
Next-generation nuclear physics with polarized light ions at EIC

C. Weiss (JLab), UConn PAN Seminar, 30-Apr-2018

JLab 2014/15 LDRD Project

W. Cosyn, V. Guzey, D. Higinbotham, Ch. Hyde, K. Park, P. Nadel-Turonski, M. Sargsian, M. Strikman, C. Weiss* [Webpage]

+ continuing theory research

• Light ion physics at EIC

Energy, luminosity, polarization, detection Physics objectives

Deuteron and spectator tagging

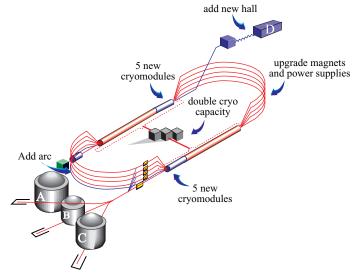
Theoretical framework Strikman, Weiss, PRC97 (2018) 035209 [INSPIRE]

Free neutron from on-shell extrapolation

Recent results: Neutron spin structure, diffraction and shadowing at small x, tensor polarization, ... Cosyn, Guzey, Sargsian, Strikman CW, in preparation

- Forward detection with EIC
- Future plans

Nuclear physics with EM probes

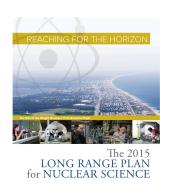

• JLab 12 GeV operations started

Hall A & D first physics results, Hall C physics running, CLAS12 engineering run

Four-hall operation demonstrated

Expect physics results 5-10 years

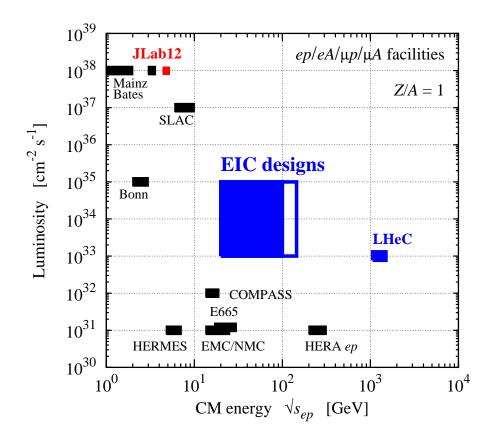
Other EM facilities: COMPASS, MAMI, ELSA, MIT Bates

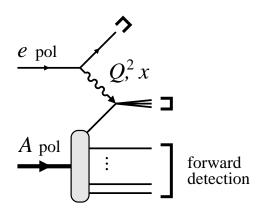

Electron-lon Collider as future facility


Recommended in 2015 NSAC Long-Range Plan

Designs by BNL and JLab

Vigorous accelerator and detector R&D


Driving physics research in exp and thy



• Hadron probes: LHC, RHIC $pA/AA/\gamma A$, JPARC, GSI FAIR, FRIB

EIC ep/eA capabilities

ullet CM energy $\sqrt{s_{ep}}\sim$ 20–100 GeV

Factor $\sqrt{Z/A}$ for nuclei

Deep-inelastic scattering at $x \sim 10^{-1} \text{--} 10^{-3}$, $Q^2 \lesssim 10^2 \text{ GeV}^2$

• Luminosity $\sim 10^{34}\,\mathrm{cm}^{-2}\,\mathrm{s}^{-1}$

Exceptional configurations in target Multi-variable final states Polarization observables

Polarized protons and light ions

eRHIC: pol ³He

JLEIC: pol d and ${}^3\mathrm{He}$ with figure-8

• Forward detection of p, n, A

Diffractive and exclusive processes Nuclear breakup and spectator tagging Coherent nuclear scattering

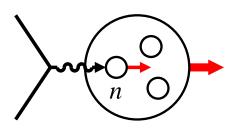
EIC physics topics

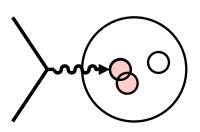
I) 3D nucleon structure and spin

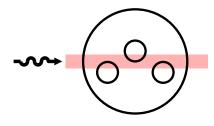
Sea quark and gluon polarization, nucleon spin decomposition Spatial distributions and orbital motion of quarks/gluons Quark-gluon correlations

