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Why Pion Valence Distribution

Large-     behavior of pion valence distribution is an unresolved 
problem

C12-15-006 experiment at JLab to explore large-   behavior

Pion : lightest bound state and associated with dynamical  
chiral symmetry breaking

From pQCD and different models : (1� x)2 (1� x)1or ?

With controllable systematics, Lattice QCD can help  
understanding large-     behavior and test different 

models 
x
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Why Pion Valence Distribution

de Téramond, Liu, RSS, Dosch, Brodsky, Deur  (PRL 2018) 

Threshold 
resummation 

The&Parton&Distribution&Functions&(PDFs)
The1lightly1shaded1bands1are1
fits1to1only1DY1data
Uncertainties1dramatically1
decrease1with1inclusion1of1LN1
data
Yellow1bands1show1the1range1
of1the1regulators
Valence1PDF1shows1MN ∼ (1 −&) as1& → 1,1as1can1be1related1
with1
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308,13831(1993).
◦ A.1Szczepaniak,1C.IR.1Ji and1S.1R.1Cotanch,1Phys.1

Rev.1D149,134661(1994).
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Calculations of Parton Distributions on the Lattice

Hadronic tensor  (K. F. Liu, PRL 1994, PRD 200)

Position-space correlators (V. M. Braun & D. Müller, EPJ 2008 )

Inversion Method (A. Chambers, et al PRL 2017)

Quasi PDFs (X. Ji, PRL 2013)

Pseudo-PDFs (A. Radyushkin, PLB 2017)

Hadronic Lattice Cross Sections (LCSs) 
(Y. Q. Ma, J.-W. Qiu, arXiv 2014, PRL 2018)

Extensive efforts and significant achievements in recent years
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What are Good Lattice “Cross Sections” (LCSs)

Single hadron matrix elements:

1. Calculable using lattice QCD with Euclidean time

2. Well defined continuum limit (          ), UV finite 
i.e. no power law divergence from Wilson line in non-local 
operator 

a ! 0

 4. Factorizable to PDFs with IR-safe hard coefficients 
     with controllable power corrections  

3. Share the same perturbative collinear divergences with PDFs
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Parton Distribution Functions (PDFs) & Factorization
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A good theory can identify its limitations 
                                  

4-point correlation function 
 is numerically expensive

Equal time current insertion : sum over all energy modes 
can saturate phase space

Use heavy-light flavor changing current to suppress  
noise from spectator propagator in a systematic way
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Hadron matrix elements:

Current-current correlators

Different choices of currents

flavor changing current gluon distribution

�n(!, ⇠
2, P 2) = hP |T{On(⇠)}|P i

Good Lattice Cross Sections (LCSs)

! ⌘ P · ⇠
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LCSs:   Lattice Calculable + Renormalizable + Factorizable

P and ⇠
 Collision 

Kinematics
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Figure 7. Renormalization of an ultraviolet di-
vergent loop integration.

2.8. Antiquarks and gluons
We now have a definition of parton distribu-

tion functions for quarks. For antiquarks, we use
charge conjugation to define

fj̄/A(x, µ) =
1

4π

∫

dy−e−ixP+y−

⟨P+, 0⃗T |

×Tr
{

γ+ψj(0, y−, 0⃗T )O ψj(0, 0, 0⃗T )
}

×|P+, 0⃗T ⟩MS , (16)

where

O = P exp

(

−ig

∫ y−

0
dz− A+

a (0, z−, 0⃗T ) tTa

)

. (17)

For gluons we begin with the number operator
in A+ = 0 gauge. Proceeding analogously to the
quark case, we obtain an expression involving the
field strength tensor Fµν

a with color index a:

fg/A(x, µ) =
1

2π xP+

∫

dy−e−ixP+y−

⟨P+, 0⃗T |

×Fa(0, y−, 0⃗T )+νOab Fb(0, 0, 0⃗T ) +
ν

×|P+, 0⃗T ⟩MS , (18)

where

O = P exp

(

ig

∫ y−

0
dz− A+

c (0, z−, 0⃗T ) tc

)

. (19)

Here the tc generate the 8 representation of
SU(3).

3. Renormalization group

A change in the scale µ induces a change in
the parton distribution functions fa/A(x, µ). The
change comes from the change in the amount of
ultraviolet divergence that renormalization is re-
moving. Since the operators are non-local in y−,
the ultraviolet counterterms are integral opera-
tors in k+ or equivalently in momentum fraction
x. Since the ultraviolet divergences mix quarks
and gluons, so do the counterterms.

One finds

µ2 d

dµ2
fa/A(x, µ) =

∫ 1

x

dξ

ξ

∑

b

Pa/b(x/ξ,αs(µ)) fb/A(ξ, µ). (20)

The Altarelli-Parisi (= GLAP = DGLAP) kernel
Pa/b is expanded in powers of αs. The α1

s and α2
s

terms are known and used.

3.1. Renormalization group interpretation

The derivation of the renormalization group
equation (20) is rather technical. One should not
lose sight of its intuitive meaning. Parton split-
ting is always going on as illustrated in Fig. 8. A
probe with low resolving power doesn’t see this
splitting. The renormalization parameter µ cor-
responds to the physical resolving power of the
probe. At higher µ, field operators representing
an idealized experiment can resolve the mother
parton into its daughters.

