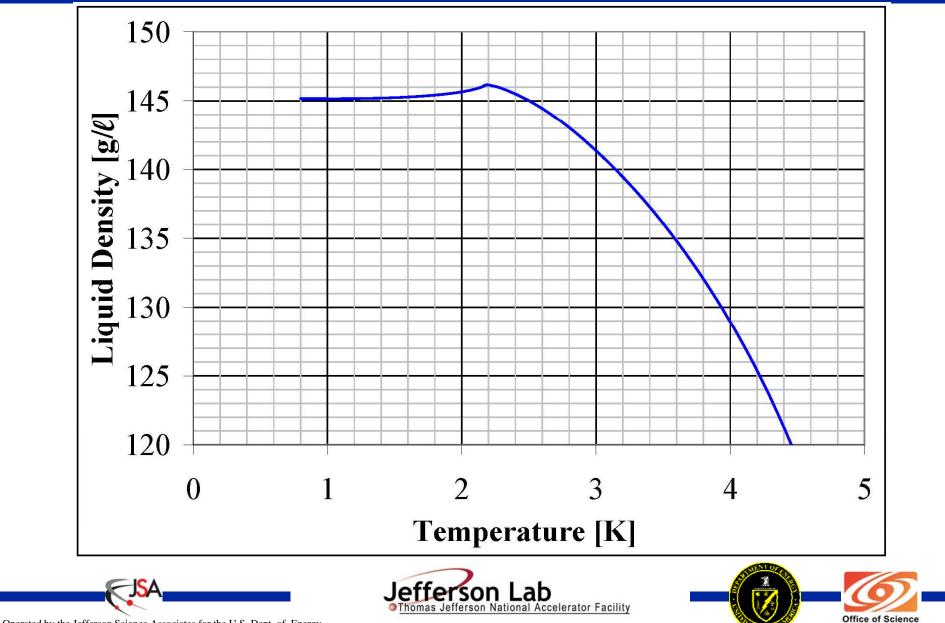
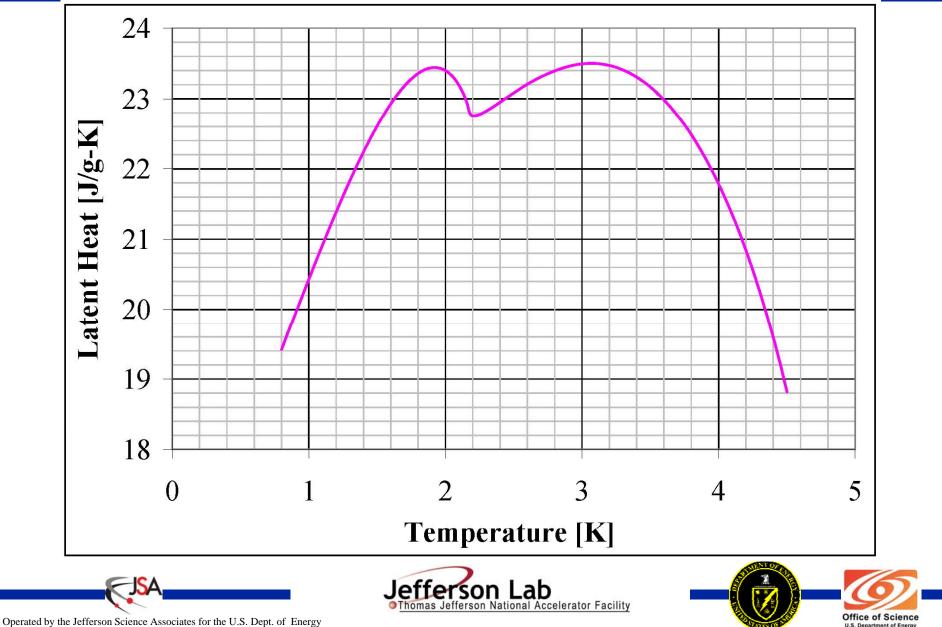
Process Study for the Design of Small Scale 2K **Refrigeration System** 40 Solid He Upper λ point (T = 1.76°K, 29.8 atm.) 30 15.8%-P(atm) 20 λ-line Liquid He I 10 Liquid He II Critical point (T = 5.20°K, 2.264 atm.) λpoint (T = 2,172°K, 0.0497 atm) 5.0 6.0 3.0 4.0 2.0 1.0 T(OK) The phase diagram of He4. P. Knudsen Cryogenics Group, 18 -1 **Engineering Division** approx 24 watts LOW PRESSURE HEAT EXCHANGER Office o efferson C **Thomas Jefferson National Accelerator Facility** cie **U.S. DEPARTMENT OF ENERGY**