II) QCD in nuclei

Nuclear quark/gluon densities, NN interactions in QCD Color transparency and opacity Nonlinear effects and gluon saturation at small x


III) Emergence of hadrons from color charge


Quark/gluon fragmentation and hadronization Interaction of color charge with matter


. . .

$$\begin{cases} ep \\ eA(\text{light}) & \leftarrow \text{this seminar} \\ eA(\text{heavy}) \end{cases}$$

Light ions: Physics objectives

[Nucleus rest frame view]

Neutron structure

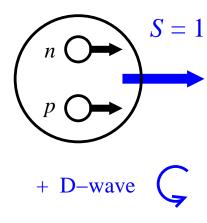
Flavor decomposition of PDFs/GPDs/TMDs, singlet vs. non-singlet QCD evolution, polarized gluon

Eliminate nuclear binding, non-nucleonic DOF!

Nucleon interactions in QCD

Nuclear modification of quark/gluon densities Short-range correlations, non-nucleonic DOF QCD origin of nuclear forces

Associate modifications with interactions!

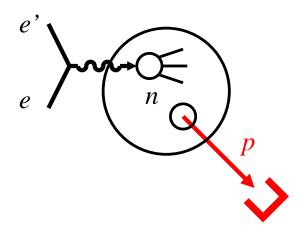

Coherent phenomena in QCD

Coherent interaction of high—energy probe with multiple nucleons, shadowing, saturation

Identify coherent response!

Common challenge: Multitude of possible nuclear configurations during high-energy process. Need to "control" configurations!

Light ions: Deuteron, spectator tagging

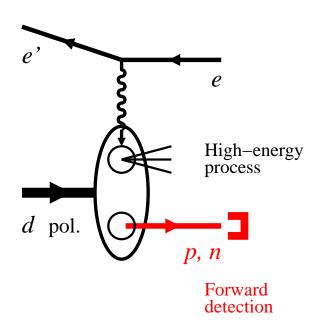


pn wave function simple, known well incl. light-front WF for high-energy procs

Neutron spin-polarized

Intrinsic Δ isobars suppressed by Isospin = 0 $|\mathrm{deuteron}\rangle = |pn\rangle + \epsilon |\Delta\Delta\rangle$

Spectator nucleon tagging


Identifies active nucleon

Controls configuration through recoil momentum: Spatial size, $S \leftrightarrow D$ wave

Tagging in fixed-target experiments CLAS6/12 BONUS, recoil momenta $p=70\text{-}150~\mathrm{MeV}$

[Nucleus rest frame view]

Light ions: Deuteron, spectator tagging

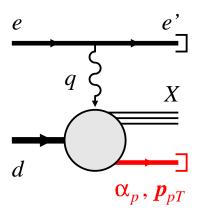
Spectator tagging with colliding beams

Spectator nucleon moves forward with approx. 1/2 beam momentum

Detection with forward detectors integrated in interaction region and beams optics LHC pp/pA/AA, Tevatron $p\bar{p}$, RHIC pp, ultraperipheral AA

Advantages over fixed-target

No target material, $p_p(\text{restframe}) \to 0$ possible


Potentially full acceptance, good resolution

Can be used with polarized deuteron

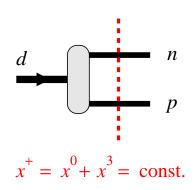
Forward neutron detection possible

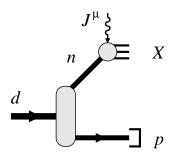
Unique physics potential

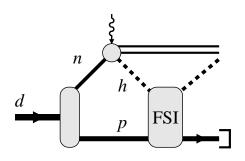
Tagging: Cross section and observables

$$\begin{split} \frac{d\sigma}{dx dQ^2 \left(d^3 p_p / E_p\right)} &= \left[\text{flux} \right] \left[F_{Td}(x,Q^2;\alpha_p,p_{pT}) + \epsilon F_{Ld}(...) \right. \\ &+ \sqrt{2\epsilon(1+\epsilon)} \, \cos\phi_p F_{LT,d}(...) \, + \, \epsilon \, \cos(2\phi_p) F_{TT,d}(...) \\ &+ \, \text{spin-dependent structures} \, \right] \end{split}$$

