The role of neutron data in polarized PDF analysis

Nobuo Sato

Polarized light ion physics with EIC, Ghent University, Ghent, Belgium, February 5-9, 2018

What can we learn from (un)polarized DIS?

$$
\begin{aligned}
\frac{d \sigma}{d x d Q^{2}} & =H \otimes f\left(x, Q^{2}\right)+O\left(\frac{m^{2}}{Q^{2}}\right) \\
\frac{d \Delta \sigma}{d x d Q^{2}} & =\Delta H \otimes \Delta f\left(x, Q^{2}\right)+O\left(\frac{m^{2}}{Q^{2}}\right)
\end{aligned}
$$

- collinear factorization
+ valid up to corrections of $O\left(m^{2} / Q^{2}\right)$
+ it works when x is not too small or not too large and Q^{2} not too small
$+H, \Delta H$ are calculable in expansion of α_{S}
+ non-perturbative field theoretic objects f and Δf can be extracted from data
+ extensions of collinear factorization are needed to understand where the power corrections are not suppressed. Not clear if existing treatments have controlled errors

What can we learn from (un)polarized DIS?

- comments
+ factorization only holds in a limited region of $x \in[0,1]$
+ at present it is not clear what are the boundaries in x, Q^{2}
+ however $f(\xi), \Delta f(\xi)$ are well defined quantities in the region $\xi \in[0,1]$, where $\xi=k^{+} / P^{+}$
+ The bayesian inference of $f(\xi), \Delta f(\xi)$ from data is limited by the applicability of collinear factorization
+ In order to access to $\xi \rightarrow 1$ or $\xi \rightarrow 0$ we need other tools:
- data that probes small and large x at large $Q \rightarrow$ EIC
o improved factorization theorems to address regions where collinear factorization is not applicable
o complementary approach using lattice QCD, e.g. quasi PDFs, pseudo PDFs
+ inclusive DIS cannot resolve fully the flavor dependence \rightarrow additional observables (justified by collinear factorization) are needed: e.g. PVDIS, SIDIS, Jets, DY, W

What can we learn from polarized DIS?

■ polarized structure function g_{1} at leading twist (τ_{2})

$$
\begin{aligned}
& g_{1}^{p, n\left(\tau_{2}\right)}(x)= \frac{1}{2} \sum_{q} e_{q}^{2(p, n)}\left[H_{q} \otimes \Delta q^{+}(x)+2 H_{g} \otimes \Delta g(x)\right] \\
& \stackrel{n_{f}=3}{=} \frac{1}{12}\left[H_{\mathrm{NS}} \otimes\left(\pm a_{3}+\frac{1}{3} a_{8}\right)(x)+H_{S} \otimes \frac{4}{3} \Delta \Sigma(x)\right] \\
&+\frac{2}{3} H_{g} \otimes \Delta g(x) \\
& g_{1}^{p-n\left(\tau_{2}\right)}(x)=\frac{1}{12} H_{\mathrm{NS}} \otimes a_{3}(x) \Delta q^{+}=\Delta q+\Delta \bar{q} \\
&+p \text { and } n \text { data "can" constrain } a_{3} . a_{3}=\Delta u^{+}-\Delta d^{+} \\
& a_{8}=\Delta u^{+}+\Delta d^{+}-2 \Delta s^{+} \\
& \Delta \Sigma=\Delta u^{+}+\Delta d^{+}+\Delta s^{+}
\end{aligned}
$$

+ recall that $a_{3}^{(1)} \equiv \int_{0}^{1} d x a_{3}(x)=g_{A}$
+ to constrain a_{8} one needs other observables: PVDIS, Δ SIDIS
+ in the absence of PVDIS or Δ SIDIS, values for $a_{3,8}^{(1)}$ from hyperon beta decays are used \rightarrow constrains only the normalization of Δf

What can we learn from polarized DIS?

■ in practice (e.g. JAM15)

+ targets: proton, deuteron, 3 He
$+W^{2}>4 \mathrm{GeV}^{2}, Q^{2}>1 \mathrm{GeV}^{2}$
+ sensitivity:
- $a_{3}=\Delta u^{+}-\Delta d^{+}$
- $a_{8}=\Delta u^{+}+\Delta d^{+}-2 \Delta s^{+}$
+ assumptions:

- $a_{3,8}^{(1)}$ extracted from hyperon beta decays is imposed
- data at very high x are measured at low $Q^{2} \rightarrow$ requires treatment of power corrections. e.g. TMC, HT
- high x deuteron and 3He data requires to add nuclear effects
+ beyond leading twist (from low Q^{2} and high x):
- twist 3 distribution can be isolated from data, under assumptions of factorization
- determination of d_{2} matrix element \rightarrow color forces