Figure 8. A quark can fluctuate into a quark plus
a gluon in a small space-time volume.
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Projected calculations with  

a ⇡ 0.09

MeV
fma ⇡ 0.127

243 ⇥ 64, m⇡ ⇡ 430 Finite volume effect 
Briceño, et al  

PRD 2018 

323 ⇥ 64, m⇡ ⇡ 280 MeV
fm

643 ⇥ 128, m⇡ ⇡ 170 MeV

a ⇡ 0.09 fm

Lattice spacing and  
pion mass effects

Lattice Calculation

323 ⇥ 96, m⇡ ⇡ 430 MeV
fma ⇡ 0.127 Production Recently Finished
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Analysis shown here on isoClover with 490 Configurations 

Lattice spacing ~ 0.127 fm,

Lattice Calculation Setup

⇠  possible       on/off axis

(323 ⇥ 96)m⇡ ⇡ 430 MeV
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Example Lattice Matrix Elements

About 10 different current-current correlations are being analyzed

Momentum smearing for higher momentum
Gunnar S. Bali, et al

(PRD 2016)

ξ=�
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Reliable extraction 
of matrix elements

V-A matrix element

source-sink separation

2

Since Gaussian smearing functions may not be optimal
for creating, e.g., p-waves, even when adding derivatives
to the interpolator, iterative smearing was later-on com-
bined with displaced quark sources (fuzzing) in Ref. [23],
a generalization of which was suggested in Ref. [24]. Fi-
nally, in Ref. [25] “free form smearing”, folding Gaussian
smearing with an arbitrary function in a gauge covariant
way, was invented. Preceding and in parallel to gauge co-
variant iterative smearing functions, gauge fixed sources
have been utilized: wall sources for zero [26] and non-
zero momentum [27], box [28] sources, Gaussian “shell
sources” [29] and sources with nodes [30]. These gauge
fixed methods and free form smearing share the disadvan-
tage that smearing the sink requires all quark positions to
be summed over individually, turning this prohibitively
expensive. Having identical source and sink interpola-
tors, however, is very desirable as only this guarantees
the positivity of the coe�cients of the spectral decompo-
sition Eq. (1) and thus the convexity of two-point func-
tions. For completeness, we also mention the “distilla-
tion” (or Laplacian-Heaviside) method of Ref. [31] since
this is closely related to gauge covariant smearing.

Large momenta increase the energy of the state and
result in faster decaying two- and three-point functions
and, therefore, in inferior noise to signal ratios. More-
over, as we shall see, excited state suppression becomes
far less e↵ective when using conventional quark smearing
methods. Some attempts have been made [32, 33] to in-
troduce an anisotropy into Wuppertal smearing [17, 18],
aiming at Lorentz contracting the interpolating wave
function according to the boost factor 1/� = m/E(p),
along the direction of the spatial momentum p. How-
ever, this did not result in the ground state enhancement
that one would have hoped for. Here we will argue and
demonstrate that to achieve satisfactory results at high
momenta, additional phase factors need to be incorpo-
rated into quark smearing functions.

This article is organized as follows. First, in Sec. II,
we discuss the basic idea behind the new class of smear-
ing functions that we introduce. Then, in Sec. III we are
more specific, modifying Wuppertal smearing as a generic
example and suggest further improvements. In Sec. IV
we discuss our simulation parameters and expectations
for the nucleon and pion energies. After the stage is set,
in Sec. V we investigate the feasibility of the method in
a realistic numerical study, optimize the smearing pa-
rameters and pursue a comparison between the new and
the conventional method. Finally, we study the pion and
nucleon dispersion relations, before we conclude.

II. MOMENTUM SMEARING: THE BASIC
IDEA

As discussed above, quark smearing within hadronic
sources or sinks is essential in lattice simulations to in-
crease the overlap with the desired physical state, reflect-
ing the fact that hadrons are extended objects, rather
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FIG. 1. Conventional smearing versus momentum smearing
for the example of a Gaussian wave function in d = 1 spa-
tial dimensions. The momentum k shifts the centre of the
distribution in momentum space, resulting in an oscillatory
behaviour in position space.

than pointlike. A smearing operator F is diagonal in
time, trivial in spin and acts on the position and colour
indices of quark fields:

(Fq)
x

=
X

y2(aZ)d
f
x�y

G
xy

q
y

, (2)

where f is a scalar function, G is a gauge covariant trans-
porter, which in the free case will be a unit matrix in
colour and position space, and d is the number of spatial
dimensions, usually d = 3. Note that the field q

x

is usu-
ally periodic in x on the lattice, whereas f

x�y

need not
be periodic in x � y. In the free case, the convolution
Eq. (2) becomes a product in Fourier space

X

x2(aZ)d
eip·x (Fq)

x

= f̃(p) q̃
p

. (3)

For the special case of a Gaussian,

f
x�y

= f0 exp

✓

� |x� y|2
2�2

◆

, (4)

the Fourier transformed smearing kernel again is a Gaus-
sian:

f̃(p) ⌘
X

z2(aZ)d
eip·zf

z

= f̃(0) exp

✓

��2

p

2

2

◆

. (5)

Thus, the smeared quark operator has maximal overlap
with a quark at rest, p = 0. Non-zero velocities are
suppressed in accordance with the above Gaussian mo-
mentum distribution. Clearly, for hadrons carrying sig-
nificant spatial momenta, such a smearing may be coun-
terproductive.
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Preliminary Lattice Results

V-V current correlation

Only about 1/4 statistics of p=3,4,5 data analyzed

p=1 (0.3 GeV) data deviates

Does the calculated correlation matrix lead to consistent  
description of pion PDF ?  

f(x) ⇡ Ax

↵(1� x)�(1 + �

p
x+ �x)
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Preliminary Lattice Results
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NOT a fit yet

e.g. like global fits to data from different experiments !

calculate  
on lattice

extract PDF PQCD

 14

NLO perturbative kernel will give     correction⇠2



With these encouraging results, we are very 
excited !!!

