First global Monte Carlo analysis of pion PDFs

In Collaboration with:

P. Barry (NCSU), W. Melnitchouk (JLab), C.R. Ji (NCSU)

Nobuo Sato TDIS collaboration meeting, Jefferson Lab February 22, 2018

Motivations

Parton distribution function in pions (and kaons)

- $+\,$ Much less known than proton PDFs
- + Easier to compute in lattice QCD and models than proton due to its simpler q, \bar{q} structure
- +~ Predictions for $x \rightarrow 1$ behavior

• Light quark asymmetry in the proton: $\bar{d} > \bar{u}$

- $+\,$ A nonperturbative phenomena i.e pQCD \rightarrow $\bar{d}\approx\bar{u}$
- + Origin of the asymmetry is still a puzzle.
- + E866 sign change at large $x? \rightarrow$ to be confirmed by Sea Quest
- + Possible explanations:
 - Chiral symmetry breaking ightarrow unique signature of pion loops
 - Pauli exclusion principle

- + Data: DY
- + Fits of valence with some assumptions for the sea
- + LO analysis (K factors)
- + Approximate DGLAP
- + Single fits and no errors

Conway et al., (1989)

- + Data: DY, prompt photons
- + Fits of valence and glue with assumptions for the sea
- + NLO analysis
- + Single fits and no errors

Sutton, Martin, Roberts, Strirling (1992)

- + Data: DY, prompt photons
- + Fits of valence, sea and glue
- + NLO analysis
- + Single fits and no errors
- + Inconsistent with SMRS

Gluck, Reya, Schienbein (1999)

- Various model calculations exist and they predict different large x_{π} for the valence distribution compared to global analysis

Holt, Roberts (2010)

Aicher, Schafer, Vogelsang (2010)

- + Data: DY
- + Fits of valence using GRS sea and glue
- + NLO+NLL analysis
- + Single fits and no errors
- + The shape of valence agrees with DSE

McKenney, NS, Melnitchouk, Ji (2015)

- + Data: Leading Neutron (HERA) (+ E866)
- + Fits of F_2^{π}
- $+ \ \, \mathsf{Approximate} \ \, \mathsf{DGLAP}$
- $+\,$ Feasibility study for a global analysis using LN data

How to probe pion structure

$\blacksquare \pi + A \to l\bar{l} + X \text{ (Drell-Yan)}$

- + Measurements at Fermilab and CERN
- +~ Constrains the medium to large x_π
- $+\,$ Will be measured at COMPASS
- $\pi + A \rightarrow \gamma + X$ (prompt photons)
 - + Measurements at Fermilab
 - $+\,$ Constraints on the gluon distribution at large x_{π}
 - $+\,$ Requires knowdlege of photon fragmentation function
 - $+\,$ Will be measured at COMPASS

• $e + p \rightarrow e' + n + X$ (SIDIS)

- + Leading neutron (LN) measurements at HERA
 - \rightarrow target fragmentation region
- + Constraints on small x_{π}
- $+\,$ Process dominated by one pion exchange at forward angles
- ... and TDIS (JLab12, EIC)

In this analysis \rightarrow only DY and SIDIS

One pion exchange (OPE)

- LN at HERA
 - + SIDIS in the target fragmentation region
 - $\ + \$ Events from neutrons in the forward region
 - + The reaction is dominated by single pion exchange i.e. $(p \rightarrow \pi + n) \rightarrow (e + \pi \rightarrow e' + X)$
 - + In the collinear configuration the pion is nearly on-shell
 - $+ \ (p \rightarrow \pi + n)$ is described in $\chi {\rm EFT}$
 - $+ \ (e + \pi \rightarrow e' + X)$ is described in pQCD \rightarrow DIS

One pion exchange (OPE)

$\chi {\rm EFT} {\rm \ setup}$

• The splitting function $(y = k^+/p^+ = x/x_\pi)$

$$f_{p \to \pi + n}(y) = \frac{g_A^2 M^2}{(4\pi f_\pi)^2} \int dk_\perp^2 \frac{y(k_\perp^2 + y^2 M^2)}{(1 - y)^2 D_{\pi N}^2} |F|^2$$

