Cake Seminar Jefferson Lab, April 4, 2018

PDF uncertainties. What is the meaning of this?

Wally Melnitchouk

Outline

- Why are PDF uncertainties important to know?
- Why the need for a <u>new global QCD analysis paradigm</u>?
 - \rightarrow Bayesian approach to fitting
 - → single-fit (Hessian) vs. Monte Carlo approaches
- Incompatible data sets
 - \rightarrow "tolerance" factors
- Generalization to <u>non-Gaussian</u> likelihoods
 - \rightarrow disjoint probabilities, empirical Bayes, ...
- Outlook

Why are PDF uncertainties important?

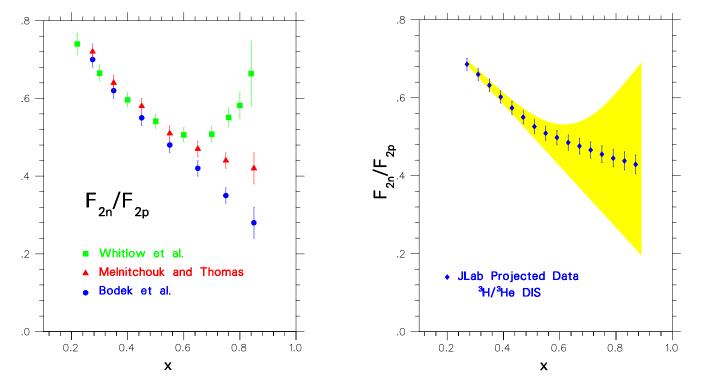
In searches for new physics beyond the Standard Model a major source of uncertainty on limits/discoveries is from calculation of <u>QCD backgrounds</u> — PDF errors!

"The PDF and α_s uncertainties were calculated using the <u>PDF4LHC prescription</u> [39] with the MSTW2008 68% CL NNLO [40, 41], CT10 NNLO [42, 43], and NNPDF2.3 5f FFN [44] PDF sets, and added in quadrature to the scale uncertainty."

Measurements of the charge asymmetry in top-quark pair production in the dilepton final state at $\sqrt{s} = 8$ *TeV with the ATLAS detector* PRD **94**, 032006 (2016)

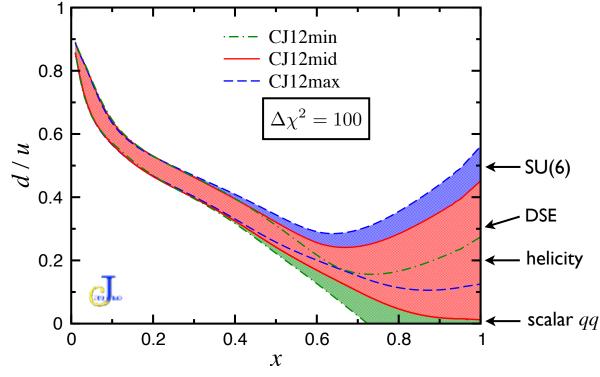
- \rightarrow drives a large part of the global PDF community (esp. LHC)
- Limits understanding of nucleon structure
 - \rightarrow e.g. momentum and spin distributions of d quarks at large x
 - → motivation for several JLab12 experiments (MARATHON, BONuS, SoLID, ...)

Traditionally extracted from neutron / proton structure function ratio (where "neutron" ~ deuteron - proton), but large nuclear uncertainties affect high-x region



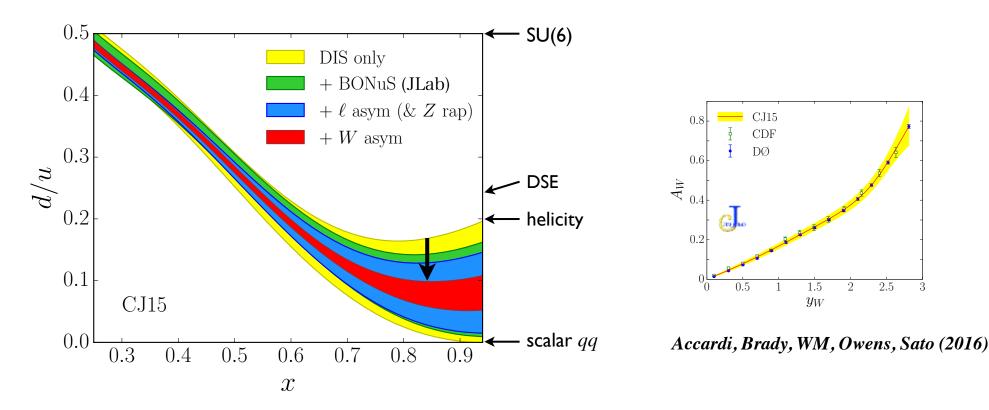
MARATHON Collaboration Petratos, Katramatou, Gomez et al.

- Traditionally extracted from neutron / proton structure function ratio (where "neutron" ~ deuteron - proton), but large nuclear uncertainties affect high-x region
 - \rightarrow cannot discriminate between predictions for d/u at $x \sim 1$



Owens, Accardi, WM (2013)

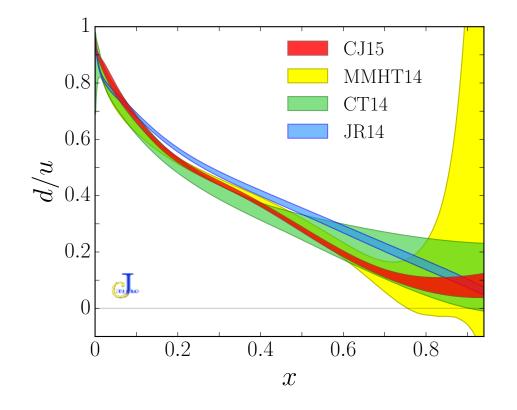
More recently CJ15 analysis found significant reduction of PDF errors with inclusion of DØ W-asymmetry & BONuS data



 \rightarrow extrapolated ratio at x = 1: $d/u \rightarrow 0.09 \pm 0.03$

 \rightarrow <u>note</u>: errors are 90% CL ($\Delta \chi^2 = 2.7$)

- Different groups use different definitions of PDF uncertainties to take into account <u>tensions</u> between data sets
 - \rightarrow multiply uncertainties by "tolerance" factor $T = \sqrt{\Delta \chi^2}$