Extensions such as kaon, nucleon PDFs on their way….

LCSs can be a tool to test different model calculations

Ka
n at LO and NLO for different currents being calculated

Thank You
 15

A combined fit to many LCSs on an ensemble will lead to  
precise determination of PDFs 



Backup
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in the Qweak experiment arises from the G

s
M(Q2). A precise estimate of G

s
M(Q2) can lead to

more/higher precision in the estimated value of proton weak charge Q

p = (1 � 4 sin2
�W ) in the

Qweak experiment. It is very important to know the value of Q

p with greater precision because/as

this will constrain the possibility of Beyond Standard Model physics.

Discuss NuTeV anomaly from the second moment of the s(x) � s̄(x) asymmetry (from high-

lighted 10)

J1

J2

ACKNOWLEDGMENTS

We thank the RBC and UKQCD Collaborations for providing their DWF gauge configura-

tions. This work is supported in part by the U.S. DOE Grant No. DE-SC0013065. This research

used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Lab-

oratory, which is supported by the O�ce of Science of the U.S. Department of Energy under

Contract No. DE-AC05-00OR22725. This work used Stampede time under the Extreme Sci-

ence and Engineering Discovery Environment (XSEDE) [10], which is supported by National

Science Foundation Grant No. ACI-1053575. We also thank National Energy Research Scientific

Computing Center (NERSC) for providing HPC resources that have contributed to the research

results reported within this paper. We acknowledge the facilities of the USQCD Collaboration

used for this research in part, which are funded by the O�ce of Science of the U.S. Department

of Energy.

[1] A. I. Signal and A. W. Thomas, “Possible Strength of the Nonperturbative Strange Sea of the

Nucleon,” Phys. Lett. B 191, 205 (1987).

[2] S. J. Brodsky and B. Q. Ma, “The Quark / anti-quark asymmetry of the nucleon sea,” Phys.

Lett. B 381, 317 (1996) [arXiv:hep-ph/9604393].

[3] F. G. Cao and A. I. Signal, “Two analytical constraints on the eta - eta-prime mixing,” Phys.

Rev. D 60, 114012 (1999) [arXiv:hep-ph/9908481].

3

in the Qweak experiment arises from the G

s
M(Q2). A precise estimate of G

s
M(Q2) can lead to

more/higher precision in the estimated value of proton weak charge Q

p = (1 � 4 sin2
�W ) in the

Qweak experiment. It is very important to know the value of Q

p with greater precision because/as

this will constrain the possibility of Beyond Standard Model physics.

Discuss NuTeV anomaly from the second moment of the s(x) � s̄(x) asymmetry (from high-

lighted 10)

J1

J2

ACKNOWLEDGMENTS

We thank the RBC and UKQCD Collaborations for providing their DWF gauge configura-

tions. This work is supported in part by the U.S. DOE Grant No. DE-SC0013065. This research

used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Lab-

oratory, which is supported by the O�ce of Science of the U.S. Department of Energy under

Contract No. DE-AC05-00OR22725. This work used Stampede time under the Extreme Sci-

ence and Engineering Discovery Environment (XSEDE) [10], which is supported by National

Science Foundation Grant No. ACI-1053575. We also thank National Energy Research Scientific

Computing Center (NERSC) for providing HPC resources that have contributed to the research

results reported within this paper. We acknowledge the facilities of the USQCD Collaboration

used for this research in part, which are funded by the O�ce of Science of the U.S. Department

of Energy.

[1] A. I. Signal and A. W. Thomas, “Possible Strength of the Nonperturbative Strange Sea of the

Nucleon,” Phys. Lett. B 191, 205 (1987).

[2] S. J. Brodsky and B. Q. Ma, “The Quark / anti-quark asymmetry of the nucleon sea,” Phys.

Lett. B 381, 317 (1996) [arXiv:hep-ph/9604393].

[3] F. G. Cao and A. I. Signal, “Two analytical constraints on the eta - eta-prime mixing,” Phys.

Rev. D 60, 114012 (1999) [arXiv:hep-ph/9908481].

3

in the Qweak experiment arises from the G

s
M(Q2). A precise estimate of G

s
M(Q2) can lead to

more/higher precision in the estimated value of proton weak charge Q

p = (1 � 4 sin2
�W ) in the

Qweak experiment. It is very important to know the value of Q

p with greater precision because/as

this will constrain the possibility of Beyond Standard Model physics.