UV regulators used in the literature

$$F = \begin{cases} [1 - \frac{(t - m_{\pi}^2)^2}{(t - \Lambda^2)^2}]^{1/2} \\ (\Lambda^2 - m_{\pi}^2)/(\Lambda^2 - t) \\ \exp[(t - m_{\pi}^2)/\Lambda^2] \\ \exp[(M^2 - s)/\Lambda^2] \\ y^{-\alpha_{\pi}(t)} \exp[(t - m_{\pi}^2)/\Lambda^2] \end{cases}$$

Pauli-Villars

t-dependent monopole *t*-dependent exponential *s*-dependent exponential Regge exponential,

where

+
$$g_A = 1.267$$
 nucleon axial charge
+ $f_\pi = 93$ MeV pion decay constant
+ $D_{\pi N} \equiv t - m_\pi^2 = -\frac{1}{1-y} [k_\perp^2 + y^2 M^2 + (1-y)m_\pi^2]$

pQCD setup

•
$$\pi^- + W \to l\bar{l} + X$$
 (Drell-Yan)
 $\frac{d\sigma}{dx_F dQ^2} = \sum_{a,b} \int d\xi d\zeta \ C_{a,b}(\xi,\zeta) f_{a/\pi^-}(\xi) f_{b/W}(\zeta)$
• $e + p \to e' + n + X$ (LN)
 $\frac{d\sigma}{dx dQ^2 dy} \sim f_{p \to \pi + n}(y) \times \sum_q \int_{x/y}^1 \frac{d\xi}{\xi} C(\xi) f_{q/\pi^+}\left(\frac{x/y}{\xi}\right)$

- The hard coeffs are computed at NLO in pQCD
- \blacksquare We parametrize PDFs in π^-

+ Valence:
$$\bar{u}_v = d_v$$

+ Sea:
$$u = d = s = \bar{s}$$

- + Gluon: g
- For DY we use W PDFs from EPS16

Likelihood analysis setup

likelihood analysis using Bayesian stat.

+ Bayes theorem:

$$\mathcal{P}(f|data) = \frac{1}{Z}\mathcal{L}(data|f)\pi(f)$$

+ The likelihood function Gaussian likelihood

$$\mathcal{L}(data|f) = \exp\left[-\frac{1}{2}\sum_{i}\left(\frac{d_i - \text{model}_i(f)}{\delta d_i}\right)^2\right]$$

+ The prior function to restrict unphysical regions of f. e.g.

$$\pi(f) = \begin{cases} 1 & \text{condition}(f) == \text{True} \\ 0 & \text{condition}(f) == \text{False} \end{cases}$$

Likelihood analysis setup

 \blacksquare In practice f needs to be parametrized e.g

$$f(x) = Nx^{a}(1-x)^{b}(1+c\sqrt{x}+dx+...)$$

$$f(x) = Nx^{a}(1-x)^{b}NN(x; \{w_{i}\})$$

$$f(x) = NN(x; \{w_{i}\}) - NN(1; \{w_{i}\})$$

The pdf for f becomes

$$\boldsymbol{a} = (N, a, b, c, d, ...)$$
$$\mathcal{P}(\boldsymbol{a}|d) = \frac{1}{Z} \mathcal{L}(d|\boldsymbol{a}) \pi(\boldsymbol{a})$$
$$\mathcal{L}(d|\boldsymbol{a}) = \exp\left[-\frac{1}{2} \sum_{i} \left(\frac{d_{i} - \text{model}_{i}(\boldsymbol{a})}{\delta d_{i}}\right)^{2}\right]$$
$$\pi(\boldsymbol{a}) = \prod_{i} \theta(a_{i} - a_{i}^{min}) \theta(a_{i}^{max} - a_{i})$$

$$\mathcal{P}(f|d) = \frac{1}{Z}\mathcal{L}(d|f)\pi(f)$$

$$\downarrow$$

$$\mathcal{P}(\boldsymbol{a}|d) = \frac{1}{Z}\mathcal{L}(d|\boldsymbol{a})\pi(\boldsymbol{a})$$

