

Evolution of parton pseudodistributions

Parton Densities Pseudo-distribution: qPDFs Evolution Evolution Reduced pseudo-ITD

Evolution in lattice data Data Building MS ITD

Summary

Parton pseudo-distributions and their evolution A.V. Radyushkin (ODU/Jlab)

Supported by JSA, under U.S. DOE Contract #DE-AC05-06OR23177 and by U.S. DOE Grant #DE-FG02-97ER41028 APS & JPS DNP Meeting 2018

October 25, 2018

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

-

Pseudo-distributions and PDFs

Parton Densities Pseudo-distributions qPDFs Evolution

Evolution

pseudo-ITE

Evolution in lattice data Data Building MS IT

Summary

Basic matrix element (ignoring spin)

 $\langle p | \phi(0) \phi(z) | p \rangle = \mathcal{M}(-(pz), -z^2)$

- Lorentz invariance: $\mathcal M$ depends on z through $(pz) \equiv -\nu$ and z^2
- loffe time ν : $\mathcal{M}(\nu, -z^2) =$ loffe-time pseudo-distribution (pseudo-ITD)
- Pseudo = off the light cone
- For any Feynman diagram, for arbitrary z^2 and arbitrary p^2

$$\mathcal{M}(\nu, -z^2) = \int_{-1}^{1} dx \, e^{ix\nu} \, \mathcal{P}(x, -z^2)$$

- Limits $-1 \le x \le 1$, negative x correspond to anti-particles
- Pseudo-PDF $\mathcal{P}(x, -z^2)$: Fourier transform of pseudo-ITD with respect to ν for fixed z^2
- On the light cone $z_+ = 0$: usual ITD and usual PDF $\mathcal{P}(x, 0) = f(x)$
- If $z^2 \to 0$ limit is singular, regularization (like $\overline{\mathrm{MS}}$) is needed, $f(x) \to f(x,\mu^2)$ and we have $\overline{\mathrm{MS}}$ ITD

$$\mathcal{M}(\nu,0)|_{\mu^2} \equiv \mathcal{I}(\nu,\mu^2) = \int_{-1}^{1} dx \, e^{ix\nu} \, f(x,\mu^2)$$

Quasi-PDFs

Evolution of parton pseudodistributions

Parton Densities Pseudo-distributio qPDFs Evolution

Evolution Reduced pseudo-ITD

Evolution in lattice data Data Building MS ITD

Summary

Basic matrix element (ignoring spin)

 $\langle p | \phi(0) \phi(z) | p \rangle = \mathcal{M}(-(pz), -z^2)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Take
$$z = (0, 0, 0, z_3)$$
, then
 $-(pz) \equiv \nu = Pz_3$ and $-z^2 = z_3^2$

Introduce quasi-PDF (Ji,2013)

$$Q(y,P) = \frac{P}{2\pi} \int_{-\infty}^{\infty} dz_3 \, e^{-iyPz_3} \, \mathcal{M}(Pz_3, z_3^2)$$

Quasi-PDF/ pseudo-PDF relation

$$Q(y,P) = \frac{P}{2\pi} \int_{-1}^{1} dx \int_{-\infty}^{\infty} dz_3 \, e^{-i(y-x)Pz_3} \, \mathcal{P}(x,z_3^2)$$

 "Good cross sections". approach (Ma, Qiu, 2014) based on correlators involving currents

 $\langle p|J(0)J(z)|p\rangle$

Perturbative corrections and evolution

4/10

Evolution of parton pseudodistributions

Parton Densities Pseudo-distribution qPDFs Evolution Evolution

Evolution in lattice data Data Building MS IT

Summary

$$\mathcal{M}^{\text{hard}}(\nu, z_3^2) = -\frac{\alpha_s}{2\pi} C_F \ln(z_3^2) \int_0^1 du \, B(u) \, \mathcal{M}^{\text{soft}}(u\nu, 0)$$