 \rightarrow CJ15: $\Delta \chi^2 = 2.7$

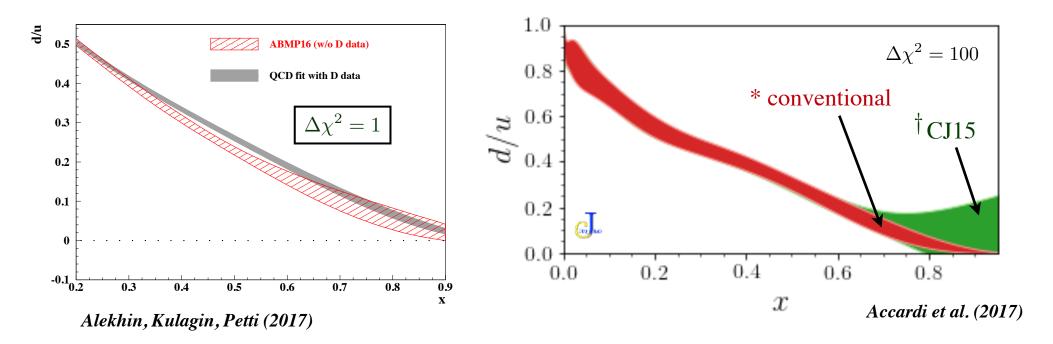
$$\rightarrow$$
 MMHT: $\Delta \chi^2 \approx 25 - 100$

$$\rightarrow$$
 CT14: $\Delta \chi^2 \approx 100$

$$\rightarrow$$
 JR14: $\Delta \chi^2 = 1$

... is this a meaningful comparison?

- Dependence on PDF parametrization
 - → recent analysis by AKP has tiny uncertainties, and $d/u \rightarrow 0$, which we (CJ) believe is simply parametrization bias!



* same functional form for $u \& d \sim (1-x)^{\beta}$ † more flexible form $d \to d + a x^{b} u$

... is there a more robust analysis?

Need for new technology

- A major challenge has been to characterize PDF uncertainties

 in a statistically meaningful way in the presence of
 tensions among data sets
- Previous attempts sought to address tensions in data sets by introducing
 - → "tolerance" factors (artificially inflating PDF errors)
- However, to address the problem in a more statistically rigorous way, one requires going *beyond* the standard χ^2 minimization paradigm
 - \rightarrow utilize modern techniques based on Bayesian statistics!

Need for new technology

- In the near future, standard χ^2 minimization techniques will be unsuitable — even in the absence of tensions e.g. for
 - → simultaneous analysis of collinear distributions (unpolarized & polarized PDFs, fragmentation functions)
 - → new types of observables TMDs or GPDs that will involve $> O(10^5)$ data points, with $O(10^3)$ parameters

Need for new technology

Typically PDF parametrizations are nonlinear functions of the PDF parameters, e.g.

$$xf(x,\mu) = Nx^{\alpha}(1-x)^{\beta} P(x)$$

where P is a polynomial e.g. $P(x) = 1 + \epsilon \sqrt{x} + \eta x$, or Chebyshev, neural net, ...

- \rightarrow have <u>multiple local minima</u> present in the χ^2 function
- Robust parameter estimation that thoroughly scans over a realistic parameter space, including multiple local minima, is only possible using MC methods

Nobuo Sato

main instigator

■ Analysis of data requires estimating expectation values *E* and variances *V* of "observables" \mathcal{O} (= PDFs, FFs) which are functions of parameters \vec{a}

$$E[\mathcal{O}] = \int d^{n} a \,\mathcal{P}(\vec{a}|\text{data}) \,\mathcal{O}(\vec{a})$$
$$V[\mathcal{O}] = \int d^{n} a \,\mathcal{P}(\vec{a}|\text{data}) \left[\mathcal{O}(\vec{a}) - E[\mathcal{O}]\right]^{2}$$

"Bayesian master formulas"

■ Using Bayes' theorem, probability distribution \mathcal{P} given by $\mathcal{P}(\vec{a}|\text{data}) = \frac{1}{Z} \mathcal{L}(\text{data}|\vec{a}) \pi(\vec{a})$

in terms of the likelihood function \mathcal{L}

Likelihood function

$$\mathcal{L}(\text{data}|\vec{a}) = \exp\left(-\frac{1}{2}\chi^2(\vec{a})\right)$$

is a Gaussian form in the data, with χ^2 function

$$\chi^{2}(\vec{a}) = \sum_{i} \left(\frac{\text{data}_{i} - \text{theory}_{i}(\vec{a})}{\delta(\text{data})} \right)^{2}$$

with priors $\pi(\vec{a})$ and "evidence" Z

$$Z = \int d^n a \, \mathcal{L}(\text{data}|\vec{a}) \, \pi(\vec{a})$$

 \rightarrow Z tests if *e.g.* an *n*-parameter fit is statistically different from (*n*+1)-parameter fit

Two methods generally used for computing Bayesian master formulas:

 $\frac{\text{Maximum Likelihood}}{(\chi^2 \text{ minimization})}$

Monte Carlo

Two methods generally used for computing Bayesian master formulas:

 $\frac{\text{Maximum Likelihood}}{(\chi^2 \text{ minimization})}$

 \rightarrow maximize probability distribution \mathcal{P} by minimizing χ^2 for a set of best-fit parameters \vec{a}_0

 $E\left[\,\vec{a}\,\right]=\vec{a}_0$

 \longrightarrow if ${\cal O}$ is \approx linear in the parameters, and if probability is symmetric in all parameters

 $E\left[\mathcal{O}(\vec{a})\right] \approx \mathcal{O}(\vec{a}_0)$

Two methods generally used for computing Bayesian master formulas:

 $\frac{\text{Maximum Likelihood}}{(\chi^2 \text{ minimization})}$

 \rightarrow variance computed by expanding $\mathcal{O}(\vec{a})$ about \vec{a}_0 e.g. in 1 dimension have "master formula"

$$V[\mathcal{O}] \approx \frac{1}{4} \Big[\mathcal{O}(a+\delta a) - \mathcal{O}(a-\delta a) \Big]^2$$

where

 $\delta a^2 = V[a]$

Two methods generally used for computing Bayesian master formulas:

 $\frac{\text{Maximum Likelihood}}{(\chi^2 \text{ minimization})}$

→ generalization to multiple dimensions via Hessian approach:

find set of (orthogonal) contours in parameter space around \vec{a}_0 such that \mathcal{L} along each contour is parametrized by statistically independent parameters — directions of contours given by eigenvectors \hat{e}_k of Hessian matrix H, with elements

$$H_{ij} = \frac{1}{2} \left. \frac{\partial^2 \chi^2(\vec{a})}{\partial a_i \partial a_j} \right|_{\vec{a} = \vec{a}_0}$$

and contours parametrized as $\Delta a^{(k)} = a^{(k)} - a_0 = t_k \frac{\hat{e}_k}{\sqrt{v_k}}$, with v_k eigenvectors of H