• Conditional DIS cross section $e + d \rightarrow e' + X + p$


Proton recoil momentum $p_p^+ = E_p + p_p^z$, \boldsymbol{p}_{pT} , light-front momentum fraction $p_p^+ = \alpha_p p_d^+/2$, simply related to \boldsymbol{p}_p (restframe)


Conditional structure functions


Special case of semi-inclusive DIS — target fragmentation QCD factorization Trentadue, Veneziano 93; Collins 97

No assumptions re nuclear structure, $A=\sum N$, etc.

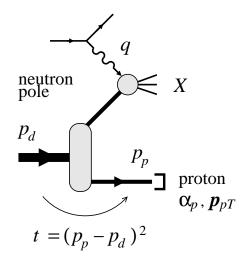
Tagging: Theoretical description

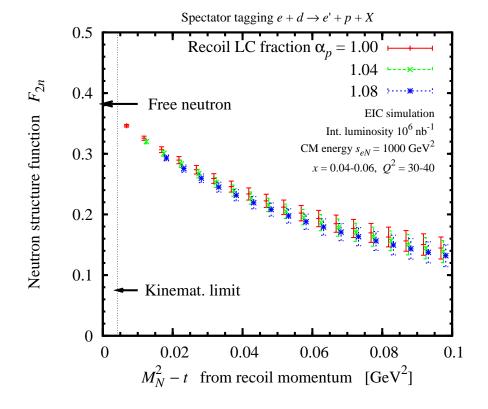
• Light-front quantization

High-energy scattering probes nucleus at fixed light-front time $x^+ = x^0 + x^3 = \text{const.}$

Deuteron LF wave function $\langle pn|d \rangle = \Psi(\alpha_p, {m p}_{pT})$

Matching nuclear ↔ nucleonic structure Frankfurt, Strikman 80's


Low-energy nuclear structure, cf. non-relativistic theory!


Composite description

Impulse approximation: DIS final state and spectator nucleon evolve independently

Final-state interactions: Part of DIS final state interacts with spectator, transfers momentum

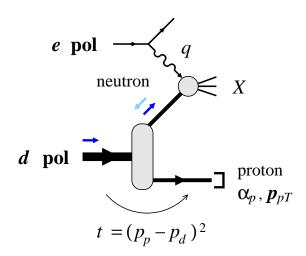
Tagging: Free neutron structure

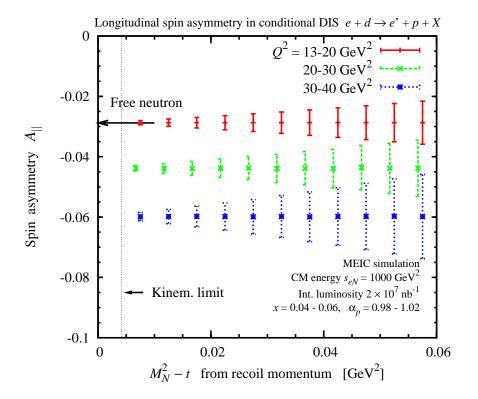
• Extract free neutron structure

Proton momentum defines invariant $t-M_N^2=-2|\boldsymbol{p}_p|^2+t_{\min}$ "neutron off-shellness"

