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PDF uncertainties. 
What is the meaning of this?
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Why are PDF uncertainties important?
In searches for new physics beyond the Standard Model
a major source of uncertainty on limits/discoveries is from 
calculation of QCD backgrounds        PDF errors!

drives a large part of the global PDF community (esp.  LHC)

“The PDF and α  uncertainties were calculated using the PDF4LHC prescription
[39] with the MSTW2008 68% CL NNLO [40, 41], CT10 NNLO [42, 43], and
NNPDF2.3 5f FFN [44] PDF sets, and added in quadrature to the scale uncertainty.”

S

Measurements of the charge asymmetry in top-quark pair production in the 
dilepton final state at √s = 8 TeV with the ATLAS detector  PRD 94, 032006 (2016)

Limits understanding of nucleon structure

e.g. momentum and spin distributions of d quarks at large x
motivation for several JLab12 experiments
(MARATHON,  BONuS,  SoLID, …)
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larger F n
2 /F

p
2 values as compared with the Fermi-motion only extracted values. As can be

seen in Figure 3, the difference at x = 0.85 can be up to ∼ 50%.

Figure 3: The Fn
2 /F

p
2 ratio extracted from proton and deuteron DIS measurements [11] with a)

a Fermi-smearing model (Bodek et al. [12]), b) a covariant model that includes binding and off-

shell effects (Melnitchouk and Thomas [34]), and c) the “nuclear density model” [39] that also

incorporates binding and off-shell effects (Whitlow et al. [36]).

Whitlow et al. [36] incorporated binding effects using the “nuclear density model” of

Frankfurt and Strikman [39]. In this model, the EMC effect for the deuteron scales with

nuclear density as for heavy nuclei:

F d
2

F p
2 + F n

2

= 1 +
ρd

ρA − ρd

[
FA
2

F d
2

− 1

]

, (13)

where ρd is the charge density of the deuterium nucleus, and ρA and FA
2 refer to a heavy

nucleus with atomic mass number A. This model predicts for the ratio F n
2 /F

p
2 values that
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for this process is factorized in terms of the deuteron spectral function S and an effective

neutron F2 structure function:

dσ

d3p
∼ S(y, p2)F n

2

(
x

y
, p2, Q2

)

eff

, (27)

with:

y =
Md − Es + (ps)z

Md
, p2 = − p2t

1− y
− y

1− y

[
M2 −M2

d (1− y)
]
, (28)

Figure 15: Projected inelastic data (W 2 > 4 GeV2, except for the highest-x point for which W 2 = 3

GeV2) for the Fn
2 /F

p
2 structure function ratio from the proposed 3H/3He JLab experiment with a 11

GeV electron beam. The error bars include point-to-point statistical, experimental and theoretical

uncertainties, and an overall normalization uncertainty added in quadrature. The shaded band

indicates the present uncertainty due mainly to possible binding effects in the deuteron.

33

d/u ratio at large x
Traditionally extracted from neutron / proton
structure function ratio (where “neutron” ~ deuteron - proton),
but large nuclear uncertainties affect high-x region

Petratos, Katramatou, Gomez et al. 
MARATHON Collaboration
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d/u ratio at large x
Traditionally extracted from neutron / proton
structure function ratio (where “neutron” ~ deuteron - proton),
but large nuclear uncertainties affect high-x region

cannot discriminate between predictions for d/u at x ~ 1

Owens, Accardi, WM (2013)
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extrapolated ratio at x = 1: d/u ! 0.09± 0.03
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Accardi, Brady, WM, Owens, Sato (2016)



Different groups use different definitions of PDF uncertainties
to take into account tensions between data sets
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CJ15: ��2 = 2.7

MMHT: ��2 ⇡ 25� 100

CT14: ��2 ⇡ 100

JR14: ��2 = 1

… is this a meaningful comparison?
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d/u ratio at large x

multiply uncertainties by “tolerance” factor T =
p
��2



Dependence on PDF parametrization

Alekhin, Kulagin, Petti (2017)

µ=3 GeV, Nf=3
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recent analysis by AKP has tiny uncertainties, and             , 
which we (CJ) believe is simply parametrization bias!

d/u ! 0

* same functional form for u & d ⇠ (1� x)�

† more flexible form
d ! d+ a x

b
u

… is there a more robust analysis?
 8

d/u ratio at large x

Accardi et al. (2017)

CJ15
* conventional

��2 = 100

†
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utilize modern techniques based on Bayesian statistics!