Additional observables

- Δ SIDIS
$+\pi^{ \pm}$: can discriminate $\Delta u, \Delta \bar{u}, \Delta d, \Delta \bar{d}$
$+K^{ \pm}$: can discriminate $\Delta u, \Delta \bar{u}, \Delta d, \Delta \bar{d}, \Delta s, \Delta \bar{s}$
+ requires simultaneus extraction of FFs (along with SIA data)
+ assumes that the reaction is given by current fragmentation
+ at present, it is not clear that data sets from COMPASS and HERMES are in the current region
+ this is a key point to understand TMDs

Current fragmentation TMD factorization	Soft region $? ? ? ?$	Target region Fracture functions	
			Y

Additional observables

- $\vec{p}+p \rightarrow W^{ \pm}+X$
+ can discriminate $\Delta \bar{u}$ from $\Delta \bar{d}$
+ it depends on the knowledge of unpolarized \bar{u} and \bar{d}.
+ a simultaneous extraction with upolarized PDFs (E866 DY data and tevatron $W+l$ asymmetry) is needed
- $\vec{p}+\vec{p} \rightarrow j+X$
+ constrains Δg
+ the asymmetry depends on $p+p \rightarrow j+X$
+ the denominator is not constrained at RHIC energies, hence it is an extrapolation from Tevatron/LHC single jet production
+ fits to unpolarized jets at RHIC energies is needed
$+\ldots$ then a combined analysis with the polarized jet data is needed

What we would like to learn from Δf :

+ precise determination of $g_{A}, \Delta g^{(1)}$
+ the flavor dependence \rightarrow non perturbative sea asymmetries
+ helicity decomposition $(\Delta) f(x)=f^{\uparrow}(x) \pm f^{\downarrow}(x)$
+ test spectator counting rules in pQCD

$$
\lim _{x \rightarrow 1} \frac{\Delta q(x)}{q(x)}=\lim _{x \rightarrow 1} \frac{q^{\uparrow}(x)}{q^{\uparrow}(x)}=1
$$

+ understand proton spin decomposition

$$
\frac{1}{2}=\frac{1}{2} \Delta \Sigma^{(1)}+\Delta g^{(1)}+\mathcal{L}
$$

+ despite the efforts, these questions are still not well understood

How do we extract (Δ) PDFs?

- likelihood analysis using Bayesian stat.
+ Bayes theorem:

$$
\mathcal{P}(f \mid \text { data })=\frac{1}{Z} \mathcal{L}(\text { data } \mid f) \pi(f)
$$

+ The likelihood function Gaussian likelihood

$$
\mathcal{L}(\text { data } \mid f)=\exp \left[-\frac{1}{2} \sum_{i}\left(\frac{d_{i}-\operatorname{model}_{i}(f)}{\delta d_{i}}\right)^{2}\right]
$$

+ The prior function to restrict unphysical regions of f. e.g.

$$
\pi(f)= \begin{cases}1 & \text { condition }(f)==\text { True } \\ 0 & \text { condition }(f)==\text { False }\end{cases}
$$

Bayesian perspective for global fits

■ In practice f needs to be parametrized e.g

$$
\begin{aligned}
& f(x)=N x^{a}(1-x)^{b}(1+c \sqrt{x}+d x+\ldots) \\
& f(x)=N x^{a}(1-x)^{b} \operatorname{NN}\left(x ;\left\{w_{i}\right\}\right) \\
& f(x)=\operatorname{NN}\left(x ;\left\{w_{i}\right\}\right)-\mathrm{NN}\left(1 ;\left\{w_{i}\right\}\right)
\end{aligned}
$$

- The pdf for f becomes

J. Bayed.

$$
\begin{aligned}
\boldsymbol{a} & =(N, a, b, c, d, \ldots) \\
\mathcal{P}(\boldsymbol{a} \mid d) & =\frac{1}{Z} \mathcal{L}(d \mid \boldsymbol{a}) \pi(\boldsymbol{a}) \\
\mathcal{L}(d \mid \boldsymbol{a}) & =\exp \left[-\frac{1}{2} \sum_{i}\left(\frac{d_{i}-\operatorname{model}_{i}(\boldsymbol{a})}{\delta d_{i}}\right)^{2}\right] \\
\pi(\boldsymbol{a}) & =\prod_{i} \theta\left(a_{i}-a_{i}^{\text {min }}\right) \theta\left(a_{i}^{\text {max }}-a_{i}\right)
\end{aligned} \quad \begin{gathered}
\mathcal{P}(f \mid d)=\frac{1}{Z} \mathcal{L}(d \mid f) \pi(f) \\
\downarrow \\
\mathcal{P}(\boldsymbol{a} \mid d)=\frac{1}{Z} \mathcal{L}(d \mid \boldsymbol{a}) \pi(\boldsymbol{a})
\end{gathered}
$$