Generates perturbative evolution. Altarelli-Parisi (AP) evolution kernel

$$B(u) = \left[\frac{1+u^2}{1-u}\right]_-$$

- One more source of the z^2 -dependence of pseudo-ITD: gauge link $\hat{E}(0, z; A)$
- It has specific UV divergences $\sim z_3/a$, $\ln(1+z_3^2)$, with a = lattice spacing
- Consider reduced pseudo-ITD

$$\mathfrak{M}(\nu, z_3^2) \equiv \frac{\mathcal{M}(\nu, z_3^2)}{\mathcal{M}(0, z_3^2)}$$

• $\mathfrak{M}(\nu, z_3^2)$ has finite $a \to 0$ limit

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Reduced loffe-time pseudo-distribution

Evolution of parton pseudodistributions

Parton Densities Pseudo-distribution qPDFs Evolution Evolution Reduced pseudo-ITD

Evolution in lattice data Data Building MS IT

Summary

- Reduced pseudo-ITD $\mathfrak{M}(\nu,z_3^2)$ is a physical observable (like, say, DIS structure functions)
- No need to specify renormalization scheme, scale, etc. for link-related terms
- Pseudo-ITD $\mathfrak{M}(\nu, z_3^2)$ is finite for fixed z_3 , but is singular in $z_3 \to 0$ limit
- ln z_3^2 terms reflect perturbative evolution
- $\bullet~$ One-loop relation between $\overline{\rm MS}$ ITD and reduced pseudo-ITD

$$\begin{aligned} \mathcal{I}(\nu,\mu^2) &= \mathfrak{M}(\nu,z_3^2) + \frac{\alpha_s}{2\pi} C_F \int_0^1 dw \, \mathfrak{M}(w\nu,z_3^2) \\ &\times \left\{ \frac{1+w^2}{1-w} \left[\ln\left(z_3^2\mu^2 \frac{e^{2\gamma_E}}{4}\right) + 1 \right] + \left[4\frac{\ln(1-w)}{1-w} - 2(1-w) \right] \right\}_+ \end{aligned}$$

Evolution in lattice data

Re $\mathfrak{M}(\nu, z_3^2)$

ν

Evolution of parton pseudodistributions

Parton Densities Pseudo-distribution qPDFs Evolution Evolution Reduced pseudo-ITD

1.0

0.8 0.6 0.4

 $-0.2\frac{L}{0}$

Evolution in lattice data Data Building MS IT

Summary

• Exploratory lattice study of reduced pseudo-ITD $\mathfrak{M}(\nu, z_3^2)$ for the valence $u_v - d_v$ parton distribution in the nucleon [Orginos et al. 2017]

• Real part corresponds to the cosine Fourier transform of $q_v(x) = u_v(x) - d_v(x)$

$$\mathfrak{R}(\nu) \equiv \operatorname{Re}\mathfrak{M}(\nu) = \int_0^1 dx \, \cos(\nu x) \, q_v(x)$$

 When plotted as function of ν, data both for real and imaginary parts lie close to respective universal curves

$$f(x) = \frac{315}{32}\sqrt{x}(1-x)^3$$

- Obtained by forming cosine Fourier transforms of $x^a(1-x)^b$ -type functions and fitting a, b
- Shape is dominated by points with smaller values of Re $\mathfrak{M}(\nu,z_3^2)$
- Data for $\mathfrak{M}(\nu, z_3^2) \equiv \mathcal{M}(\nu, z_3^2)/\mathcal{M}(0, z_3^2)$ show no polynomial z_3 -dependence for large z_3 though z_3^2/a^2 changes from 1 to ~ 200
- Apparently no higher-twist terms in the reduced pseudo-ITD
- Meaning: $\mathcal{M}(\nu, z_3^2)$ factorizes as $M(\nu)\mathcal{M}(0, z_3^2)$ for large z_3

Lattice data for small and large z_3

- Parton Densities Pseudo-distribution: qPDFs Evolution Reduced pseudo-ITD
- Evolution in lattice data Data Building MS IT