Free neutron at pole $t-M_N^2=0$: On-shell extrapolation

Eliminates nuclear binding effects and FSI Sargsian, Strikman 05


• Precise measurements of F_{2n}


 F_{2n} extracted with few-percent accuracy at $x\gtrsim 0.1$

Uncertainty mainly systematic JLab LDRD: Detailed estimates

Non-singlet $F_{2p}-F_{2n}$, sea quark flavor asymmetry $\bar{d}-\bar{u}$

Tagging: Neutron spin structure

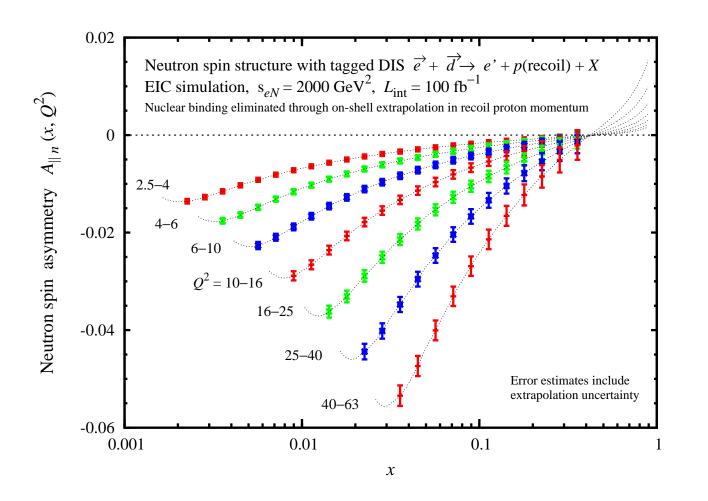
Neutron spin structure with pol deuteron and proton tagging

On-shell extrapolation of asymmetry

D-wave suppressed at ${m p}_p=0$: Neutron 100% polarized

Systematic uncertainties cancel

Weak off-shell dependence of asymmetry

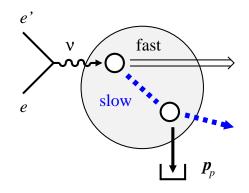

Momentum smearing/resolution effects largely cancel in asymmetry

Statistics requirements

Physical asymmetries \sim 0.05-0.1, effective polarization $P_eP_D\sim0.5$

Possible with lumi $\sim 10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$

Tagging: Neutron spin structure II



$$A_{\parallel n} = \frac{\sigma(+-) - \sigma(++)}{\sigma(+-) + \sigma(++)}$$

$$= D \frac{g_1}{F_1} + \dots$$

$$D = \frac{y(2-y)}{2-2y+y^2}$$
 depolarization factor
$$y = \frac{Q^2}{xs_{eN}}$$

Precise measurement of neutron spin structure

Wide kinematic range: Leading \leftrightarrow higher twist, nonsinglet \leftrightarrow singlet QCD evolution Parton density fits: Flavor separation $\Delta u \leftrightarrow \Delta d$, gluon spin ΔG Nonsinglet $g_{1p}-g_{1n}$ and Bjorken sum rule

Tagging: Final-state interactions

- DIS final state can interact with spectator
 - Changes recoil momentum distributions in tagging
 - No effect on total cross section closure
- Nucleon DIS final state has two components

"Fast"
$$E_h = O(\nu)$$

hadrons formed outside nucleus interact weakly with spectators

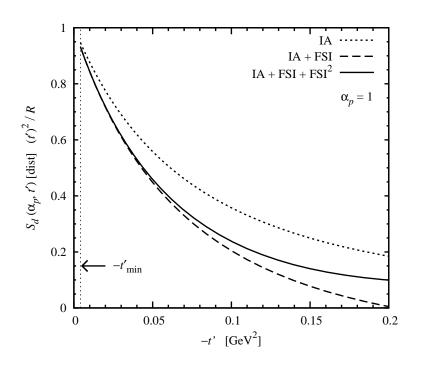
"Slow"
$$E_h = O(\mu_{\rm had}) \sim 1 \; {\rm GeV}$$

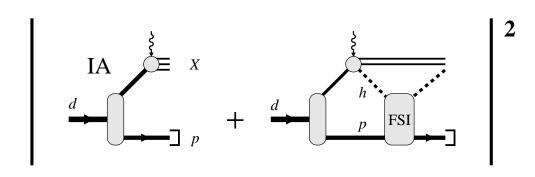
formed inside nucleus interacts with hadronic cross section dominant source of FSI