Discuss NuTeV anomaly from the second moment of the s(x) � s̄(x) asymmetry (from high-

lighted 10)

J1

J2

(x0 + ⇠, t)

(x0, t)

ACKNOWLEDGMENTS

We thank the RBC and UKQCD Collaborations for providing their DWF gauge configura-

tions. This work is supported in part by the U.S. DOE Grant No. DE-SC0013065. This research

used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Lab-

oratory, which is supported by the O�ce of Science of the U.S. Department of Energy under

Contract No. DE-AC05-00OR22725. This work used Stampede time under the Extreme Sci-

ence and Engineering Discovery Environment (XSEDE) [10], which is supported by National

Science Foundation Grant No. ACI-1053575. We also thank National Energy Research Scientific

Computing Center (NERSC) for providing HPC resources that have contributed to the research

results reported within this paper. We acknowledge the facilities of the USQCD Collaboration

used for this research in part, which are funded by the O�ce of Science of the U.S. Department

of Energy.

[1] A. I. Signal and A. W. Thomas, “Possible Strength of the Nonperturbative Strange Sea of the

Nucleon,” Phys. Lett. B 191, 205 (1987).

[2] S. J. Brodsky and B. Q. Ma, “The Quark / anti-quark asymmetry of the nucleon sea,” Phys.

Lett. B 381, 317 (1996) [arXiv:hep-ph/9604393].

3

in the Qweak experiment arises from the G

s
M(Q2). A precise estimate of G

s
M(Q2) can lead to

more/higher precision in the estimated value of proton weak charge Q

p = (1 � 4 sin2
�W ) in the

Qweak experiment. It is very important to know the value of Q

p with greater precision because/as

this will constrain the possibility of Beyond Standard Model physics.

Discuss NuTeV anomaly from the second moment of the s(x) � s̄(x) asymmetry (from high-

lighted 10)

J1

J2

(x0 + ⇠, t)

(x0, t)

ACKNOWLEDGMENTS

We thank the RBC and UKQCD Collaborations for providing their DWF gauge configura-

tions. This work is supported in part by the U.S. DOE Grant No. DE-SC0013065. This research

used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Lab-

oratory, which is supported by the O�ce of Science of the U.S. Department of Energy under

Contract No. DE-AC05-00OR22725. This work used Stampede time under the Extreme Sci-

ence and Engineering Discovery Environment (XSEDE) [10], which is supported by National

Science Foundation Grant No. ACI-1053575. We also thank National Energy Research Scientific

Computing Center (NERSC) for providing HPC resources that have contributed to the research

results reported within this paper. We acknowledge the facilities of the USQCD Collaboration

used for this research in part, which are funded by the O�ce of Science of the U.S. Department

of Energy.

[1] A. I. Signal and A. W. Thomas, “Possible Strength of the Nonperturbative Strange Sea of the

Nucleon,” Phys. Lett. B 191, 205 (1987).

[2] S. J. Brodsky and B. Q. Ma, “The Quark / anti-quark asymmetry of the nucleon sea,” Phys.

Lett. B 381, 317 (1996) [arXiv:hep-ph/9604393].

3

in the Qweak experiment arises from the G

s
M(Q2). A precise estimate of G

s
M(Q2) can lead to

more/higher precision in the estimated value of proton weak charge Q

p = (1 � 4 sin2
�W ) in the

Qweak experiment. It is very important to know the value of Q

p with greater precision because/as

this will constrain the possibility of Beyond Standard Model physics.

Discuss NuTeV anomaly from the second moment of the s(x) � s̄(x) asymmetry (from high-

lighted 10)

J1

J2

(x0 + ⇠, t)

(x0, t)

(y, 0)

(z, T )

ACKNOWLEDGMENTS

We thank the RBC and UKQCD Collaborations for providing their DWF gauge configura-

tions. This work is supported in part by the U.S. DOE Grant No. DE-SC0013065. This research

used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Lab-

oratory, which is supported by the O�ce of Science of the U.S. Department of Energy under

Contract No. DE-AC05-00OR22725. This work used Stampede time under the Extreme Sci-

ence and Engineering Discovery Environment (XSEDE) [10], which is supported by National

Science Foundation Grant No. ACI-1053575. We also thank National Energy Research Scientific

Computing Center (NERSC) for providing HPC resources that have contributed to the research

results reported within this paper. We acknowledge the facilities of the USQCD Collaboration

used for this research in part, which are funded by the O�ce of Science of the U.S. Department

of Energy.

[1] A. I. Signal and A. W. Thomas, “Possible Strength of the Nonperturbative Strange Sea of the

Nucleon,” Phys. Lett. B 191, 205 (1987).

3

in the Qweak experiment arises from the G

s
M(Q2). A precise estimate of G

s
M(Q2) can lead to

more/higher precision in the estimated value of proton weak charge Q

p = (1 � 4 sin2
�W ) in the

Qweak experiment. It is very important to know the value of Q

p with greater precision because/as

this will constrain the possibility of Beyond Standard Model physics.

Discuss NuTeV anomaly from the second moment of the s(x) � s̄(x) asymmetry (from high-

lighted 10)

J1

J2

(x0 + ⇠, t)

(x0, t)

(y, 0)

(z, T )

ACKNOWLEDGMENTS

We thank the RBC and UKQCD Collaborations for providing their DWF gauge configura-

tions. This work is supported in part by the U.S. DOE Grant No. DE-SC0013065. This research

used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Lab-

oratory, which is supported by the O�ce of Science of the U.S. Department of Energy under

Contract No. DE-AC05-00OR22725. This work used Stampede time under the Extreme Sci-

ence and Engineering Discovery Environment (XSEDE) [10], which is supported by National

Science Foundation Grant No. ACI-1053575. We also thank National Energy Research Scientific

Computing Center (NERSC) for providing HPC resources that have contributed to the research

results reported within this paper. We acknowledge the facilities of the USQCD Collaboration

used for this research in part, which are funded by the O�ce of Science of the U.S. Department

of Energy.