- Points corresponding to 7a ≤ z₃ ≤ 13a values
- Some scatter for points with $\nu \gtrsim 10$
- Otherwise, practically all the points lie on the universal curve based on f(x).
- No z₃-evolution visible in large-z₃ data
- Points in $a \le z_3 \le 6a$ region
- All points lie higher than the curve based on the z₃ ≥ 7a data
- Perturbative evolution increases real part of the pseudo-ITD when z_3 decreases
- Conjecture that the observed higher values of ReM for smaller-z₃ points may be a consequence of evolution

Building $\overline{\mathrm{MS}}$ ITD

Evolution of parton pseudodistributions

Parton Densities Pseudo-distributions qPDFs Evolution Evolution Reduced pseudo-ITD

Evolution in lattice data _{Data} Building <u>MS</u> ITD

- z_3 -dependence of the lattice points for "magic" loffe-time value $\nu \equiv z_3 P_3 = 12\pi/16 = 3\pi/4$
- Eye-ball fit line has "Perturbative" $\ln(1/z_3^2)$ behavior for small z_3 , and rapidly tends to a constant for $z_3 \gtrsim 6a$
- $\Re(\nu, z_3^2)$ decreases when z_3 increases
- Starts to visibly deviate from a pure logarithmic $\ln z_3^2$ pattern for $z_3\gtrsim 5a$
- This sets the boundary $z_3 \leq 4a$ on the "logarithmic region"
- $\overline{\mathrm{MS}}$ ITD in terms of reduced pseudo-ITD

$$\begin{split} \mathcal{I}(\nu,\mu^2) &= \mathfrak{M}(\nu,z_3^2) + \frac{\alpha_s}{2\pi} C_F \int_0^1 dw \, \mathfrak{M}(w\nu,z_3^2) \\ &\times \left\{ \frac{1+w^2}{1-w} \, \left[\ln\left(z_3^2 \mu^2 \frac{e^{2\gamma_E}}{4}\right) + 1 \right] + \left[4 \frac{\ln(1-w)}{1-w} - 2(1-w) \right] \right\}_+ \end{split}$$

- $\mathcal{I}(\nu,\mu^2)$ should not depend on z_3
- This happens only if, for some α_s, the ln z₃²-dependence of the1-loop term cancels actual z₃²-dependence of the data, visible as scatter in the data

Re $\mathfrak{M}(\nu, z_3^2)$

Numerical results for $\overline{\mathrm{MS}}$ ITD

Evolution of parton pseudodistributions

Parton Densities Pseudo-distributions qPDFs Evolution Evolution Reduced pseudo-ITD

Evolution in lattice data ^{Data} Building <u>MS</u> ITD

- We choose µ = 1/a which, at lattice spacing of 0.093 fm is ≈ 2.15 GeV
- Using $\alpha_s/\pi = 0.1$ and $z_3 \le 4a$ data, we generate the points for $\mathcal{I}_R(\nu, (1/a)^2)$
- Upper curve corresponds to the ITD of the CJ15 global fit PDF for μ =2.15 GeV
- Evolved points are close to some universal curve with a rather small scatter
- The curve itself corresponds to the cosine transform of a normalized $\sim x^a(1-x)^b$ distribution with a = 0.35 and b = 3
- $\sim x^{0.35}(1-x)^3$ PDF compared to CJ15 and MMHT global fits for $\mu = 2.15$ GeV
- Unable to reproduce $\sim x^{-0.5}$ Regge behavior
- Possible reasons: large pion mass, quenched approximation

Summary

10/10

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Evolution of parton pseudodistributions

Parton Densities Pseudo-distributions qPDFs Evolution Evolution Reduced pseudo-ITD

Evolution in lattice data Data Building MS IT

Summary

- Analyzed perturbative structure of pseudo-PDFs using their relation to pseudo-ITDs
- Proposed to use reduced pseudo-ITD
- Studied evolution of exploratory lattice data for reduced pseudo-ITD
- Established DGLAP evolution in lattice data