• FSI effects calculated $x \sim$ 0.1–0.5

Strikman, CW, PRC97 (2018) 035209

Experimental slow hadron multiplicity distributions

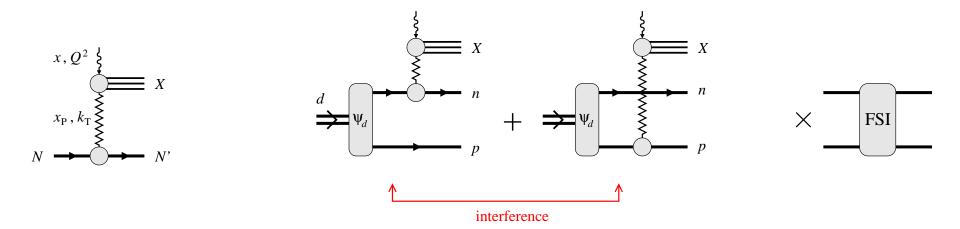

Cornell, EMC, HERA


Hadron-nucleon low-energy scattering amplitudes

Light-front QM: Deuteron pn wave function, rescattering process

Frankfurt, Strikman 81

Tagging: Final-state interactions II


Strikman, CW 18

- FSI reduces IA cross section at $|t M_N^2| \neq 0 \quad (\lesssim 0.2 \, {\rm GeV^2})$
- ullet FSI vanishes at $t-M_N^2 o 0$; on-shell extrapolation not affected
- Other interesting aspects

FSI depends on recoil momentum angle in rest frame: forward-sideways-backward regions Analogy with FSI in quasi-elastic deuteron breakup

FSI suppressed for $x \to 1$: Minimum momentum of DIS hadrons grows

Tagging: Diffraction and shadowing

• Diffraction in nucleon DIS at $x \ll 0.1$

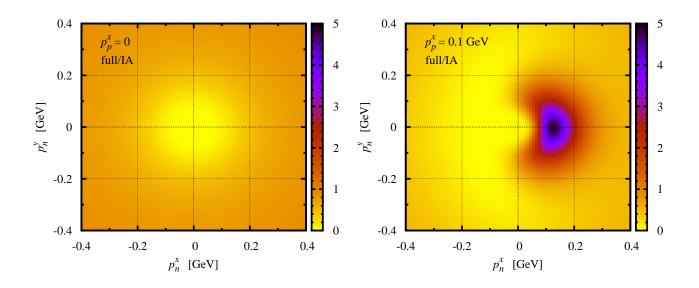
Nucleon remains intact, recoils with $k \sim$ few 100 MeV (rest frame)

10-15% of events diffractive. Detailed studies at HERA: QCD factorization, diffractive PDFs

• Shadowing in deuteron DIS

Diffraction can happen on neutron or proton: QM interference

Reduction of cross section compared to IA — shadowing. Leading-twist effect.

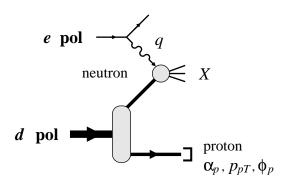

Frankfurt, Strikman, Guzey 12. Great interest. Hints seen in J/ψ production in UPCs at LHC ALICE.

Diffraction and shadowing in tagged DIS

Differential studies as function of recoil momentum!

Large FSI effects. Outgoing pn scattering state must be orthogonal to d bound state Guzey, Strikman, CW 18

Tagging: Diffraction and shadowing


$$R=rac{d\sigma(\mathrm{full})}{d\sigma(\mathrm{IA})}$$
 as function of neutron $m{p}_{nT}$ for fixed proton $m{p}_{pT}$

ullet Final-state interactions in diffractive tagged DIS e+d
ightarrow e'+X+n+p Large FSI effects due to orthogonality

Shadowing effects also calculated; can be studied in selected kinematics Guzey, Strikman, CW, in preparation

Other application: High- p_T deuteron breakup and gluonic structure of small-size pn configuration Miller, Sievert, Venugopalan 17

Tagging: Polarized deuteron

- Deuteron spin density matrix $\rho_{\lambda\lambda'}(S,T)$
 - 3 vector parameters, 5 tensor parameters

