The role of neutron data in polarized PDF analysis

Nobuo Sato Polarized light ion physics with EIC, Ghent University, Ghent, Belgium, February 5-9, 2018

What can we learn from (un)polarized DIS?

- collinear factorization
- $+\,$ valid up to corrections of $O\left(m^2/Q^2\right)$
- $+ \mbox{ it works when } x \mbox{ is not too small or} \\ \mbox{ not too large and } Q^2 \mbox{ not too small } \\$
- + H, ΔH are calculable in expansion of α_S
- + non-perturbative field theoretic objects f and Δf can be extracted from data
- + extensions of collinear factorization are needed to understand where the power corrections are not suppressed. Not clear if existing treatments have controlled errors

What can we learn from (un)polarized DIS?

comments

- $+\,$ factorization only holds in a limited region of $x\in[0,1]$
- + at present it is not clear what are the boundaries in x,Q^2
- $+\,$ however $f(\xi),\Delta f(\xi)$ are well defined quantities in the region $\xi\in[0,1],$ where $\xi=k^+/P^+$
- $+\,$ The bayesian inference of $f(\xi), \Delta f(\xi)$ from data is limited by the applicability of collinear factorization
- $+ \,$ In order to access to $\xi \rightarrow 1$ or $\xi \rightarrow 0$ we need other tools:
 - o data that probes small and large x at large $Q \to \mathsf{EIC}$
 - improved factorization theorems to address regions where collinear factorization is not applicable
 - complementary approach using lattice QCD, e.g. quasi PDFs, pseudo PDFs
- + inclusive DIS cannot resolve fully the flavor dependence \rightarrow additional observables (justified by collinear factorization) are needed: e.g. PVDIS, SIDIS, Jets, DY, W

What can we learn from polarized DIS?

+++++

• polarized structure function g_1 at leading twist (τ_2)

$$g_{1}^{p,n(\tau_{2})}(x) = \frac{1}{2} \sum_{q} e_{q}^{2(p,n)} \left[H_{q} \otimes \Delta q^{+}(x) + 2H_{g} \otimes \Delta g(x) \right]$$

$$\stackrel{n_{f}=3}{=} \frac{1}{12} \left[H_{\text{NS}} \otimes \left(\pm a_{3} + \frac{1}{3}a_{8} \right)(x) + H_{S} \otimes \frac{4}{3}\Delta\Sigma(x) \right]$$

$$+ \frac{2}{3}H_{g} \otimes \Delta g(x)$$

$$g_{1}^{p-n(\tau_{2})}(x) = \frac{1}{12}H_{\text{NS}} \otimes a_{3}(x)$$

$$p \text{ and } n \text{ data "can" constrain } a_{3}.$$
recall that $a_{3}^{(1)} \equiv \int_{0}^{1} dx a_{3}(x) = g_{A}$
to constrain a_{8} one needs other observables: PVDIS, Δ SIDIS

+ in the absence of PVDIS or $\Delta {\rm SIDIS},$ values for $a^{(1)}_{3,8}$ from hyperon beta decays are used \rightarrow constrains only the normalization of Δf

What can we learn from polarized DIS?

- in practice (e.g. JAM15)
- + targets: proton, deuteron, 3He
- + $W^2 > 4 \text{GeV}^2$, $Q^2 > 1 \text{GeV}^2$
- + sensitivity:

o
$$a_3 = \Delta u^+ - \Delta d^+$$

o $a_8 = \Delta u^+ + \Delta d^+ - 2\Delta s^+$

+ assumptions:

- o $a^{(1)}_{3,8}$ extracted from hyperon beta decays is imposed
- o data at very high x are measured at low $Q^2 \to {\rm requires}$ treatment of power corrections. e.g. TMC, HT
- o high \boldsymbol{x} deuteron and 3He data requires to add nuclear effects
- + beyond leading twist (from low Q^2 and high x):
 - twist 3 distribution can be isolated from data, under assumptions of factorization
 - o determination of d_2 matrix element \rightarrow color forces