[1] A. I. Signal and A. W. Thomas, “Possible Strength of the Nonperturbative Strange Sea of the

Nucleon,” Phys. Lett. B 191, 205 (1987).

3

in the Qweak experiment arises from the G

s
M(Q2). A precise estimate of G

s
M(Q2) can lead to

more/higher precision in the estimated value of proton weak charge Q

p = (1 � 4 sin2
�W ) in the

Qweak experiment. It is very important to know the value of Q

p with greater precision because/as

this will constrain the possibility of Beyond Standard Model physics.

Discuss NuTeV anomaly from the second moment of the s(x) � s̄(x) asymmetry (from high-

lighted 10)

J1

J2

(x0 + ⇠, t)

(x0, t)

(y, 0)

(z, T )

p

p

0

ACKNOWLEDGMENTS

We thank the RBC and UKQCD Collaborations for providing their DWF gauge configura-

tions. This work is supported in part by the U.S. DOE Grant No. DE-SC0013065. This research

used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Lab-

oratory, which is supported by the O�ce of Science of the U.S. Department of Energy under

Contract No. DE-AC05-00OR22725. This work used Stampede time under the Extreme Sci-

ence and Engineering Discovery Environment (XSEDE) [10], which is supported by National

Science Foundation Grant No. ACI-1053575. We also thank National Energy Research Scientific

Computing Center (NERSC) for providing HPC resources that have contributed to the research

results reported within this paper. We acknowledge the facilities of the USQCD Collaboration

used for this research in part, which are funded by the O�ce of Science of the U.S. Department

3

in the Qweak experiment arises from the G

s
M(Q2). A precise estimate of G

s
M(Q2) can lead to

more/higher precision in the estimated value of proton weak charge Q

p = (1 � 4 sin2
�W ) in the

Qweak experiment. It is very important to know the value of Q

p with greater precision because/as

this will constrain the possibility of Beyond Standard Model physics.

Discuss NuTeV anomaly from the second moment of the s(x) � s̄(x) asymmetry (from high-
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Figure 1: A schematic diagram of the hadron correlation function, where T labels the sink
pion, or kaon, respectively, t the inversion time slice of the currents, and ~pi and ~

p

0 represent
the momenta at source and sink. The propagators joining the two currents J1, J2 can acquire
any momentum dependeing on the available phase space.

The hadronic matrix elements for two currents J1 and J2 separated in a Euclidean direction
by ⇠ is shown in Figure 1. In the case of the pion, and in terms of the quark propagators, D,
Figure 1 can be expressed as

h⇧(�p

0)|OJ1(x0)OJ2(⇠)|⇧(�p

0)i =

=
X

y,z

e

i(p0.z�p.y)hq̄ �⇧ q(z, T ) q̄ J2 q(x0 + ⇠, t) q̄ J1 q(x0, t) q̄ �⇧ q(y, 0)i

=
X

y,z

e

i(p0.z�p.y)tr[J2 D

�1(x0 + ⇠, t; x0, t) J1 D

�1(x0, t; y, 0) �⇧

⇥D

�1(y, 0; z, T )�⇧ D

�1(z, T ; x0 + ⇠, t)],

(5)

where we note that the auxiliary propagator between J1 and J2 can be computed for any
quark mass, including in particular that of a heavy quark. The use of a heavy mass reduces
the size of the phase space which in turn gives a cleaner signal-to-noise ratio in the four-point
correlation-function calculation.

For the case of the pion and kaon, but not for the nucleon, there is a straightforward
implementation of the well-known sequential-source method that enables us to insert spatial
momentum at both the source t = 0 and the sink t = T with a minimal number of propagator
computations. The momentum at the current time slice is then constrained by momentum
conservation. This computational simplicity is a further reason to focus on the pion and kaon
in this proposal. To reduce the cost of the computation, and to simplify the analysis, we place
the currents midway between the source and sink mesons so that T = 2t, but vary the temporal
separation T so as to determine a region over which the ground state meson is dominant. Whilst
it might appear that the kaon would be the computationally more economical system since

5



Observables with ONE identified hadron 

! DIS cross section is infrared divergent, and nonperturbative! 

�DIS
`p!`0X(everything)

Identified initial-state  
hadron-proton! 

�DIS
`p!`0X(everything) / … + + +

+

! QCD factorization (approximation!) Color entanglement 
Approximation 

Quantum Probabilities 
Structure 

Controllable 
Probe 

Physical 
Observable 

bT

kT
xp

bT

kT
xp

⊗
1 O
QR
! "

+ # $
% &xP, kT 

�DIS
`p!`0X(everything) =

17



Quasi-Distribution of Pion

LP3, arXiv:1804.01483m⇡ ' 300MeV

18

4

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

x

x
q
v

Pz=2, WL ren.

Pz=3, WL ren.

Pz=4, WL ren.