Bayesian perspective for global fits

■ Having the pdf for f we can compute
$\mathrm{E}[\mathcal{O}]=\int d^{n} a \quad \mathcal{P}(\boldsymbol{a} \mid d a t a) \mathcal{O}(\boldsymbol{a})$
$\mathrm{V}[\mathcal{O}]=\int d^{n} a \quad \mathcal{P}(\boldsymbol{a} \mid d a t a) \quad(\mathcal{O}(\boldsymbol{a})-\mathrm{E}[\mathcal{O}])^{2}$

- \mathcal{O} is any function of \boldsymbol{a}. e.g

$$
\begin{aligned}
& \mathcal{O}(\boldsymbol{a})=f(x ; \boldsymbol{a}) \\
& \mathcal{O}(\boldsymbol{a})=\int_{x}^{1} \frac{d \xi}{\xi} C(\xi) f\left(\frac{x}{\xi} ; \boldsymbol{a}\right)
\end{aligned}
$$

- How do we compute $\mathrm{E}[\mathcal{O}], \mathrm{V}[\mathcal{O}]$?
+ Maximum likelihood + (Hessian, Lagrange multipliers)
+ Monte Carlo sampling

Global analyses

- JAM15:
+ extraction of \triangle PDFs and τ_{3} distributions
+ data sets: $\Delta \mathrm{DIS}\left(p, d,{ }^{3} \mathrm{He}\right)$,
+ focus: polarized twist 3 distributions
$+W^{2}>4 \mathrm{GeV}^{2}$ and $Q^{2}>1 \mathrm{GeV}^{2}$
+ Iterative MC sampling
- JAM17:
+ simultaneous extraction of \triangle PDFs, FF
+ data sets: $\Delta \mathrm{DIS}(p, d), \Delta \operatorname{SIDIS}(p, d), \operatorname{SIA}\left(\pi^{ \pm}, K^{ \pm}\right)$
+ focus: determination of Δs without a_{3}, a_{8}
$+W^{2}>10 \mathrm{GeV}^{2}$ and $Q^{2}>1 \mathrm{GeV}^{2}$
+ Iterative MC sampling
- JAM18(in progress):
+ simultaneous extraction of PDFs, \triangle PDFs, FF
+ data sets: $(\Delta) \operatorname{DIS}(p, d),(\Delta) \operatorname{SIDIS}(p, d), \operatorname{SIA}\left(\pi^{ \pm}, K^{ \pm}\right), \operatorname{DY}(p, d)$
+ focus: determination of $s, \Delta s$
$+W^{2}>10 \mathrm{GeV}^{2}$ and $Q^{2}>1 \mathrm{GeV}^{2}$
+ Nested Sampling

Global analyses

■ NNPDF14

+ extraction of \triangle PDFs only
+ data sets: $\Delta \operatorname{DIS}(p, d, n), \vec{p}, p \rightarrow W^{ \pm} X, \vec{p}, \vec{p} \rightarrow j X$, $\Delta \operatorname{SIDIS}(p, d \rightarrow D)$
+ Extraction of twist 3 distributions
$+W^{2}>10 \mathrm{GeV}^{2}$ and $Q^{2}>1 \mathrm{GeV}^{2}$
+ Reweighting
■ DSSV14
+ extraction of \triangle PDFs only
+ data sets: $\triangle \operatorname{DIS}(p, d, n) \vec{p}, p \rightarrow W^{ \pm} X, \vec{p}, \vec{p} \rightarrow j X$, $\Delta \operatorname{SIDIS}\left(p, d \rightarrow \pi^{ \pm}, K^{ \pm}\right), \vec{p}, p \rightarrow \pi X$,
+ Extraction of twist 3 distributions
$+W^{2}>10 \mathrm{GeV}^{2}$ and $Q^{2}>1 \mathrm{GeV}^{2}$
$+\mathrm{ML}+$ Lagrange multipliers

Global analyses

+ Stability of Δu^{+}and Δd^{+}is mostly due to inclusion of $a_{3,8}$ from beta decays.
+ "the strange puzzle" resolved in JAM17
+ constraints on Δg are from scaling violations

The Δs^{+}puzzle

■ Constraints on Δs^{+}

+ JAM: Δ DIS + SU3
+ DSSV: Δ DIS + SU3, Δ SIDIS
■ Note
+ DSSV analysis shows no violation of SU3 due to penalties
+ In DSSV, FF is extracted independently from SIA, SIDIS and pp data
+ In JAM negative Δs^{+}comes only from SU3
- Questions
+ What controls the sign of Δs^{+}?
+ What are the actual uncertainties on Δs^{+}?