Additional observables

- $+~\pi^{\pm}:$ can discriminate $\Delta u, \Delta \bar{u}, \Delta d, \Delta \bar{d}$
- + K^{\pm} : can discriminate $\Delta u, \Delta \bar{u}, \Delta d, \Delta \bar{d}, \Delta s, \Delta \bar{s}$
- + requires simultaneus extraction of FFs (along with SIA data)
- $+\,$ assumes that the reaction is given by current fragmentation
- + at present, it is not clear that data sets from COMPASS and HERMES are in the current region $$_{||}\ p^h_{||}$$
- $+\,$ this is a key point to understand TMDs

Additional observables

- ${\color{black}\bullet} \ \vec{p}+p \rightarrow W^{\pm}+X$
- + can discriminate $\Delta ar{u}$ from $\Delta ar{d}$
- + it depends on the knowledge of unpolarized \bar{u} and $\bar{d}.$
- $+\,$ a simultaneous extraction with upolarized PDFs (E866 DY data and tevatron W+l asymmetry) is needed
- ${\color{black}\bullet} \ \vec{p} + \vec{p} \rightarrow j + X$
- + constrains Δg
- $+ \,$ the asymmetry depends on $p+p \rightarrow j+X$
- $+\,$ the denominator is not constrained at RHIC energies, hence it is an extrapolation from Tevatron/LHC single jet production
- $+\,$ fits to unpolarized jets at RHIC energies is needed
- $+ \ \ldots$ then a combined analysis with the polarized jet data is needed

What we would like to learn from Δf :

$$+\,$$
 precise determination of g_A , $\Delta g^{(1)}$

- $+\,$ the flavor dependence \rightarrow non perturbative sea asymmetries
- + helicity decomposition $(\Delta)f(x)=f^{\uparrow}(x)\pm f^{\downarrow}(x)$
- + test spectator counting rules in pQCD

$$\lim_{x \to 1} \frac{\Delta q(x)}{q(x)} = \lim_{x \to 1} \frac{q^{\uparrow}(x)}{q^{\uparrow}(x)} = 1$$

+ understand proton spin decomposition

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma^{(1)} + \Delta g^{(1)} + \mathcal{L}$$

 $+\,$ despite the efforts, these questions are still not well understood

How do we extract (Δ)PDFs?

- likelihood analysis using Bayesian stat.
- + Bayes theorem:

$$\mathcal{P}(f|data) = \frac{1}{Z}\mathcal{L}(data|f)\pi(f)$$

+ The likelihood function Gaussian likelihood

$$\mathcal{L}(data|f) = \exp\left[-\frac{1}{2}\sum_{i}\left(\frac{d_i - \text{model}_i(f)}{\delta d_i}\right)^2\right]$$

+ The prior function to restrict unphysical regions of f. e.g.

$$\pi(f) = \begin{cases} 1 & \operatorname{condition}(f) == \operatorname{True} \\ 0 & \operatorname{condition}(f) == \operatorname{False} \end{cases}$$

Bayesian perspective for global fits

In practice f needs to be parametrized e.g

$$f(x) = Nx^{a}(1-x)^{b}(1+c\sqrt{x}+dx+...)$$

$$f(x) = Nx^{a}(1-x)^{b}NN(x; \{w_{i}\})$$

$$f(x) = NN(x; \{w_{i}\}) - NN(1; \{w_{i}\})$$

$$\boldsymbol{a} = (N, a, b, c, d, ...)$$
$$\mathcal{P}(\boldsymbol{a}|d) = \frac{1}{Z} \mathcal{L}(d|\boldsymbol{a}) \pi(\boldsymbol{a})$$
$$\mathcal{L}(d|\boldsymbol{a}) = \exp\left[-\frac{1}{2} \sum_{i} \left(\frac{d_{i} - \text{model}_{i}(\boldsymbol{a})}{\delta d_{i}}\right)^{2}\right]$$
$$\pi(\boldsymbol{a}) = \prod_{i} \theta(a_{i} - a_{i}^{min}) \theta(a_{i}^{max} - a_{i})$$

$$\mathcal{P}(f|d) = \frac{1}{Z}\mathcal{L}(d|f)\pi(f)$$

$$\downarrow$$

$$\mathcal{P}(\boldsymbol{a}|d) = \frac{1}{Z}\mathcal{L}(d|\boldsymbol{a})\pi(\boldsymbol{a})$$