Pz=2, RI/MOM

Pz=3, RI/MOM

Pz=4, RI/MOM

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

x

x
q
v

Pz=2, WL ren.

Pz=3, WL ren.

Pz=4, WL ren.

Pz=2, RI/MOM

Pz=3, RI/MOM

Pz=4, RI/MOM

FIG. 3. The pion momentum dependence of the results in the
Wilson line renormalization scheme (WL ren.) and RI/MOM
scheme. We have chosen µR = 3.7 GeV and p

R
z = 6⇥2⇡/L in

the RI/MOM result. The Wl ren. result includes statistical
errors, whereas the RI/MOM result also includes systematic
error due to p

R
z dependence by varying it between 4 and 8.

as well as the systematic error of setting the unphysical
scale pR

z

by varying it between 4 ⇥ 2⇡/L and 8 ⇥ 2⇡/L.
For the Wilson line renormalization, only statistical er-
rors are included since there is no extra unphysical scale
in this scheme like pR

z

in RI/MOM. As can be seen from
the figure, increasing P

z

tends to shift the distribution
towards x = 0 and also lifts the peak at x = 0, but its
impact is mild. Another important feature is that the
RI/MOM result is consistent with 0 outside the phys-
ical region [0, 1] within errors, whereas the Wilson line
renormalization one is not. This mainly reflects the im-
portance of the higher-order matching kernel, since the
one-loop matching in the two di↵erent schemes di↵er only
by finite terms. We plan to derive higher-order match-
ing, expecting that it will reduce the di↵erence between
the results in two di↵erent schemes.

It is worthwhile to stress that matching is a neces-
sary step in converting the quasi-PDF to PDF. It yields
sizeable contributions and changes, in particular for the
distribution in the unphysical region. In Ref. [94], the
authors studied the pion valence quasi-distribution using
the Bethe-Salpeter wave function of the pion, and ob-

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0

1

2

3

4

x

q
v

LP3

DSE

ASV

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

x

x
q
v

LP3

DSE

ASV

FIG. 4. Our pion valence-quark PDF result at the scale µ = 4
GeV from RI/MOM scheme calculation (LP3) , contrasted
with analysis from Dyson-Schwinger equation [14] (DSE) at
the scale 5.2 GeV and from a fit to Drell-Yan data in Ref. [7]
(ASV) at 4 GeV.

served that for P
z

& 2 GeV, by further increasing the
pion momentum the quasi-PDF shrinks to the physical
region very slowly. Actually we have observed a simi-
lar trend in our data. However, the matching plays an
important role in reducing the contribution in the un-
physical region, as can be seen from Fig. 2 above, but
hasn’t been taken into account in Ref. [94].
In Fig. 4, we compare our final result in RI/MOM

scheme (LP3) with computations from Dyson-Schwinger
equation [14] (DSE) and from a phenomenological fit to
Drell-Yan data [7] (ASV). We have set our renormaliza-
tion scale to be µ = 4 GeV, in accordance with the ex-
perimental fit [7], whereas the DSE result is at 5.2 GeV.
Outside the physical region, our result is consistent with
0. Within the physical region, our result decreases more
slowly than the DSE and ASV results at large x, and has
a lower peak around x = 0, as can be seen from the upper
plot. This is expected to improve once we have lattice
data at smaller pion masses. When plotted as xq⇡

v

(x),
as was usually done in the literature, the discrepancy at
small x gets suppressed, while it gets enhanced at large
x.
We point out several potential sources of uncertainty
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B. Comparison to the pseudo-PDF approach

Recently, the pseudo-PDF approach [50–52] was pro-
posed as an alternate way to extract PDF from the same
spatial correlator on the lattice. In this approach, the
spatial correlator h̃(z2, zP

z

, a�1) is considered as a func-
tion of Lorentz scalars z2 and zP

z

, and one can form a

ratio

R(z2, zP
z

) ⌘ h̃(z2, zP
z

, a�1)/h̃(z2, 0, a�1) . (47)

At short distance |z| ⌧ ⇤�1

QCD

, the ratio has a weak de-

pendence on z2 that can be described by an Altarelli-
Parisi type of evolution [13, 50, 54], and it can be matched
to the PDF through a factorization formula that has been
proven to be equivalent to the large-momentum factor-

19



2

Hadronic matrix elements in coordinate-space —

We consider single-hadron matrix elements of renormal-
ized nonlocal operators On(ξ),

σn(ω, ξ
2, P 2) = ⟨P |T {On(ξ)}|P ⟩, (1)

where the subscript n is a label for different operators, T
stands for time-ordering, P is the hadron momentum, ξ
with ξ2 ̸= 0 is the largest separation of all fields in the
operator On, the Lorentz scalar ω ≡ P · ξ, and renormal-
ization scale for On(ξ) is suppressed.
One choice for On(ξ) is the dimension-2 operators for

correlations of two currents with a separation ξ,

Oj1j2(ξ) ≡ ξdj1
+dj2

−2 Zj1 Zj2j1(ξ) j2(0) , (2)

where dj and Zj are the dimension and renormalization
constant of the current j, respectively, and the overall
dimensional factor is introduced so that the matrix ele-
ments in Eq. (1) is dimensionless with our normalization,
⟨P |P ′⟩ = (2EP )(2π)3δ3(P − P ′). With the scalar and
vector currents, for example, we could have,