Two methods generally used for computing Bayesian master formulas:

 $\frac{\text{Maximum Likelihood}}{(\chi^2 \text{ minimization})}$

 \rightarrow basic assumption: \mathcal{P} factorizes along each eigendirection

$$\mathcal{P}(\Delta a) \approx \prod_k \mathcal{P}_k(t_k)$$

where

$$\mathcal{P}_k(t_k) = \mathcal{N}_k \exp\left[-\frac{1}{2}\chi^2 \left(a_0 + t_k \frac{\hat{e}_k}{\sqrt{v_k}}\right)\right]$$

<u>note</u>: in quadratic approximation for χ^2 , this becomes a normal distribution

Two methods generally used for computing Bayesian master formulas:

 $\frac{\text{Maximum Likelihood}}{(\chi^2 \text{ minimization})}$

 \rightarrow uncertainties on \mathcal{O} along each eigendirection (assuming linear approximation)

$$(\Delta \mathcal{O}_k)^2 \approx \frac{1}{4} \left[\mathcal{O}\left(a_0 + T_k \frac{\hat{e}_k}{\sqrt{v_k}}\right) - \mathcal{O}\left(a_0 - T_k \frac{\hat{e}_k}{\sqrt{v_k}}\right) \right]^2$$

where T_k is finite step size in t_k , with total variance

$$V[\mathcal{O}] = \sum_{k} \left(\Delta \mathcal{O}_{k}\right)^{2}$$

Two methods generally used for computing Bayesian master formulas:

Monte Carlo

- → in practice, generally one has $E[\mathcal{O}(\vec{a})] \neq \mathcal{O}(E[\vec{a}])$ so the maximal likelihood method will sometimes fail
- \rightarrow Monte Carlo approach samples parameter space and assigns weights w_k to each set of parameters a_k
- -> expectation value and variance are then weighted averages

$$E[\mathcal{O}(\vec{a})] = \sum_{k} w_k \mathcal{O}(\vec{a}_k), \quad V[\mathcal{O}(\vec{a})] = \sum_{k} w_k \left(\mathcal{O}(\vec{a}_k) - E[\mathcal{O}]\right)^2$$

Two methods generally used for computing Bayesian master formulas:

 $\frac{\text{Maximum Likelihood}}{(\chi^2 \text{ minimization})}$

- fast
- assumes Gaussianity
- no guarantee that global minimum has been found
- errors only characterize local geometry of χ^2 function

Monte Carlo

• slow

- does not rely on
 Gaussian assumptions
- includes all possible solutions
- accurate

N. Sato, M. Albright, WM, H. Prosper, M. White (2017)

A. Accardi, E. Nocera, N. Sato, WM (2018)

- Incompatible data sets can arise because of errors in determining central values, or underestimation of systematic experimental uncertainties
 - \rightarrow requires some sort of modification to standard statistics
- Modify the master formula by introducing a "tolerance" factor T

$$V[\mathcal{O}] \rightarrow T^2 V[\mathcal{O}]$$

e.g. for one dimension

$$V[\mathcal{O}] = \frac{T^2}{4} \left[\mathcal{O}(a + \delta a) - \mathcal{O}(a - \delta a) \right]^2$$

 \rightarrow effectively modifies the likelihood function

Simple example: consider observable m, and two measurements $(m_1, \delta m_1), (m_2, \delta m_2)$

 \rightarrow compute exactly the χ^2 function

$$\chi^2 = \left(\frac{m - m_1}{\delta m_1}\right)^2 + \left(\frac{m - m_2}{\delta m_2}\right)^2$$

and, from Bayesian master formula, the mean value

$$E[m] = \frac{m_1 \delta m_2^2 + m_2 \delta m_1^2}{\delta m_1^2 + \delta m_2^2}$$

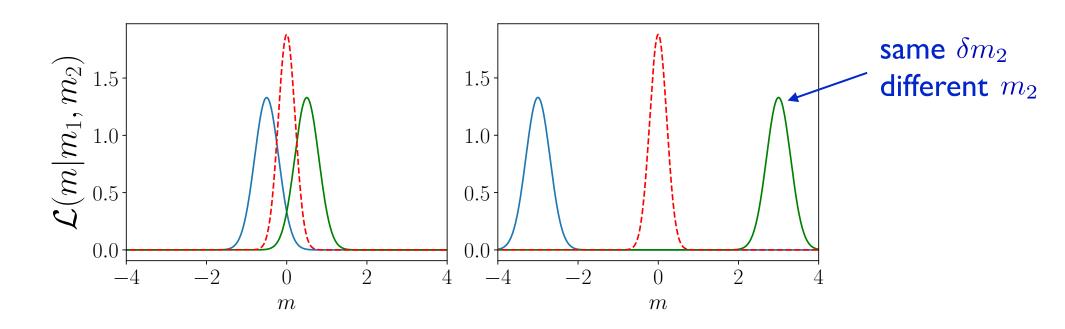
and variance

Ince

$$V[m] = H^{-1} = \frac{\delta m_1^2 \, \delta m_2^2}{\delta m_1^2 + \delta m_2^2} \qquad \qquad \begin{array}{c} \text{does not} \\ \text{depend on} \\ m_1 - m_2 \, ! \end{array}$$

