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The Bayesian framework
for QCD global analysis
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The parent distribution

“If we could make an infinite number of measurements, then
we could describe exactly the distribution of the data points.
This is not possible in practice, but we can hypothesize
the existence of such a distribution that determines the
probability of getting any particular observation in a
single measurement. This distribution is called parent
distribution. Similarly we can hypothesize that the
measurements we have make are samples from the parent
distribution and they form the sample distribution. In the
limit of an infinite number of measurements, the sample
distribution becomes the parent distribution”

Data reduction and error analysis for the physical sciences
Bevington and Robison
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The Bayes theorem

m Consider a quantity [ to be inferred from data
m The goal is to estimate P(f|data)

m This is achieved by the Bayes theorem

1
P(f|data) = —  L(data|f)w(f)
—— Z ———
posterior N likelihood  prior
evidence
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Likelihoods and priors

m The likelihood function is typically chosen to be Gaussian

; — Imoael; 2
L(datalf) = exp l—; Z <dz(w(jl(f)> ]

m The prior function allows to restrict forbidden values for f i.e.

(f) = {1 condition(f) == True

0 condition(f) == False

m P(f|data) depends on what is chosen for £ and =

5/35



Parametrization

m In practice f needs to be represented parametrized e.g

f(z) = Nz®(1 — 2)°(1 + ez + dx + ...)
f(x) = Nz*(1 — aj)bNN(x; {w;})
f(z) = NN(z; {w;}) — NN(1; {w;})

m The Bayes theorem is implemented as
a=(N,a,b,cd,..)
1
P(ald) = —L(d|a)r(a)

; — model; a 2
L(d|a) = exp [_;Z<d, ;dil (f( ))) 1

i

m'LTL max
H 0(a; — a; a** — a;)
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Expectation values and variances

m Having the parent distribution we can compute
mm:/wapwmm)a@

wmz/wapmmm(w@—mmﬂ

m O is any function of a. e.g
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Expectation values and variances

m typically n > 1
m P(aldata) is computationally expensive

m for O = f(x), an n—dim integration is needed for each x
— Not practical!

m The challenge: how to compute E[O], V]|O]?

- Maximum likelihood

- Monte Carlo approach
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Maximum Likelihood

m Estimation of expectation value
0] = / d"a P(aldata) O(a) =~ O(ao)
B a is estimated from optimization algorithm

max [P(aldata)] = P(ag|data)
max [L(data|la)w(a)] = L(data|ap)m(ap)

m For Gaussian likelihood it is x2 minimization

min [—-2log (L(data|a)w(a))] = —2log (L(datalag)m(ap))
= x*(ao) — 2log ((ao))
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Hessian method : eigen direction decomposition

P(al|data) x exp (—; 2((1)) X exp (—;Xz(ao) - ;AXQ(G,))>
xexp (—3Ax%@)))
X exp (—;AaT HAa) + O(Ad®)
1 & é o3
o<exp< 5 Zk: (tkm> Hzl: <t1ﬁ>> + O(Aa?)
X exp (—1 Zti) + O(Aa®)

245
1
x Hexp (—Qtz) + O(Ad®) The posterior distribution
“factorizes” along each eigen
direction
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Maximum Likelihood + Hessian method

m Estimation of variance
_ /d"a P(aldata) (O(a) —E[O))?
3tk 8(’) 00

NH/d’“e c‘%lc‘)t ——titm,
N Z <8tk> = zk: {O(tk =1 —QO(tk = —1)1?

m It relies on

- linear approximation for O(a)

- Gaussian factorization of the posterior
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The tolerance criterion

m In QCD global analysis it is common to find discrepancies among
datasets

m The variance is then scaled by a tolerance factor T

Oty =1) — O(t), = —1)1?
k L
s EEREREREREEE
g, T ~10
- Why do we need 17

CTEQ6
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Why do we need 77

m Consider observable m and measurements (mq,dmyq), (mg, dms)

m The x? function is given by
2 2
2 . m —ma m —mo
X(m)_<5m1 >+( dma )

m The maximum likelihood and Hessian gives

_ dm3om3
~0m3 4 om?

m16m3 + madm?

E p—
[m] 5m% + 5m%

Vim]

m V[m] is independent of |m; — ma]
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Real life global analysis of PDFs CJ15
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Real life global analysis of PDFs CJ15
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Real life global analysis of PDFs CJ15

m eigen direction 16

m likelihood is less
gaussian

m some datasets are
in tension
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Maximum Likelihood + Hessian method

H pros
- Very practical. Most the PDF groups use this method
- It is computationally inexpensive
- f and its eigen directions can be precalculated/tabulated

H cons

Assumes local gaussian approximation of the likelihood

- Assumes linear approximation of the observables O around aq
These assumptions are strictly valid for linear models.

Hessian matrix is numerically unstable if flat directions are present
- To deal with incompatible data one needs to apply the tolerance
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Monte Carlo Methods

m Recall that we are interested in computing
E[O] = / d"a P(aldata) O(a)
Vio] = / d"a P(aldata) (O(a) - E[O])?

m MC methods attempts to do this using MC sampling

E[O] ~ Z wrO(ay)
k

VI]O] ~ Zwk((’)(ak) — E[0])?
k

m {wg, ar} is the sample distribution of the posterior distribution
P(aldata)
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MC Method 1: data resampling

m Construct pseudo data sets where each data
point is sampled using Gaussian distribution
with mean and variance given by the original
data

(pseudo) _ ;(exp) (exp)
i : i—th data point
k : k—-th pseudo data set index

Ry, ; - random number from normal distribution

m Fit each pseudo data sample Kk =1,..,N to
obtain parameter vectors a; The sample
distribution of P(a|data) is approximately

here “fit" means

=1/N
{wp =1/N,ar} Chi-square minimization
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MC Method 14: data resampling+cross validation

m Issues with number of parameters

— Ideally one should not be worried about the
number of parameters to be used.