OS(ξ) = ξ4Z2
S[ψqψq](ξ) [ψqψq](0) , (3a)

OV (ξ) = ξ2Z2
V [ψq/ξψq](ξ) [ψq/ξψq](0) , (3b)

OṼ (ξ) = −
ξ4

2
Z2
V [ψqγνψq](ξ) [ψqγ

νψq](0) , (3c)

OV ′(ξ) = ξ2Z2
V ′ [ψq/ξψq′ ](ξ) [ψq′/ξψq](0) , . . . , (3d)

where ξ4 ≡ (ξ2)2, q = u, d, s, · · · stands for a quark with
a definite flavor and q′ for a quark with a different flavor,
the subscripts, S, V and V ′ refers to scalar, vector and
flavor-changing vector currents, respectively, and “. . . ”
indicates for other possible combinations of two currents
including the gluonic current, e.g., jµν ∝ FµρF ρ

ν . Ma-
trix elements constructed from operators in Eq. (3) sat-
isfy the relation

σ∗
n(ω, ξ

2, P 2) = σn(−ω, ξ
2, P 2). (4)

Instead of the correlation of two currents, the nonlo-
cal operator in Eq. (1) could also be made of the cor-
relation of gauge dependent field operators with proper
gauge link(s), e.g.,

Oq(ξ) =Zq(ξ
2)ψq(ξ) /ξΦ(ξ, 0)ψq(0) , (5)

where Φ(ξ, 0) = Pe−ig
∫

1

0
ξ·A(λξ) dλ is the path ordered

gauge link, Zq(ξ2) is the renormalization constant of this
operator, depending on ξ2 [27], and matrix element con-
structed from which satisfies the relation

σ∗
n(ω, ξ

2, P 2) = −σn(−ω, ξ
2, P 2). (6)

Besides scalar operators constructed above, we can also
construct vector or tensor operators, e.g.,

Oµν(ξ) = ξ4Z2
V [ψqγµψq](ξ) [ψqγνψq](0) . (7)

To simply the discussion, we will consider only scalar
operators in the following, although tensor operators can
be studied following the same way.
Factorization — We show that σn defined in Eq. (1)
could be factorized into PDFs with perturbatively calcu-
lable coefficients so long as ξ2 is sufficiently small,

σn(ω, ξ
2,P 2) =

∑

a

∫ 1

−1

dx

x
fa(x, µ

2)

×Ka
n(xω, ξ

2, x2P 2, µ2) +O(ξ2Λ2
QCD) ,

(8)

where µ is the factorization scale, Ka
n are perturba-

tively calculable hard coefficients, and fa is PDF of flavor
a = q, g with anti-quark PDFs expressed by quark PDFs
using the relation fā(x, µ2) = −fa(−x, µ2).
Let ξ2 be small but not vanishing, and applying oper-

ator product expansion (OPE) to the nonlocal operator
On(ξ) in Eq. (1) [37], we have

σn(ω, ξ
2, P 2) =

∑

J=0

∑

a

W (J,a)
n (ξ2, µ2) ξν1 · · · ξνJ

× ⟨P |O(J,a)
ν1···νJ (µ

2)|P ⟩ , (9)

where µ is the renormalization scale. The O(J,a)
ν1···νJ (µ

2) is
a local, symmetric and traceless operator of spin J with
“a” labeling different operators of the same spin, and

⟨P |O(J,a)
ν1···νJ (µ

2)|P ⟩ = 2A(J,a)(µ2)

× (Pν1 · · ·PνJ − traces) , (10)

where the scalar quantity A(J,a)(µ2) = ⟨P |O(J,a)(µ2)|P ⟩
is the reduced matrix element. Substituting Eq. (10) into
Eq. (9), we have

σn(ω, ξ
2, P 2) =

∑

J=0

∑

a

W (J,a)
n (ξ2, µ2) 2A(J,a)(µ2)

× ΣJ (ω, P
2ξ2) , (11)

where

ΣJ(ω, P
2ξ2) ≡ ξν1 · · · ξνJ (Pν1 · · ·PνJ − traces)

=

[J/2]∑

i=0

Ci
J−i(ω)

J−2i
(
−P 2ξ2/4

)i
, (12)

where C is the binomial function and [J/2] is the great-
est integer less than or equal to J/2. Up to now, no
approximation has been made in deriving Eq. (11).
Since higher dimensional matrix element is relatively

smaller by powers of Λ2
QCDξ

2 when two reduced ma-
trix elements are compared, for the following discussion,
we ignore this power suppressed correction to keep only
terms with the lowest dimensional operators, which cor-
responds to keep the twist-2 operators in QCD [37]. Re-
duced matrix elements of these twist-2 operators can be
expressed as moments of PDFs,

A(J,a)(µ2) =
1

Sa

∫ 1

−1
dxxJ−1fa(x, µ

2) , (13)

2

Hadronic matrix elements in coordinate-space —

We consider single-hadron matrix elements of renormal-
ized nonlocal operators On(ξ),