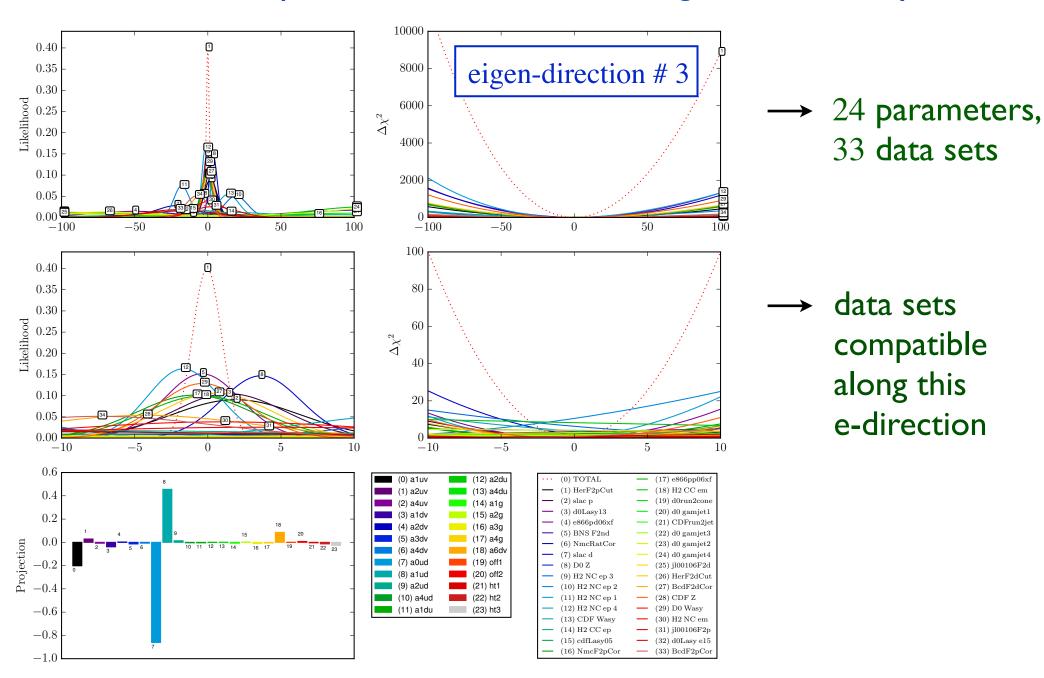
 \blacksquare Simple example: consider observable m , and two measurements

 $(m_1, \delta m_1), (m_2, \delta m_2)$

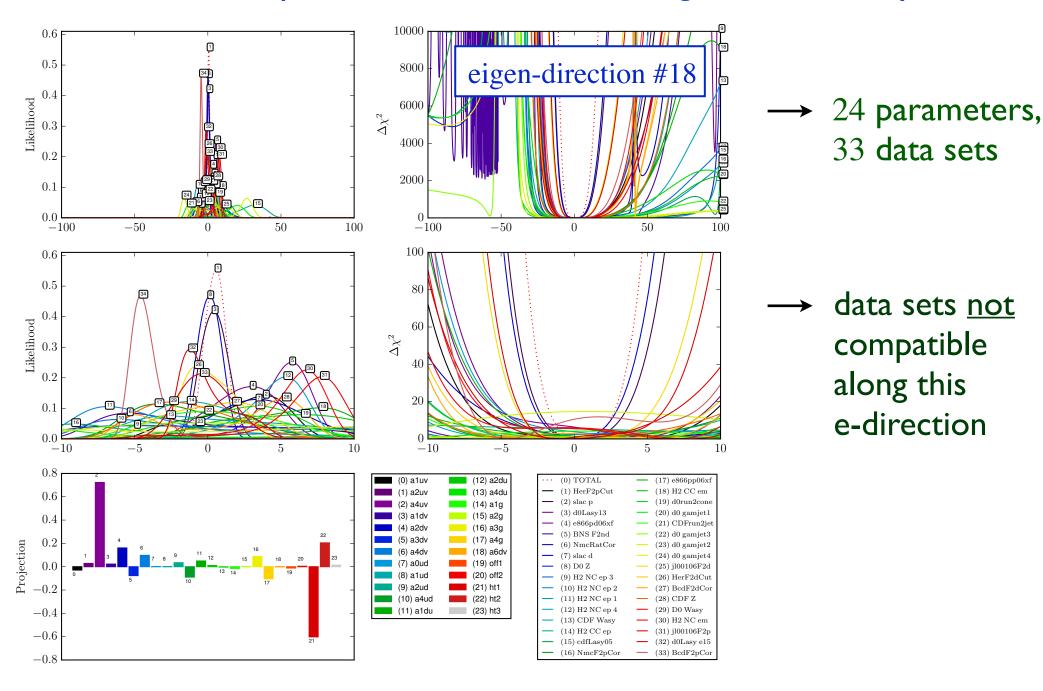


- → total uncertainty remains independent of degree of (in)compatibility of data
- → Gaussian likelihood gives unrealistic representation of true uncertainty

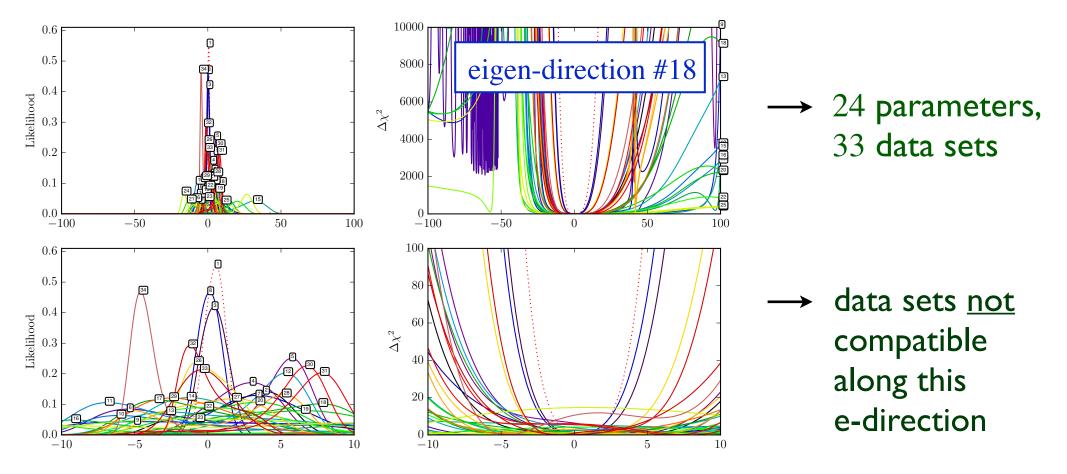
■ <u>Realistic example:</u> recent CJ (CTEQ-JLab) global PDF analysis