Likelihood analysis setup

 \blacksquare Having the pdf for f we can compute

$$E[\mathcal{O}] = \int d^{n}a \ \mathcal{P}(\boldsymbol{a}|data) \ \mathcal{O}(\boldsymbol{a})$$
$$V[\mathcal{O}] = \int d^{n}a \ \mathcal{P}(\boldsymbol{a}|data) \ (\mathcal{O}(\boldsymbol{a}) - E[\mathcal{O}])^{2}$$

• \mathcal{O} is any function of a. e.g

$$\mathcal{O}(\boldsymbol{a}) = f(x; \boldsymbol{a})$$
$$\mathcal{O}(\boldsymbol{a}) = \int_{x}^{1} \frac{d\xi}{\xi} C(\xi) f\left(\frac{x}{\xi}; \boldsymbol{a}\right)$$

• How do we compute $E[\mathcal{O}], V[\mathcal{O}]$?

- + Maximum likelihood + (Hessian, Lagrange multipliers)
- + Monte Carlo sampling

Nested resampling

The basic idea: compute

$$Z = \int \mathcal{L}(\text{data}|\boldsymbol{a}) \pi(\boldsymbol{a}) d^{n} \boldsymbol{a} = \int_{0}^{1} \mathcal{L}(X) dX$$

- \rightarrow The algorithm traverses ordered isolikelihood contours in the variable X such that X follows the progression $X_i = t_i X_{i-1}$
- \rightarrow The variable t_i is estimated statistically
- → The algorithm can be optimized iteration to iteration. One can sample only in the regions where the likelihood is larger → "importance sampling"
- $\rightarrow\,$ The nested sampling is parallelizable

- $+\,$ Our new analysis extends previous pion PDF analysis down to $x\sim 0.001$
- The OPE+pQCD can describe the HERA data simultaneously with the DY data

$$F_2^{LN(3)}(x,Q^2,y) = 2f_{p \to \pi+n}(y)F_2^{\pi}(x_{\pi},Q^2)$$

 $r(x,Q^2,y) = \frac{d^3 \sigma^{LN}/dx dQ^2 dy}{d^2 \sigma^{inc}/dx dQ^2} \Delta y$

Significant reduction of the uncertainties on the glue and sea at small x_{π}

• Non-overlapping uncertainties show some tensions between the LN and DY data. Future TDIS (JLab12/EIC) is needed to establish a more reliable pion PDFs in the intermediate x_{π} region.

- Constraints from HERA significantly increase $\langle x_{\pi}^g \rangle$. The role of the glue is more important than suggested by DY alone
- In contrast, the strength of the sea is reduced
- Due to momentum sum rule $\langle x_{\pi}^{\mathrm{valence}}
 angle$ decreases

- Uncertainty from model dependence of DY+LN is comparable to current experimental uncertainties
- DY+LN cannot discriminate among the OPE models since the LN data is only sensitive to region where $|F| \approx 1$ for all models

- Since LN+DY alone is not capable to discriminate among the OPE models the predictions for $\bar{d} \bar{u}$ are not accurate
- We performed an additional analysis of LN+DY+E866 \rightarrow good description of E866 data except for large x

Inclusion of E866 data does not change the pion PDFs significantly

- The model dependence increases in order to simultaneously describe the E866 data
- The results support the role of pion clouds as the origin of the sea asymmetry in the nucleon

Relevance of TDIS measurements

- Constraints at medium to large x_{π}
- Resolve tensions between LN and DY data
 - \rightarrow to improve accuracy of pion PDFs
- \blacksquare Constraints on kaon PDFs \rightarrow Virtually no data

Summary and outlook

New analysis of pion PDFs

- + New combined analysis of pion PDFs from small to large x_π using LN+DY data
- + Momentum fractions carried by gluons are larger than in DY only analysis
- $+\,$ To describe the LN data, momentum fraction of the valence distribution decreases
- + LN+DY alone at present cannot discriminate between the OPE models
- + Inclusion of E866 data does not change the pion PDFs significantly
- + The results support the role of pion cloud as the origin of the sea flavor asymmetry

Role of upcoming TDIS data

- $+\,$ Resolve some tensions between LN and DY
- + The data will improve the accuracy of the pion PDFs in the valence region