Bayesian perspective for global fits

• Having the pdf for f we can compute

$$E[\mathcal{O}] = \int d^{n}a \ \mathcal{P}(\boldsymbol{a}|data) \ \mathcal{O}(\boldsymbol{a})$$
$$V[\mathcal{O}] = \int d^{n}a \ \mathcal{P}(\boldsymbol{a}|data) \ (\mathcal{O}(\boldsymbol{a}) - E[\mathcal{O}])^{2}$$

• \mathcal{O} is any function of a. e.g

$$\mathcal{O}(\boldsymbol{a}) = f(x; \boldsymbol{a})$$
$$\mathcal{O}(\boldsymbol{a}) = \int_{x}^{1} \frac{d\xi}{\xi} C(\xi) f\left(\frac{x}{\xi}; \boldsymbol{a}\right)$$

• How do we compute $E[\mathcal{O}], V[\mathcal{O}]$?

- + Maximum likelihood + (Hessian, Lagrange multipliers)
- + Monte Carlo sampling

Global analyses

JAM15:

- + extraction of Δ PDFs and τ_3 distributions
- + data sets: $\Delta DIS(p, d, {}^{3}He)$,
- + focus: polarized twist 3 distributions
- $+~W^2>4{\rm GeV^2}$ and $Q^2>1{\rm GeV^2}$
- + Iterative MC sampling

JAM17:

- + simultaneous extraction of Δ PDFs, FF
- + data sets: $\Delta \mathsf{DIS}(p,d)$, $\Delta \mathsf{SIDIS}(p,d)$, $\mathsf{SIA}(\pi^{\pm},K^{\pm})$
- $+\,$ focus: determination of Δs without a_3,a_8
- $+~W^2 > 10 {\rm GeV^2}$ and $Q^2 > 1 {\rm GeV^2}$
- + Iterative MC sampling
- JAM18(in progress):
 - + simultaneous extraction of PDFs, Δ PDFs, FF
 - + data sets: (Δ)DIS(p, d), (Δ)SIDIS(p, d), SIA(π^{\pm}, K^{\pm}), DY(p, d)
 - $+\,$ focus: determination of $s,\Delta s$
 - $+~W^2 > 10 {\rm GeV^2}$ and $Q^2 > 1 {\rm GeV^2}$
 - + Nested Sampling

Global analyses

NNPDF14

- + extraction of Δ PDFs only
- + data sets: $\Delta \text{DIS}(p, d, n)$, $\vec{p}, p \rightarrow W^{\pm}X$, $\vec{p}, \vec{p} \rightarrow jX$, $\Delta \text{SIDIS}(p, d \rightarrow D)$
- + Extraction of twist 3 distributions
- $+~W^2 > 10 {\rm GeV^2}$ and $Q^2 > 1 {\rm GeV^2}$
- + Reweighting

DSSV14

- + extraction of $\Delta PDFs$ only
- + data sets: $\Delta \text{DIS}(p, d, n) \vec{p}, p \rightarrow W^{\pm}X, \vec{p}, \vec{p} \rightarrow jX, \Delta \text{SIDIS}(p, d \rightarrow \pi^{\pm}, K^{\pm}), \vec{p}, p \rightarrow \pi X,$
- + Extraction of twist 3 distributions
- $+~W^2 > 10 {\rm GeV^2}$ and $Q^2 > 1 {\rm GeV^2}$
- + ML+Lagrange multipliers

Global analyses

+ Stability of Δu^+ and Δd^+ is mostly due to inclusion of $a_{3,8}$ from beta decays.