■ <u>Realistic example:</u> recent CJ (CTEQ-JLab) global PDF analysis

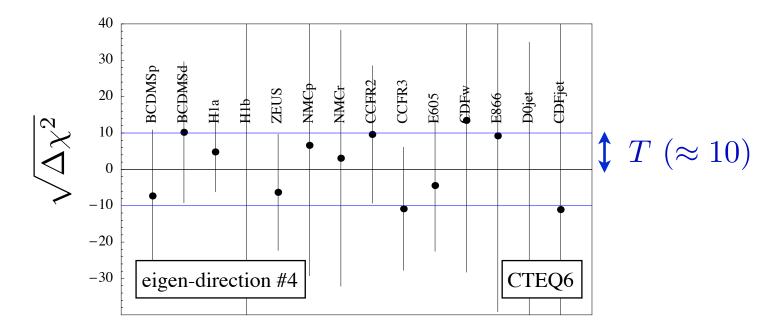


■ <u>Realistic example</u>: recent CJ (CTEQ-JLab) global PDF analysis



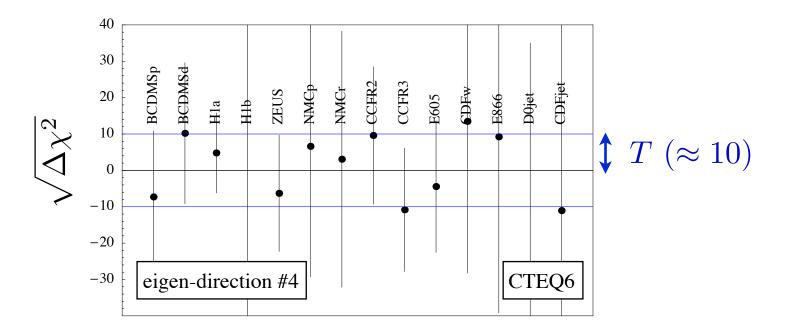
 standard Gaussian likelihood incapable of accounting for underestimated individual errors (leading to incompatible data sets)
 — not designed for such scenarios!

CTEQ tolerance criteria



- for each experiment, find minimum χ^2 along given e-direction
- from χ^2 distribution determine 90% CL for each experiment
- along each side of e-direction, determine maximum range d_k^{\pm} allowed by the most constraining experiment
- T computed by averaging over all d_k^{\pm} (typically $T \sim 5 10$)

■ CTEQ tolerance criteria



■ This approach is *not consistent* with Gaussian likelihood

→ no clear Bayesian interpretation of uncertainties (ultimately, a prescription...)

To summarize standard maximum likelihood method...

- Gradient search (in parameter space) depends how "good" the starting point is
 - → for ~30 parameters trying different starting points is impractical, if do not have some information about shape
- Common to free parameters initially, then freeze those not sensitive to data (χ^2 flat locally)
 - \rightarrow introduces <u>bias</u>, does not guarantee that flat χ^2 globally
- □ Cannot guarantee solution is <u>unique</u>
- Error propagation characterized by quadratic χ^2 near minimum \rightarrow no guarantee this is quadratic globally (*e.g.* Student *t*-distribution?)
- □ Introduction of <u>tolerance</u> modifies Gaussian statistics

Monte Carlo methods

Monte Carlo

- Designed to faithfully compute Bayesian master formulas
- Do not assume a <u>single minimum</u>, include all possible solutions (with appropriate weightings)
- <u>Do not</u> assume likelihood is <u>Gaussian</u> in parameters
- Allows likelihood analysis to be extended to <u>address tensions</u> among data sets via Bayesian inference
- More <u>computationally demanding</u> compared with Hessian method

Monte Carlo

■ First group to use MC for global PDF analysis was NNPDF, using neural network to parametrize P(x) in Forte et al. (2002)

 $f(x) = N x^{\alpha} (1-x)^{\beta} P(x)$

— α, β are fitted "preprocessing coefficients"

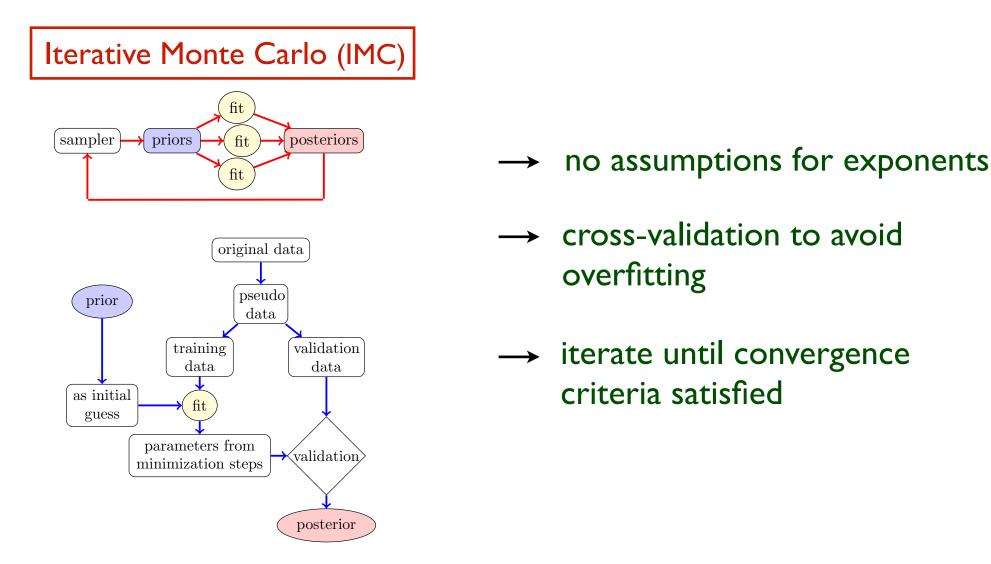
- Iterative Monte Carlo (IMC), developed by JAM Collaboration, variant of NNPDF, tailored to non-neutral net parametrizations
- Markov Chain MC (MCMC) / Hybid MC (HMC)
 recent "proof of principle" analysis, ideas from lattice QCD

Gbedo, Mangin-Brinet (2017)

Nested sampling (NS) — computes integrals in Bayesian master formulas (for E, V, Z) explicitly
Skilling (2004)