Previous attempts sought to address tensions in data sets
by introducing

“neural net” parametrization (instead of polynomial
  parametrization),  together with MC techniques 

“tolerance” factors (artificially inflating PDF errors)

However,  to address the problem in a more statistically 
rigorous way, one requires going beyond the standard
     minimization paradigm�2

Need for new technology
A major challenge has been to characterize PDF uncertainties
— in a statistically meaningful way — in the presence of
tensions among data sets



In the near future,  standard      minimization techniques
will be unsuitable — even in the absence of tensions —
e.g. for

simultaneous analysis of collinear distributions
(unpolarized & polarized PDFs, fragmentation functions)

�2

new types of observables — TMDs or GPDs —
that will involve                data points, with            
parameters

> O(105) O(103)

Need for new technology
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Typically PDF parametrizations are nonlinear functions of
the PDF parameters, e.g.

Robust parameter estimation that thoroughly scans over a
realistic parameter space, including multiple local minima,
is only possible using MC methods

have multiple local minima present in the      function�2

xf(x, µ) = Nx

↵(1� x)� P (x)

where P is a polynomial e.g.                                 ,
or Chebyshev, neural net, …

P (x) = 1 + �
p
x+ ⇥ x

Need for new technology



Bayesian approach
to fitting

main instigator

Nobuo Sato



Analysis of data requires estimating expectation values E
and variances V  of  “observables”     (= PDFs, FFs) which are
functions of parameters 

O

E[O] =

Z
dnaP(~a|data)O(~a)

V [O] =

Z
dnaP(~a|data) ⇥O(~a)� E[O]

⇤2
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Bayesian approach to fitting

“Bayesian master formulas"

Using Bayes’ theorem,  probability distribution      given byP

P(~a|data) = 1

Z
L(data|~a)⇡(~a)

in terms of the likelihood function L

~a



�2
(~a) =

X

i

✓
data i � theoryi(~a)

�(data)

◆2
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Bayesian approach to fitting

Likelihood function 

L(data|~a) = exp

✓
�1

2

�2
(~a)

◆

is a Gaussian form in the data, with      function�2

with priors          and  “evidence”⇡(~a) Z

Z =

Z
dnaL(data|~a)⇡(~a)

Z tests if e.g. an n-parameter fit is statistically different
from (n+1)-parameter fit
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Bayesian approach to fitting

Two methods generally used for computing Bayesian
master formulas:

Maximum Likelihood
(     minimization)

Monte Carlo
�2
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Bayesian approach to fitting

Two methods generally used for computing Bayesian
master formulas:

Maximum Likelihood
(     minimization)�2

maximize probability distribution     by minimizing
for a set of best-fit parameters 

P �2

~a0

if     is     linear in the parameters, and if probability is
symmetric in all parameters
O ⇡

E [~a ] = ~a0

E [O(~a) ] ⇡ O(~a0)
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Bayesian approach to fitting

Two methods generally used for computing Bayesian
master formulas:

Maximum Likelihood
(     minimization)�2

variance computed by expanding          about 
e.g. in 1 dimension have “master formula”

~a0O(~a)

V [O] ⇡ 1

4

h
O(a+ �a)�O(a� �a)

i2

where 

�a2 = V [a]
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Bayesian approach to fitting

Two methods generally used for computing Bayesian
master formulas:

Maximum Likelihood
(     minimization)�2

Hij =
1

2

@2�2(~a)

@ai@aj

����
~a=~a0

find set of (orthogonal) contours in parameter space around 
such that      along each contour is parametrized by statistically 
independent parameters — directions of contours given by 
eigenvectors     of Hessian matrix H, with elements

~a0
L

êk

generalization to multiple dimensions via Hessian approach:

and contours parametrized as                                       , 
with     eigenvectors of H

�a(k) = a(k) � a0 = tk
êkp
vkvk
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Bayesian approach to fitting

Two methods generally used for computing Bayesian
master formulas:

Maximum Likelihood
(     minimization)�2

basic assumption:      factorizes along each eigendirection

note: in quadratic approximation for     , this becomes a
        normal distribution

P

P(�a) ⇡
Y

k

Pk(tk)

where 

Pk(tk) = Nk exp

h
� 1

2

�2
⇣
a0 + tk

êkp
vk

⌘i

�2
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Bayesian approach to fitting

Two methods generally used for computing Bayesian
master formulas:

Maximum Likelihood
(     minimization)�2

uncertainties on     along each eigendirection
(assuming linear approximation) 

O

(�Ok)
2 ⇡ 1

4


O
⇣
a0 + Tk

êkp
vk

⌘
�O

⇣
a0 � Tk

êkp
vk

⌘�2

V [O] =
X

k

(�Ok)
2

where       is finite step size in     , with total varianceTk tk
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Bayesian approach to fitting

Two methods generally used for computing Bayesian
master formulas:

Monte Carlo

in practice, generally one has
so the maximal likelihood method will sometimes fail 

E[O(~a)] 6= O(E[~a])

Monte Carlo approach samples parameter space and
assigns weights      to each set of parameterswk ak

expectation value and variance are then weighted averages

,E[O(~a)] =
X

k

wk O(~ak) V [O(~a)] =
X

k

wk

�O(~ak)� E[O]
�2
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Bayesian approach to fitting

Two methods generally used for computing Bayesian
master formulas:

Maximum Likelihood
(     minimization)

Monte Carlo
�2

fast

accurate

does not rely on
Gaussian assumptions

includes all possible 
solutions

assumes Gaussianity

no guarantee that global
minimum has been found

errors only characterize
local geometry of
     function�2

slow



Incompatible
data sets

N. Sato, M. Albright, WM, H. Prosper, M. White (2017)

A. Accardi, E. Nocera, N. Sato, WM (2018)
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Incompatible data sets

Incompatible data sets can arise because of errors
in determining central values, or underestimation
of systematic experimental uncertainties

requires some sort of modification to standard statistics

Modify the master formula by introducing a “tolerance” 
factor T

V [O] =
T 2

4

h
O(a+ �a)�O(a� �a)

i2
e.g. for one dimension

effectively modifies the likelihood function

V [O] ! T 2 V [O]
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Incompatible data sets

Simple example:  consider observable     , and two measurements
(m1, �m1), (m2, �m2)

m

�2 =

✓
m�m1

�m1

◆2

+

✓
m�m2

�m2

◆2

E[m] =
m1�m2

2 +m2�m2
1

�m2
1 + �m2

2

V [m] = H�1 =
�m2

1 �m
2
2

�m2
1 + �m2

2

compute exactly the      function�2

and,  from Bayesian master formula,  the mean value

and variance does not
depend on
m1�m2 !
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total uncertainty remains independent of degree of 
(in)compatibility of data

Incompatible data sets

Simple example:  consider observable     , and two measurements
(m1, �m1), (m2, �m2)

m

Gaussian likelihood gives unrealistic representation 
of true uncertainty

same 
different  m2

�m2
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Realistic example:  recent CJ (CTEQ-JLab) global PDF analysis