Fixed by polarization measurements cf. Stokes' parameters for photon

Polarized tagged cross section

Cosyn, Sargsian, CW 17

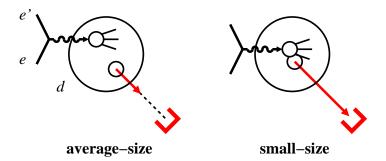
$$\frac{d\sigma}{dxdQ^2(d^3p_n/E_n)} = [\text{flux}](\mathsf{F}_U + \mathsf{F}_S + \mathsf{F}_T) \qquad \mathsf{F}_I = \text{functions}(x, Q^2, \alpha_p, p_{pT}, \phi_p)$$

$$\begin{split} F_{U} &= F_{UU,T} + \epsilon F_{UU,L} + \sqrt{2\epsilon(1+\epsilon)}\cos\phi_{h}F_{UU}^{\cos\phi_{h}} + \epsilon\cos2\phi_{h}F_{UU}^{\cos2\phi_{h}} + \frac{h}{\sqrt{2\epsilon(1-\epsilon)}}\sin\phi_{h}F_{LU}^{\sin\phi_{h}} \\ F_{S} &= S_{L}\left[\sqrt{2\epsilon(1+\epsilon)}\sin\phi_{h}F_{US_{L}}^{\sin\phi_{h}} + \epsilon\sin2\phi_{h}F_{US_{L}}^{\sin2\phi_{h}}\right] \\ &+ S_{L}h\left[\sqrt{1-\epsilon^{2}}F_{LS_{L}} + \sqrt{2\epsilon(1-\epsilon)}\cos\phi_{h}F_{LS_{L}}^{\cos\phi_{h}}\right] \\ &+ S_{L}\left[\sin(\phi_{h}-\phi_{S})\left(F_{US_{T},T}^{\sin(\phi_{h}-\phi_{S})} + \epsilon F_{US_{T},L}^{\sin(\phi_{h}-\phi_{S})}\right) + \epsilon\sin(\phi_{h}+\phi_{S})F_{US_{T}}^{\sin(\phi_{h}+\phi_{S})} \right. \\ &+ \epsilon\sin(3\phi_{h}-\phi_{S})F_{US_{T}}^{\sin(3\phi_{h}-\phi_{S})} + \sqrt{2\epsilon(1+\epsilon)}\left(\sin\phi_{S}F_{US_{T}}^{\sin\phi_{S}} + \sin(2\phi_{h}-\phi_{S})F_{US_{T}}^{\sin(2\phi_{h}-\phi_{S})}\right)\right] \\ &+ S_{L}h\left[\sqrt{1-\epsilon^{2}}\cos(\phi_{h}-\phi_{S})F_{LS_{T}}^{\cos(\phi_{h}-\phi_{S})} + \sqrt{2\epsilon(1-\epsilon)}\left(\cos\phi_{S}F_{LS_{T}}^{\cos(\phi_{h}-\phi_{S})}\right)\right], \end{split}$$

Tagging: Polarized deuteron II

```
F_{T} = T_{LL} \left[ F_{UT_{LL},T} + \epsilon F_{UT_{LL},L} + \sqrt{2\epsilon(1+\epsilon)} \cos \phi_{h} F_{UT_{LL}}^{\cos \phi_{h}} + \epsilon \cos 2\phi_{h} F_{UT_{LL}}^{\cos 2\phi_{h}} \right] 
+ T_{LL} h \sqrt{2\epsilon(1-\epsilon)} \sin \phi_{h} F_{LT_{LL}}^{\sin \phi_{h}} 
+ T_{L\perp} \left[ \cdots \right] + T_{L\perp} h \left[ \cdots \right] 
+ T_{\perp\perp} \left[ \cos(2\phi_{h} - 2\phi_{T_{\perp}}) \left( F_{UT_{TT},T}^{\cos(2\phi_{h} - 2\phi_{T_{\perp}})} + \epsilon F_{UT_{TT},L}^{\cos(2\phi_{h} - 2\phi_{T_{\perp}})} \right) \right] 
+ \epsilon \cos 2\phi_{T_{\perp}} F_{UT_{TT}}^{\cos 2\phi_{T_{\perp}}} + \epsilon \cos(4\phi_{h} - 2\phi_{T_{\perp}}) F_{UT_{TT}}^{\cos(4\phi_{h} - 2\phi_{T_{\perp}})} 
+ \sqrt{2\epsilon(1+\epsilon)} \left( \cos(\phi_{h} - 2\phi_{T_{\perp}}) F_{UT_{TT}}^{\cos(\phi_{h} - 2\phi_{T_{\perp}})} + \cos(3\phi_{h} - 2\phi_{T_{\perp}}) F_{UT_{TT}}^{\cos(3\phi_{h} - 2\phi_{T_{\perp}})} \right) 
+ T_{\perp\perp} h \left[ \cdots \right]
```