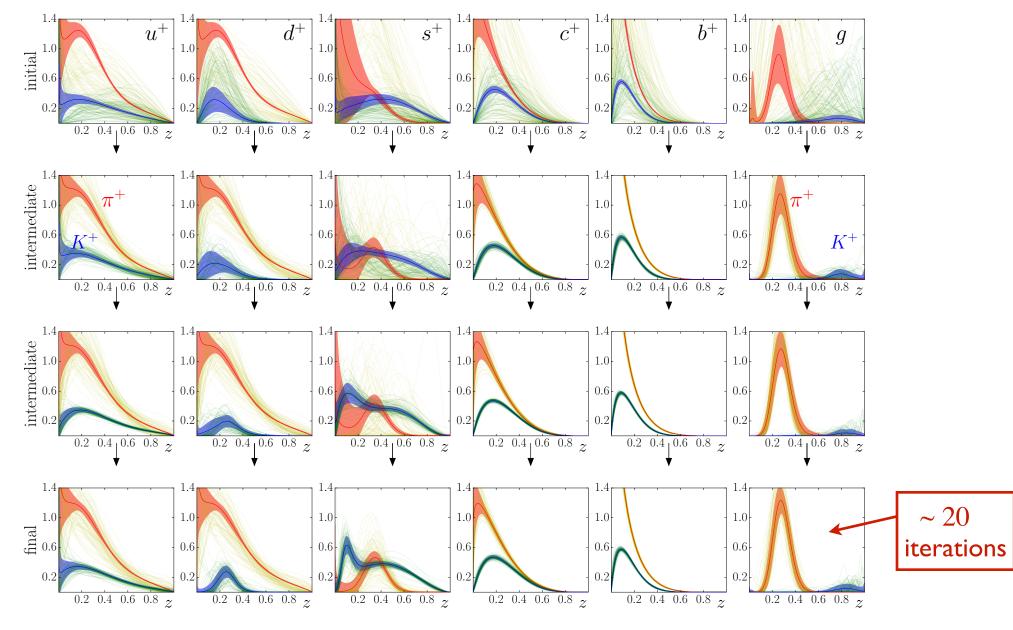
Iterative Monte Carlo (IMC)

Use traditional functional form for input distribution shape, but sample significantly larger parameter space than possible in single-fit analyses



Iterative Monte Carlo (IMC)

 \blacksquare e.g. of convergence (for fragmentation functions) in IMC

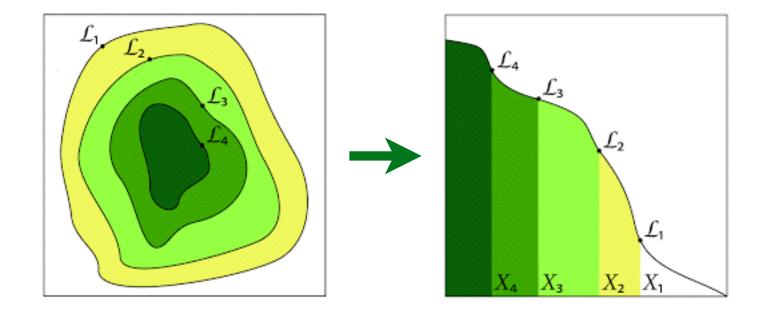


Sato, Ethier, WM, Hirai, Kumano, Accardi (2016)

Basic idea: transform n-dimensional integral to 1-D integral

$$Z = \int d^n a \,\mathcal{L}(\text{data}|\vec{a}) \,\pi(\vec{a}) = \int_0^1 dX \,\mathcal{L}(X)$$

where prior volume $dX = \pi(\vec{a}) d^n a$



such that $0 < \cdots < X_2 < X_1 < X_0 = 1$

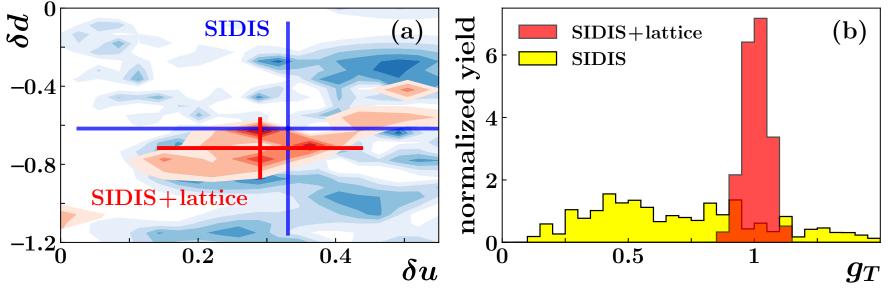
Feroz et al. arXiv:1306.2144 [astro-ph]

■ Approximate evidence by a weighted sum

$$Z \approx \sum_{i} \mathcal{L}_{i} w_{i}$$
 with weights $w_{i} = \frac{1}{2}(X_{i-1} - X_{i+1})$

- Algorithm:
 - \rightarrow randomly select samples from full prior s.t. initial volume $X_0 = 1$
 - \rightarrow for each iteration, remove point with lowest \mathcal{L}_i , replacing it with point from prior with constraint that its $\mathcal{L} > \mathcal{L}_i$
 - \rightarrow repeat until entire prior volume has been traversed
 - can be parallelized
 - performs better than VEGAS for large dimensions
 - increasingly used in fields outside of (nuclear) analysis

Recent application in global analysis of transversity TMD PDF (SIDIS data + lattice QCD constraint on isovector moment)

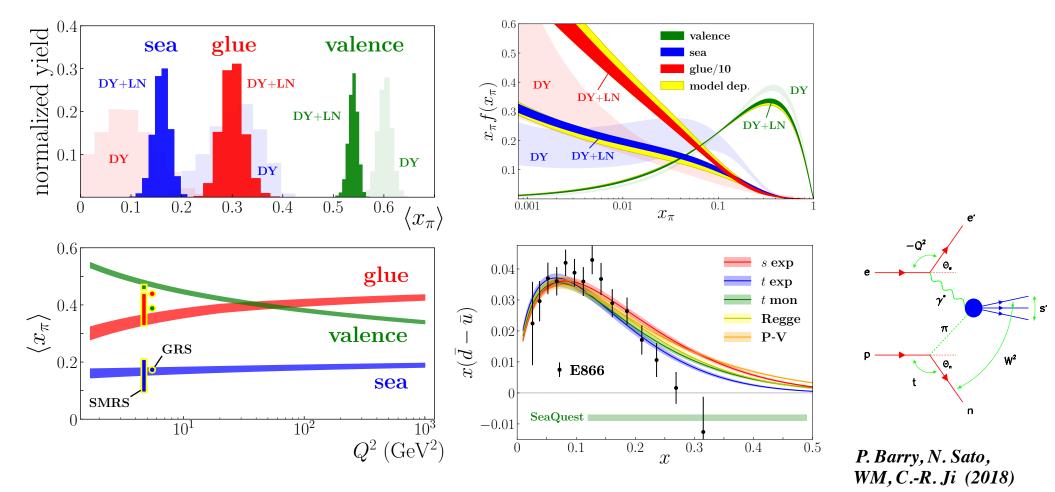


Lin, WM, Prokudin, Sato, Shows (PRL, 2018)