- + "the strange puzzle" resolved in JAM17
- + constraints on Δg are from scaling violations

The Δs^+ puzzle

- \blacksquare Constraints on Δs^+
- + JAM: $\Delta DIS + SU3$
- + DSSV: Δ DIS + SU3, Δ SIDIS

Note

- + DSSV analysis shows no violation of SU3 due to penalties
- + In DSSV, FF is extracted independently from SIA, SIDIS and pp data
- $+\,$ In JAM negative Δs^+ comes only from SU3 $\,$

Questions

- + What controls the sign of Δs^+ ?
- $+\,$ What are the actual uncertainties on Δs^+ ?

Combined $\triangle PDF$ and FF: $\triangle DIS + \triangle SIDIS + SIA$

Ethier, NS, Melnitchouk (PRL 119, 132001)

Setup

- + Simultaneous extraction of polarized ΔPDFs and FFs
- + Data: $\Delta DIS, \Delta SIDIS$, SIA
- + No SU(3) constraints

Results

- + Sea polarization consistent with zero
- + The current precision of ΔSIDIS data is not sufficient to determine the sea polarization
- $+ \ D_{s^+}^K$ consistent with SIA only analysis

What determines the sign of Δs^+ ?

case 1

- + ~ 5 COMPASS d data points at x < 0.002 favor small $\Delta s^+(x)$
- + To generate $\Delta s^{+(1)}(Q_0^2)\sim -0.1$ a peak at $x\sim 0.1$ is generated

case 2

- + In the absence of x<0.002 data, the negative $\Delta s^{+(1)}(Q_0^2)\sim -0.1$ is mostly generated at small x.
- + No need for negative $\Delta s^+(x)$ at $x\sim 0.1$
- case 3
- $+ \ \Delta s^+(x\sim 0.1) < 0$ disfavored by HERMES $A_{1d}^{K^-}$
- + Smaller $\Delta s^{+(1)}(Q_0^2)$ but larger uncertainties

case	data	sign change	$\Delta s^{+(1)}(Q_0^2)$
1	$\Delta DIS+SU(3)$	No	-0.1
2	$\Delta \text{DIS}+\text{SU}(3) \ (x > 0.02)$	Possible	-0.1
3	$\Delta DIS + \Delta SIDIS + FF$	Possible	-0.03(10)

Updates on the moments

- + We construct flat priors that gives flat a_8 in order to have an unbiased extraction of a_8
- $+\,$ Data prefers smaller values for $a_8 \rightarrow 25\%$ larger total spin carried by quarks.
- + a_3 is in a good agreement with values from β decays within 2%.
- + Data indicates possible $\Delta \bar{u} > \Delta \bar{d} \text{ consistent with}$ measurements of $W^{\pm}(Z)$ asymmetries from PHENIX and STAR

obs.	JAM15	JAM17
g_A	1.269(3)	1.24(4)
g_8	0.586(31)	0.46(21)
$\Delta\Sigma$	0.28(4)	0.36(9)
$\Delta \bar{u} - \Delta \bar{d}$	0	0.05(8)

SIDIS+Lattice analysis of nucleon tensor charge Lin, Melnitchouk, Prokudin, NS, Shows (arXiv:1710.09858)

- + Extraction of transversity and Collins FFs from SIDIS A_{UT} +Lattice g_T
- + In the absence of Lattice, SIDIS at present has no significant constraints on $g_T \to$ this will change with the upcoming JLab12 measurements

Summary and outlook

Why EIC's neutron data is important?

- $+\,$ existing $\Delta {\rm DIS},\, \Delta {\rm SIDIS}$ data is still not precise to determine g_A at the precision of hyperon beta decays
- $+\,$ upcoming JLab12 measurements will constrain further the value of g_A
- + however, it is desirable to have pure neutron $\Delta {\rm DIS}$ at large Q^2 in order to avoid assumptions about nuclear corrections and potential power corrections at low Q^2
- + yet, that won't be enough. PVDIS is required to really constrain the strange polarization
- + a complementary SIDIS program is also needed to make sure the data is in the current fragmentation region

from global analysis to "universal QCD analysis"

- $+\,$ the nature of PDF/ $\Delta \text{PDF}/\text{FFs}$ extraction demands to constrain all the distribution simultaneously
- + this is only possible if the analysis is formulated via Bayesian statistics along with its proper MC sampling methods