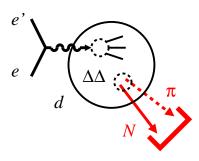
• U + S cross sections identical to spin-1/2 target


- Bacchetta et al. 07
- T cross section has 23 new tensor structure functions specific to spin-1 4 structure functions survive in inclusive DIS, cf. b_1-b_4 Hoodbhoy, Jaffe, Manohar 88
 - ϕ -harmonics specific to tensor polarization new handle
- T-odd structures vanish in impulse approximation, provide sensitive tests of FSI

Tagging: Applications and extensions

Tagged EMC effect

What momenta/distances in NN interactions cause modification of partonic structure?

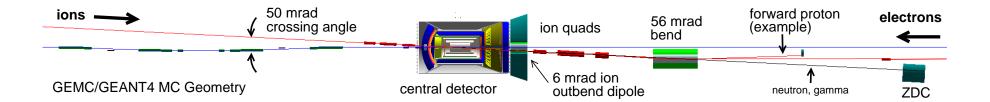

Connection with NN short-range correlations?

ullet Tagging Δ isobars

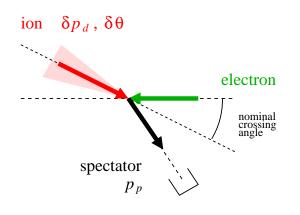
Tagged DIS $e+d \rightarrow e'+\pi+N$, reconstruct Δ from πN

 Δ structure function defined at pole, reached by on-shell extrapolation

ullet Tagging with complex nuclei A>2


Could test isospin dependence and/or universality of bound nucleon structure

$$(A-1)$$
 ground state recoil, e.g. 3He (e, e' d) X Ciofi, Kaptari, Scopetta 99; Kaptari et al. 2014


Theoretically challenging, cf. experience with quasielastic breakup

Needs input from 3-body Faddeev calculations for structure and breakup. Bochum-Krakow group.

Simulations: Forward detection

- Forward detector integrated in interaction region and beam optics
 - Protons/neutrons/fragments travel through ion beam quadrupole magnets
 - Dispersion generated by dipole magnets
 - Detection using forward detectors Roman pots, ZDCs
 - JLEIC design: Full acceptance, proton momentum resolution longit $\delta p/p \sim 10^{-3}$, angular $\delta \theta \sim$ 0.2 mrad P. Nadel-Turonski, Ch. Hyde et al.

- Intrinsic momentum spread in ion beam
 - Transverse momentum spread $\sigma \sim$ few 10 MeV
 - Smearing effect $p_{pT}(\text{vertex}) \neq p_{pT}(\text{measured})$, corrected by convolution
 - Dominant systematic uncertainty in tagged neutron structure measurements. Correlated, x and Q^2 -indpendent. JLab LDRD

• Light-ion physics program with EIC has great potential, could be developed & articulated at same level as ep and eA(heavy)

- Deuteron and spectator tagging overcome main limiting factor of nuclear DIS:
 Control of nuclear configurations during high-energy process
- Intersection of low-energy nuclear structure and high-energy scattering: Need to recruit methods and expertise of nuclear structure community Workshop "Polarized light ion physics with EIC", 5-9 Feb 2018, Ghent U, Belgium [webpage]

Outlook

- ullet Expand theoretical methods for nuclear structure in high-energy scattering: EFT interactions, polarization phenomena, A>2
- Interpret results of JLab 12 GeV experiments with nuclei: Short-range correlations, EMC effect, tagged DIS Or Hen + group (MIT), M. Sargsian (FIU), M. Strikman (PSU), R. Dupre (Orsay), I. Cloet (ANL), ...
- Develop EIC science case through simulations with next-gen physics models In collaboration with JLab EIC effort and EIC Center at Stony Brook/BNL (A. Deshpande & group). Simulation tools from 2014/15 JLab LDRD project available at [webpage]