- → distributions do not look very Gaussian!
- \rightarrow MC analysis gives $\delta u = 0.3 \pm 0.2$, $\delta d = -0.7 \pm 0.2 \rightarrow g_T = 1.0 \pm 0.1$
- \rightarrow maximum likelihood analysis would have given $g_T \approx 0.5$

Most recently applied to global analysis of pion PDFs

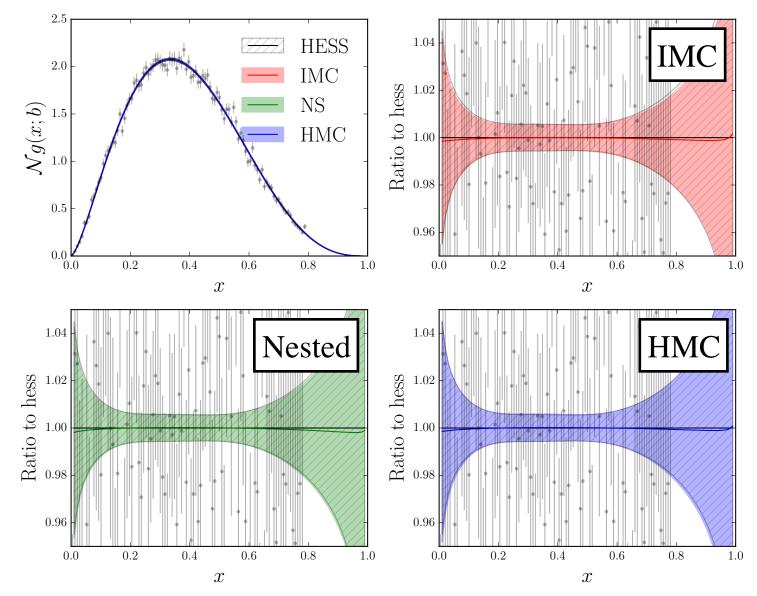
 $(\pi A \text{ Drell-Yan data} + \text{ leading neutron production at HERA})$



 \rightarrow first constraints on sea quark PDFs in the pion

MC Error Analysis

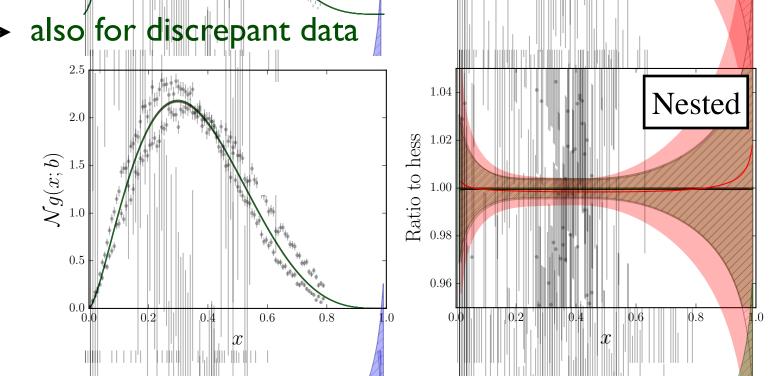
- Assuming a single minimum, a Hessian or MC analysis must give same results, if using same likelihood function
 - \rightarrow analysis of pseudodata, generated using Gaussian distribution



Sato et al. (2017)

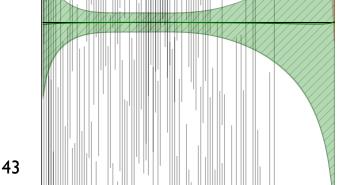
MC Error Analysis

Assuming a single minimum, a Hessian or MC analysis must give same results, if using same likelihood function



almost identical uncertainty bands for Hessian and for MC!

	ł	777	787	X		
			<u> </u>			
1						
						l l



MC Error Analysis

- Assuming a single minimum, a Hessian or MC analysis must give same results, if using same likelihood function
- Approaches that use Hessian + tolerance factor not consistent with Gaussian likelihood function
- NNPDF group claim that within their neural net MC methodology, no need for a tolerance factor, since uncertainties similar to other groups who use Hessian + tolerance
 - \rightarrow how can this be? *E. Nocera*, *A. Accardi*, *N. Sato*, *WM*, *work* in progress
- Assuming sufficient observables to determine PDFs, then PDF uncertainties cannot depend on parametrization!

Non-Gaussian likelihood

Incompatible data sets

- Rigorous (Bayesian) way to address incompatible data sets is to use generalization of Gaussian likelihood
 - joint vs. disjoint distributions
 - empirical Bayes
 - hierarchical Bayes
 - others, used in different fields

Disjoint distributions

Instead of using total likelihood that is a product ("and") of individual likelihoods, e.g. for simple example of two measurements

 $\mathcal{L}(m_1m_2|m;\delta m_1\delta m_2) = \mathcal{L}(m_1|m;\delta m_1) \times \mathcal{L}(m_2|m;\delta m_2)$

use instead sum ("or") of individual likelihoods

$$\mathcal{L}(m_1m_2|m;\delta m_1\delta m_2) = \frac{1}{2} \Big[\mathcal{L}(m_1|m;\delta m_1) + \mathcal{L}(m_2|m;\delta m_2) \Big]$$

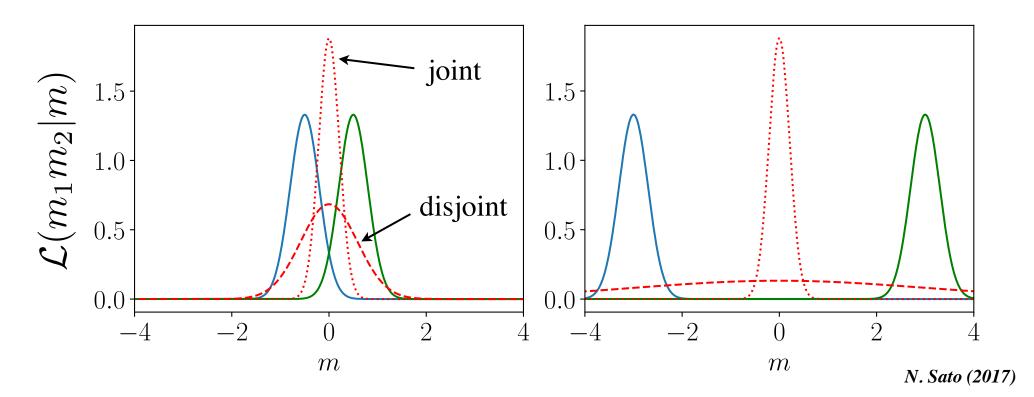
 \rightarrow gives rather different expectation value and variance

$$E[m] = \frac{1}{2}(m_1 + m_2)$$

$$V[m] = \frac{1}{2}(\delta m_1^2 + \delta m_2^2) + \left(\frac{m_1 - m_2}{2}\right)^2$$
depends on separation!