24 parameters,
33 data sets
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Realistic example:  recent CJ (CTEQ-JLab) global PDF analysis

data sets not
compatible 
along this
e-direction

24 parameters,
33 data sets
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Realistic example:  recent CJ (CTEQ-JLab) global PDF analysis

24 parameters,
33 data sets
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standard Gaussian likelihood incapable of accounting for 
underestimated individual errors (leading to incompatible data sets)
— not designed for such scenarios!

data sets not
compatible 
along this
e-direction
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Incompatible data sets

CTEQ tolerance criteria

for each experiment, find minimum      along given e-direction�2

from     distribution determine 90% CL for each experiment  �2

along each side of e-direction, determine maximum range
allowed by the most constraining experiment
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T (⇡ 10)
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Incompatible data sets

CTEQ tolerance criteria
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This approach is not consistent with Gaussian likelihood

no clear Bayesian interpretation of uncertainties
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To summarize standard maximum likelihood method…

for ~30 parameters trying different starting points is
impractical, if do not have some information about shape

Gradient search (in parameter space) depends how “good” the
starting point is

Cannot guarantee solution is unique

Introduction of tolerance modifies Gaussian statistics

Common to free parameters initially, then freeze those
not sensitive to data (     flat locally)�2

introduces bias,  does not guarantee that flat      globally�2

Error propagation characterized by quadratic      near minimum�2

no guarantee this is quadratic globally (e.g. Student t-distribution?)



Monte Carlo 
methods
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Monte Carlo

Designed to faithfully compute Bayesian master formulas

Do not assume a single minimum, include all possible solutions
(with appropriate weightings)

Do not assume likelihood is Gaussian in parameters

Allows likelihood analysis to be extended to address tensions
among data sets via Bayesian inference

More computationally demanding compared with Hessian method
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Monte Carlo

First group to use MC for global PDF analysis was NNPDF,
using neural network to parametrize         in P (x)

f(x) = N x

↵(1� x)� P (x)

Iterative Monte Carlo (IMC), developed by JAM Collaboration,
variant of NNPDF, tailored to non-neutral net parametrizations

Markov Chain MC (MCMC) / Hybid MC (HMC)
— recent “proof of principle” analysis, ideas from lattice QCD

Gbedo, Mangin-Brinet (2017)

Nested sampling (NS) — computes integrals in Bayesian master
formulas (for E,  V,  Z) explicitly Skilling (2004)

—        are fitted “preprocessing coefficients”↵,�

Forte et al. (2002)



no assumptions for exponents 

Use traditional functional form for input distribution shape,
but sample significantly larger parameter space than possible
in single-fit analyses

cross-validation to avoid
overfitting

iterate until convergence
criteria satisfied
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sampler
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Iterative Monte Carlo (IMC)

  ~ 20
iterations

Sato, Ethier, WM, Hirai, Kumano, Accardi (2016)
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Nested Sampling

Basic idea:  transform n-dimensional integral to 1-D integral 

Z =

Z
dnaL(data|~a)⇡(~a) =

Z 1

0
dX L(X)

where prior volume dX = ⇡(~a) dna

such that 0 < · · · < X2 < X1 < X0 = 1
Feroz et al.
arXiv:1306.2144 [astro-ph]
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Nested Sampling

Approximate evidence by a weighted sum

Z ⇡
X

i

Li wi wi =
1

2
(Xi�1 �Xi+1)with weights

Algorithm:

repeat until entire prior volume has been traversed

can be parallelized

randomly select samples from full prior s.t. initial volume X0 = 1

for each iteration, remove point with lowest     , replacing it
with point from prior with constraint that its

Li

L > Li

increasingly used in fields outside of (nuclear) analysis

performs better than VEGAS for large dimensions
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Nested Sampling

Recent application in global analysis of transversity TMD PDF
(SIDIS data + lattice QCD constraint on isovector moment)

distributions do not look very Gaussian!

