiss, arXiv:1707.07682; arXiv:1710.06430.

Peripheral densities: Improved spectral functions 16

LO Alarcon, Blin, Vicente Vacas, Weiss, NPA 964 18 (2017). NLO: Alarcon, Weiss, arXiv:1710.06430; in progress.

- Spectral functions computed in $\mathsf{DI}\chi\mathsf{EFT}$
- Method includes $\pi\pi$ rescattering, ho resonance, applicable up to $\sim 1~{
 m GeV}^2$
- Dramatic improvement over conventional χEFT calculations
- Good convergence in higher orders (NLO, partial N2LO), uncertainty estimates

Peripheral densities: Improved densities

NLO + partial N2LO: Alarcon, Weiss, arXiv:1710.06430; in progress.

- Use DI χ EFT spectral functions to calculate peripheral transverse densities
- Peripheral isovector densities predicted down to b < 1 fm with controled accuracy Isoscalar densities from empirical parametrization with ω, ϕ
- Peripheral transverse nucleon structure can be computed from first principles!

Peripheral partons: Chiral component

- Transverse spatial distribution (GPD)
 - f(x, b) longitudinal momentum transverse position
- Chiral component

 $b \sim M_{\pi}^{-1}$ transverse distance

- $y \sim M_\pi/M_N$ momentum fraction of soft pion
- x < y quark/gluon in pion

Peripheral, slow partons

• Calculable model-independently

Pion distribution in nucleon from chiral dynamics

Parton distribution in pion from independent measurements

Strikman, CW, PRD 69, 054012 (2004); PRD 80, 114029 (2009)

Peripheral partons: Gluon density

• Gluon transverse density

Chiral component calculated Strikman, CW 04

Nonchiral core modeled empirically using J/ψ data $_{\rm HERA,\ FNAL}$

- Chiral component is distinct only at distances $b\gtrsim 2~{\rm fm}$
- O(1%) contribution to overall gluon density in nucleon

Model-independent feature!

Peripheral partons: Gluonic transverse size

• Average transverse size

$$\langle b^2 \rangle_f(x) = \frac{\int d^2 b \ b^2 \ f(x,b)}{\int d^2 b \ f(x,b)}$$

cf. EM charge radius

Changes with x and Q^2 (DGLAP)

- Chiral component causes increase below $x\sim M_\pi/M_N$ $_{\rm Strikman,\ CW\ 04\ /\ 09}$
- Faster increase for quarks than for gluons $\langle b^2\rangle_{q+\bar{q}}>\langle b^2\rangle_g$
- Size changes also due to non-chiral effects, $\langle b^2 \rangle$ cannot discriminate

Peripheral partons: Chiral vs. small-x dynamics 21

• Non-chiral core size grows due to Gribov diffusion

Slow because $\alpha'_{\rm gluon}(Q^2) \ll \alpha'_{\rm soft}$ if $Q^2 \sim {\rm few}~{\rm GeV}^2$

• Pion size can grow due to higher-order chiral effects

Logarithmic terms resummed using functional methods Polyakov, Kivel 08; PK + Vladimirov 09; Perevalova et al 11

Could become important at $x \ll 10^{-2}$

• "Single-step" chiral component should be safe for $x > 10^{-3}$

Peripheral partons: Hard exclusive processes

• Hard exclusive processes: Transverse imaging of nucleon

$$\frac{d\sigma}{dt} \rightarrow H_f(x_1, x_2, t) \xrightarrow{\text{Fourier}} f(x, b)$$
$$\langle b^2 \rangle_f = 4 \frac{\partial}{\partial t} \frac{H_f(x, x, t)}{H_f(x, 0)} \Big|_{t=0}$$

• Effect of chiral component Numerically small

Visible at $-t < 0.1 \,\mathrm{GeV}^2$

Simple model estimate, needs detailed simulation!

- Caution when extracting $\langle b^2 \rangle$ from measurements at finite -t

Very challenging!

Peripheral partons: Pion knockout processes

suppressed!

• Hard exclusive process on soft pion

 $k_\pi^2 = O(M_\pi^2)$ pion soft Requires $x \ll M_\pi/M_N \sim 0.1$

- Kinematics with $p_T(\pi) \gg p_T(N)$ suppresses production on nucleon $F_{\pi NN}(t)$ softer than $\text{GPD}_{\pi}(t)$
- Probe pion GPD at $|t_{\pi}| \sim 1 \,\mathrm{GeV}^2$

Fundamental interest Moments calculable in LQCD

• Detection requirements

Forward nucleon $p_T \sim 100 \, {
m MeV}$ Forward pion $p_T \lesssim 1 \, {
m GeV}$

Direct probe of chiral component! Needs detailed simulation... Strikman, CW PRD69, 054012 (2004)

Summary

- Light–front view provides spatial representation of relativistic system
 Elastic FFs reveal transverse densities
 Independent of dynamics can be applied to QCD, χEFT, ...
- Peripheral transverse densities from $\chi {\rm EFT}$

Chiral expansion justified by $b = O(M_{\pi}^{-1})$ — new parameter

Quantum-mechanical picture of low-energy chiral nucleon structure

New unitarity-based approach includes $\pi\pi$ rescattering, predicts densities at $b\gtrsim 1$ fm

Many applications and extensions: Form factors of energy-momentum tensor 2π , isoscalar vector current 3π , axial current 3π

• Peripheral partons in nucleon

Chiral dynamics expressed in partonic structure

Could be probed in pion knockout processes at EIC