Disjoint distributions

Symmetric uncertainties $\delta m_1 = \delta m_2$

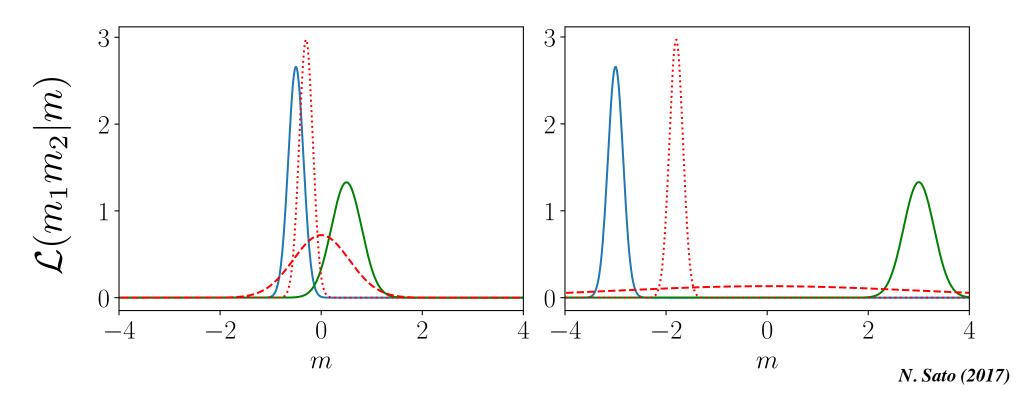


disjoint:
$$V[m] = \frac{1}{2}(\delta m_1^2 + \delta m_2^2) + \left(\frac{m_1 - m_2}{2}\right)^2$$

joint: $V[m] = \frac{\delta m_1^2 \ \delta m_2^2}{\delta m_1^2 + \delta m_2^2}$

Disjoint distributions

Asymmetric uncertainties $\delta m_1 \neq \delta m_2$



 disjoint likelihood gives broader overall uncertainty, overlapping individual (discrepant) data

Empirical Bayes

- Shortcoming of conventional Bayesian still <u>assume</u> <u>prior</u> distribution follows specific form (*e.g.* Gaussian)
- Extend approach to more fully represent prior uncertainties, with final uncertainties that do not depend on initial choices
- In generalized approach, data uncertainties modified by <u>distortion parameters</u>, whose probability distributions given in terms of "hyperparameters" (or "nuisance parameters")
- Hyperparameters determined from data
 \rightarrow give posteriors for both PDF and hyperparameters

Empirical Bayes

■ Standard mean and variance that characterize data

 $\theta = \mu + \sigma \quad \longrightarrow \quad f(\mu) + g(\sigma)$

where $f(\mu),g(\sigma)$ are unknown functions that account for faulty measurements

Simple choice is

 $(\mu, \sigma) \rightarrow (\zeta_1 \,\mu + \zeta_2, \,\zeta_3 \,\sigma)$

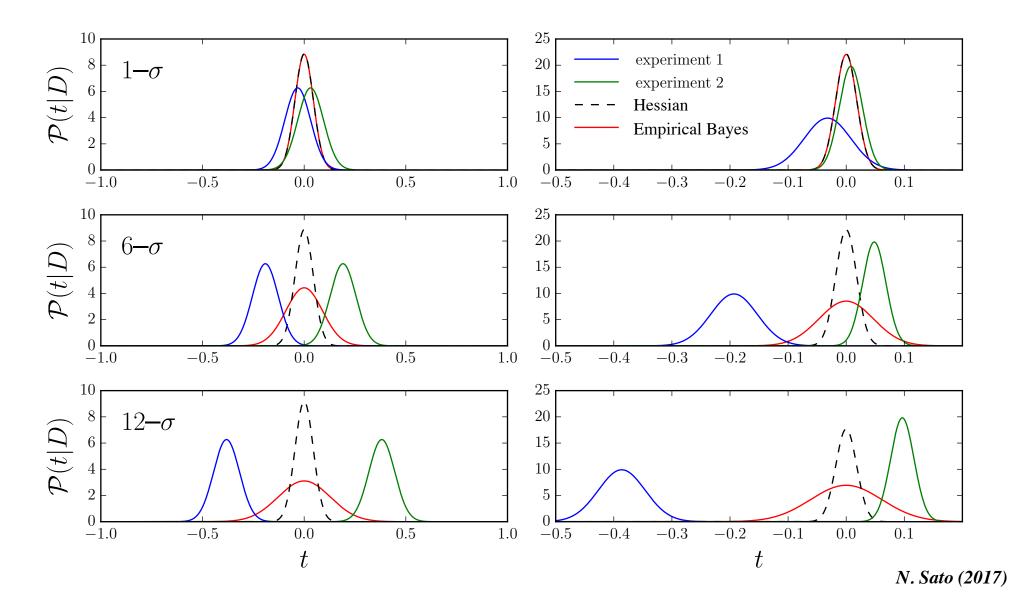
where $\zeta_{1,2,3}$ are distortion parameters, with prob. dists. described by hyperparameters $\phi_{1,2,3}$

Likelihood function is then

$$\mathcal{L}(\text{data}|\vec{a},\zeta_{1,2,3}) \sim \exp\left[-\frac{1}{2}\sum_{i}\left(\frac{d_{1}-f(\mu_{i}(\vec{a},\zeta_{1,2}))}{g(\sigma,\zeta_{3})}\right)^{2}\right]\pi_{1}(\zeta_{1}|\phi_{1})\pi_{2}(\zeta_{1}|\phi_{2})\pi_{3}(\zeta_{1}|\phi_{3})$$

Empirical Bayes

■ Simple example of EB for symmetric & asymmetric errors



Outlook

- New approaches being developed for global QCD analysis — <u>simultaneous</u> determination of parton distributions using Monte Carlo sampling of parameter space
- Treatment of <u>discrepant data sets</u> needs serious attention — Bayesian perspective has clear merits
- Near-term future: "universal" QCD analysis of all observables sensitive to collinear (unpolarized & polarized) PDFs and FFs
- Longer-term: apply MC technology to global QCD analysis of transverse momentum dependent (TMD) PDFs and FFs

Carlota