MC analysis gives                    ,  �d = �0.7± 0.2�u = 0.3± 0.2 gT = 1.0± 0.1

maximum likelihood analysis would have given gT ⇡ 0.5
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Nested Sampling

Most recently applied to global analysis of pion PDFs
(      Drell-Yan data + leading neutron production at HERA)
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Assuming a single minimum, a Hessian or MC analysis must give
same results, if using same likelihood function

MC Error Analysis

analysis of pseudodata, generated using Gaussian distribution
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Assuming a single minimum, a Hessian or MC analysis must give
same results, if using same likelihood function

MC Error Analysis

also for discrepant data

almost identical uncertainty bands for Hessian and for MC!
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Assuming a single minimum, a Hessian or MC analysis must give
same results, if using same likelihood function

MC Error Analysis

Approaches that use Hessian + tolerance factor not consistent
with Gaussian likelihood function

Assuming sufficient observables to determine PDFs, then
PDF uncertainties cannot depend on parametrization!

NNPDF group claim that within their neural net MC methodology, 
no need for a tolerance factor, since uncertainties similar to
other groups who use Hessian + tolerance

how can this be? E. Nocera, A. Accardi, N. Sato, WM, work in progress



Non-Gaussian 
likelihood



Rigorous (Bayesian) way to address incompatible data sets
is to use generalization of Gaussian likelihood
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Incompatible data sets

joint vs. disjoint distributions

empirical Bayes

hierarchical Bayes

others, used in different fields
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Disjoint distributions

Instead of using total likelihood that is a product (“and”)
of individual likelihoods,  e.g. for simple example of two 
measurements

L(m1m2|m; �m1�m2) = L(m1|m; �m1)⇥ L(m2|m; �m2)

use instead sum (“or”) of individual likelihoods

L(m1m2|m; �m1�m2) =
1

2

h
L(m1|m; �m1) + L(m2|m; �m2)

i

gives rather different expectation value and variance

E[m] =
1

2
(m1 +m2)

V [m] =
1

2
(�m2

1 + �m2
2) +

✓
m1 �m2

2

◆2

depends on
separation!
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Disjoint distributions
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Symmetric uncertainties �m1 = �m2

N. Sato (2017)
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Disjoint distributions
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N. Sato (2017)
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Shortcoming of conventional Bayesian — still assume
prior distribution follows specific form (e.g. Gaussian)

Empirical Bayes

Extend approach to more fully represent prior uncertainties,
with final uncertainties that do not depend on initial choices

In generalized approach, data uncertainties modified by
distortion parameters, whose probability distributions given
in terms of “hyperparameters” (or “nuisance parameters”)

Hyperparameters determined from data
give posteriors for both PDF and hyperparameters



 51

Empirical Bayes

Standard mean and variance that characterize data
✓ = µ+ � f(µ) + g(�)

where                are unknown functions that account for
faulty measurements

f(µ), g(�)

Simple choice is

(µ,�) ! (⇣1 µ+ ⇣2, ⇣3 �)

where          are distortion parameters, with prob. dists.
described by hyperparameters 

⇣1,2,3
�1,2,3

Likelihood function is then

L(data|~a, ⇣1,2,3) ⇠ exp

"
�1

2

X

i

✓
d1 � f(µi(~a, ⇣1,2))

g(�, ⇣3)

◆2
#
⇡1(⇣1|�1)⇡2(⇣1|�2)⇡3(⇣1|�3)



 52

Empirical Bayes
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N. Sato (2017)



Outlook

New approaches being developed for global QCD analysis
—  simultaneous determination of parton distributions
      using Monte Carlo sampling of parameter space 

Near-term future:  “universal” QCD analysis of all observables 
sensitive to collinear (unpolarized & polarized) PDFs and FFs

Longer-term:  apply MC technology to global QCD analysis
of transverse momentum dependent (TMD) PDFs and FFs

Treatment of discrepant data sets needs serious attention
—  Bayesian perspective has clear merits

Nobuo Jake Alberto Carlota

…



E = mc
2