— This is an issue for Hessian method due to
the flat directions.

— However flat directions are typically only a
local feature of the parent distribution.
m Over-fitting

— If there are too many parameters there
would be regions in the parameter space
where P(a|data) develops “spikes” — signal
of over-fitting

— One can use cross-validation to tame the
“spikes”
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MC Method 14: data resampling+cross validation

m Procedure

— For each pseudo data sample k split
randomly the data set in 50/50 and label
them as “training” and “validation”
respectively

— Fit the "training"” set and stop the fitting
whenever the description of the “validation”
set deteriorates — it avoids over-fitting

m Caveat

— the resulting sample distribution is sensitive

to the partition. Possible solutions include to

rescale the uncertainties of the training and
validation set to compensate for the splitting
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MC Method 14++4+4: data resampling+cross validation

i . +a(#"**) randomization
m One vs. multiple minima

+iterative runs

{@) T

— It is possible that P(a|data) is multi
modal.

— Hence it is important to start the scan
from many different starting points

m Caviat

original data

pseudo
data

— Optimization algorithms are based on
gradient descent search. It is possible
that in a given run with N independent
scans the sample distribution does not
represent accurately the “true” parent
distribution

training
data
as initial
guess
— To solve this, we start a new run by parameters from
. . minimization steps
sampling guessing parameters from the

prior iteration lterative MC fitting (IMC)

validation
data




MC Method 2: Hybrid Markov Chain Monte Carlo

m The basic idea

— This is an MCMC based algorithm
(random walks + rejection sampling )

— The random walks are optimized by m pros

solving Hamilton's equations. It provides a faithful

— The parameters a are the sampling distribution
“coordinates” and a conjugate vector
p e.g. “momentum” is defined

H cons

— the number of steps and
step size of the leap frog
must be tuned.

— An initial “state” is defined by a
random coordinate vector ag and a

random momentum vector py. _
_ _ — Cannot be parallelized
— A new state is proposed by solving a

Hamiltonian using the leap frog
method 9
p

H(p,a) = 2 —log(£(a))
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MC Method 3: nested resampling

m The basic idea: compute

AN

Z = /Edata|a a—/ L(X

The algorithm traverses ordered isolikelihood
contours in the variable X such that X
follows the progression X; = ¢; X; 1

The variable ¢; is estimated statistically

The algorithm can be optimized iteration to
iteration. One can sample only in the
regions where the likelihood is larger —
“importance sampling”

The nested sampling is parallelizable

L(datala) in a space

L(X) in X space

e ls
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Julr

JAM global analysis
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Polarized PDFs: inclusive polarized DIS
NS, Melnitchouk, Kuhn, Ethier, Accardi (PRD 93,074005)
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Fragmentation Functions: SIA

NS, Ethier, Melnitchouk, Hirai, Kumano, Accardi (PRD 94, 114004)
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— Inclusion of all the global data from Belle and Babar up
to LEP data at Q = M,

— Fits were done for pion and kaon samples
— We only extracted D = D, + D;
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Combined APDF and FF: pDIS+pSIDIS4SIA

Ethier, NS, Melnitchouk (PRL 119, 132001)
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SIDIS+Lattice analysis of nucleon tensor charge
Lin, Melnitchouk, Prokudin, NS, Shows (PRLett 120, 152502)
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— Extraction of transversity and Collins FFs from SIDIS
Ayr+Lattice gr
— In the absence of Lattice, SIDIS at present has no

significant constraints on gr — this will change with the
upcoming JLabl2 measurements
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JAM18: Universal analysis (preliminary)
Andres, Ethier, Melnitchouk, NS, Rogers

m Data sets

+ DIS, SIDIS(, K), DY
+ ADIS, ASIDIS(r, K)
+ ete (m, K)

m Theory setup

+ Observables computed at NLO in pQCD
+ DIS structure functions only at leading twist (W? > 10 GeV2)

m Likelihood analysis (first steps)

-+ Use maximum likelihood to find a candidate solution
-+ Use resampling to check for stability and estimate uncertainties
+ 80 shape parameters and 91 data normalization parameters:
171 dimensional space
-+ Sampling to be extended with IMC/Nested Sampling
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JAM18: PDFs (preliminary)
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JAM18: PDFs (preliminary)

Sy

5 m Comparison with other groups

+ dashed: MMHT14

+ dashed-dotted: CT14
+ dotted: CJ15

+ dot-dot-dash: ABMP16

m Big differences for s, 5 distributions
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JAM18: upolarized sea (preliminary)
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m For CJand CT, s=35
m MMHT uses neutrino DIS

m SIDIS favors a strange suppression

m and a larger s, 5 asymmetry
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Summary and outlook

Ll

MC methods are becoming a very useful tool in QCD
phenomenology.

It brings features that traditional methods cannot offer
Significant amount of research in data analysis is taking place
outside of the field. Maybe it is time to modernize how we
think and how we approach QCD global analyzes

In this talk | only covered “the tip of the iceberg”, but there
are many more interesting subtopics to be discussed e.g.
treatment of incompatible data sets
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