σn(ω, ξ
2, P 2) = ⟨P |T {On(ξ)}|P ⟩, (1)

where the subscript n is a label for different operators, T
stands for time-ordering, P is the hadron momentum, ξ
with ξ2 ̸= 0 is the largest separation of all fields in the
operator On, the Lorentz scalar ω ≡ P · ξ, and renormal-
ization scale for On(ξ) is suppressed.
One choice for On(ξ) is the dimension-2 operators for

correlations of two currents with a separation ξ,

Oj1j2(ξ) ≡ ξdj1
+dj2

−2 Zj1 Zj2j1(ξ) j2(0) , (2)

where dj and Zj are the dimension and renormalization
constant of the current j, respectively, and the overall
dimensional factor is introduced so that the matrix ele-
ments in Eq. (1) is dimensionless with our normalization,
⟨P |P ′⟩ = (2EP )(2π)3δ3(P − P ′). With the scalar and
vector currents, for example, we could have,

OS(ξ) = ξ4Z2
S[ψqψq](ξ) [ψqψq](0) , (3a)

OV (ξ) = ξ2Z2
V [ψq/ξψq](ξ) [ψq/ξψq](0) , (3b)

OṼ (ξ) = −
ξ4

2
Z2
V [ψqγνψq](ξ) [ψqγ

νψq](0) , (3c)

OV ′(ξ) = ξ2Z2
V ′ [ψq/ξψq′ ](ξ) [ψq′/ξψq](0) , . . . , (3d)

where ξ4 ≡ (ξ2)2, q = u, d, s, · · · stands for a quark with
a definite flavor and q′ for a quark with a different flavor,
the subscripts, S, V and V ′ refers to scalar, vector and
flavor-changing vector currents, respectively, and “. . . ”
indicates for other possible combinations of two currents
including the gluonic current, e.g., jµν ∝ FµρF ρ

ν . Ma-
trix elements constructed from operators in Eq. (3) sat-
isfy the relation

σ∗
n(ω, ξ

2, P 2) = σn(−ω, ξ
2, P 2). (4)

Instead of the correlation of two currents, the nonlo-
cal operator in Eq. (1) could also be made of the cor-
relation of gauge dependent field operators with proper
gauge link(s), e.g.,

Oq(ξ) =Zq(ξ
2)ψq(ξ) /ξΦ(ξ, 0)ψq(0) , (5)

where Φ(ξ, 0) = Pe−ig
∫

1

0
ξ·A(λξ) dλ is the path ordered

gauge link, Zq(ξ2) is the renormalization constant of this
operator, depending on ξ2 [27], and matrix element con-
structed from which satisfies the relation

σ∗
n(ω, ξ

2, P 2) = −σn(−ω, ξ
2, P 2). (6)

Besides scalar operators constructed above, we can also
construct vector or tensor operators, e.g.,

Oµν(ξ) = ξ4Z2
V [ψqγµψq](ξ) [ψqγνψq](0) . (7)

To simply the discussion, we will consider only scalar
operators in the following, although tensor operators can
be studied following the same way.
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could be factorized into PDFs with perturbatively calcu-
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(8)

where µ is the factorization scale, Ka
n are perturba-

tively calculable hard coefficients, and fa is PDF of flavor
a = q, g with anti-quark PDFs expressed by quark PDFs
using the relation fā(x, µ2) = −fa(−x, µ2).
Let ξ2 be small but not vanishing, and applying oper-
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using the relation fā(x, µ2) = −fa(−x, µ2).
Let ξ2 be small but not vanishing, and applying oper-

ator product expansion (OPE) to the nonlocal operator
On(ξ) in Eq. (1) [37], we have

σn(ω, ξ
2, P 2) =

∑

J=0

∑

a

W (J,a)
n (ξ2, µ2) ξν1 · · · ξνJ

× ⟨P |O(J,a)
ν1···νJ (µ

2)|P ⟩ , (9)

where µ is the renormalization scale. The O(J,a)
ν1···νJ (µ

2) is
a local, symmetric and traceless operator of spin J with
“a” labeling different operators of the same spin, and

⟨P |O(J,a)
ν1···νJ (µ

2)|P ⟩ = 2A(J,a)(µ2)

× (Pν1 · · ·PνJ − traces) , (10)

where the scalar quantity A(J,a)(µ2) = ⟨P |O(J,a)(µ2)|P ⟩
is the reduced matrix element. Substituting Eq. (10) into
Eq. (9), we have

σn(ω, ξ
2, P 2) =

∑

J=0

∑

a

W (J,a)
n (ξ2, µ2) 2A(J,a)(µ2)

× ΣJ (ω, P
2ξ2) , (11)

where

ΣJ(ω, P
2ξ2) ≡ ξν1 · · · ξνJ (Pν1 · · ·PνJ − traces)

=

[J/2]∑

i=0

Ci
J−i(ω)

J−2i
(
−P 2ξ2/4

)i
, (12)

where C is the binomial function and [J/2] is the great-
est integer less than or equal to J/2. Up to now, no
approximation has been made in deriving Eq. (11).
Since higher dimensional matrix element is relatively

smaller by powers of Λ2
QCDξ

2 when two reduced ma-
trix elements are compared, for the following discussion,
we ignore this power suppressed correction to keep only
terms with the lowest dimensional operators, which cor-
responds to keep the twist-2 operators in QCD [37]. Re-
duced matrix elements of these twist-2 operators can be
expressed as moments of PDFs,

A(J,a)(µ2) =
1

Sa

∫ 1

−1
dxxJ−1fa(x, µ

2) , (13)

Local, symmetric , traceless op
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