Combined $\Delta \mathrm{PDF}$ and FF: $\Delta \mathrm{DIS}+\Delta$ SIDIS+SIA

Ethier, NS, Melnitchouk (PRL 119, 132001)

- Setup
+ Simultaneous extraction of polarized \triangle PDFs and FFs
+ Data: \triangle DIS, Δ SIDIS, SIA
+ No SU(3) constraints
- Results
+ Sea polarization consistent with zero
+ The current precision of Δ SIDIS data is not sufficient to determine the sea polarization
$+D_{s^{+}}^{K}$ consistent with SIA only analysis

What determines the sign of Δs^{+}?

- case 1
$+\sim 5$ COMPASS d data points at $x<0.002$ favor small $\Delta s^{+}(x)$

case	data	sign change	$\Delta s^{+(1)}\left(Q_{0}^{2}\right)$
1	$\Delta \mathrm{DIS}+\mathrm{SU}(3)$	No	-0.1
2	$\Delta \mathrm{DIS}+\mathrm{SU}(3)(x>0.02)$	Possible	-0.1
3	$\Delta \mathrm{DIS}+\Delta \mathrm{SIDIS}+\mathrm{FF}$	Possible	$-0.03(10)$

+ To generate $\Delta s^{+(1)}\left(Q_{0}^{2}\right) \sim-0.1$ a peak at $x \sim 0.1$ is generated
- case 2
+ In the absence of $x<0.002$ data, the negative $\Delta s^{+(1)}\left(Q_{0}^{2}\right) \sim-0.1$ is mostly generated at small x.
+ No need for negative $\Delta s^{+}(x)$ at
 $x \sim 0.1$
- case 3
$+\Delta s^{+}(x \sim 0.1)<0$ disfavored by HERMES $A_{1 d}^{K^{-}}$
+ Smaller $\Delta s^{+(1)}\left(Q_{0}^{2}\right)$ but larger uncertainties

Updates on the moments

+ We construct flat priors that gives flat a_{8} in order to have an unbiased extraction of a_{8}
+ Data prefers smaller values for $a_{8} \rightarrow 25 \%$ larger total spin carried by quarks.
$+a_{3}$ is in a good agreement with values from β decays within 2%.
+ Data indicates possible $\Delta \bar{u}>\Delta \bar{d}$ consistent with measurements of $W^{ \pm}(Z)$ asymmetries from PHENIX and STAR

obs.	JAM15	JAM17
g_{A}	$1.269(3)$	$1.24(4)$
g_{8}	$0.586(31)$	$0.46(21)$
$\Delta \Sigma$	$0.28(4)$	$0.36(9)$
$\Delta \bar{u}-\Delta d$	0	$0.05(8)$

SIDIS+Lattice analysis of nucleon tensor charge

Lin, Melnitchouk, Prokudin, NS, Shows (arXiv:1710.09858)

+ Extraction of transversity and Collins FFs from SIDIS $A_{U T}+$ Lattice g_{T}
+ In the absence of Lattice, SIDIS at present has no significant constraints on $g_{T} \rightarrow$ this will change with the upcoming JLab12 measurements

Summary and outlook

- Why EIC's neutron data is important?
+ existing Δ DIS, Δ SIDIS data is still not precise to determine g_{A} at the precision of hyperon beta decays
+ upcoming JLab12 measurements will constrain further the value of g_{A}
+ however, it is desirable to have pure neutron Δ DIS at large Q^{2} in order to avoid assumptions about nuclear corrections and potential power corrections at low Q^{2}
+ yet, that won't be enough. PVDIS is required to really constrain the strange polarization
+ a complementary SIDIS program is also needed to make sure the data is in the current fragmentation region
- from global analysis to "universal QCD analysis"
+ the nature of PDF/ $\Delta \mathrm{PDF} / \mathrm{FFs}$ extraction demands to constrain all the distribution simultaneously
+ this is only possible if the analysis is formulated via Bayesian statistics along with its proper MC sampling methods