Operated by the Southeastern Universities Research Association for the U.S. Department of Energy

- Normal boiling point for Helium (I) at atmospheric pressure (1 atm) is 4.22 K (known in the field as 4.5~K)
- Helium II occurs below 'Lambda' transition temperature (T_{λ}) at ~2.2 K

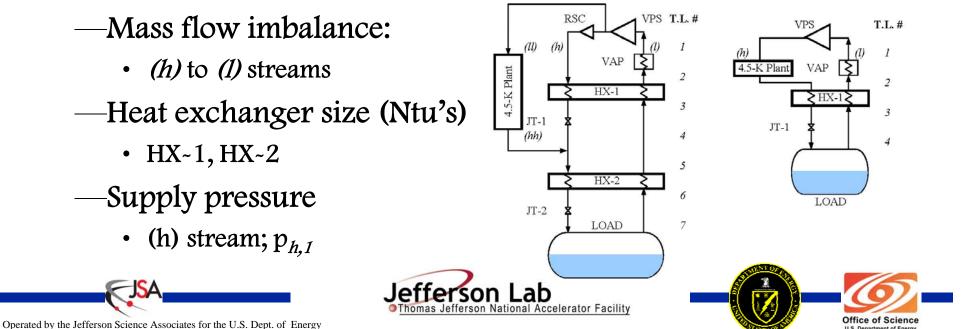

—Density ~15% greater than Helium I at 4.5~K

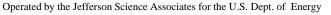
- —Two components are present
 - Normal fluid; ordinary Navier-Stokes fluid
 - Super-fluid (Helium II); has viscosity & entropy = 0
- —Below 1 K, Helium II is 99% super-fluid
- Typically super-conducting (SC) magnets and SC radiofrequency use helium at 1.8 to 2.1 K (i.e., 0.016 to 0.041 atm)



U.S. Department of Energy

- For helium refrigeration below 4.22 K (but greater than ~0.8 K), typically four methods are used;
 - —<u>Direct vacuum pumping</u> none or very minimal recovery of sub-atmospheric helium sensible refrigeration (known in the field as refrigeration recovery) (ex. Triumf e-Linac, BNL ERL)
 - —<u>Refrigeration recovery</u> using (ambient temperature) vacuum pumps (ex. SLAC, DESY TTF, JLab CTF)
 - —<u>Cryogenic centrifugal turbo-compressors</u> (known in the field as 'cold compressors') – used to compress sub-atmospheric helium to ~1 atm. in conjunction with sensible refrigeration recovery (ex. CEBAF, SNS)
 - —<u>Combination of both cold-compressors and vacuum pumps</u> (or screw compressors) in conjunction with sensible refrigeration recovery (ex. Tore-Supra, ELBE-Rossendorf, SBT CEA-Grenoble, LEP, LHC, MSU FRIB)


- OBJECTIVE: Process study centered around the development small scale (100 Watt Range) 2 Kelvin (K) Refrigerators capable of working in conjunction with a <u>commercially available</u> 4.5 K helium liquefaction system
- Major sub-systems of a small scale 2-K refrigeration system
 - —Small (2-3 g/s) commercially available 4.5-K liquefier system (also referred to as a '4.5 K plant')
 - Vacuum pumping system (VPS) commercially available (on the order of 10 g/s)
 - Positive compression system (RSC) commercially available (on the order of 10 g/s)



- 2~K CBX; consisting of:
 - —NO rotating machinery inside the refrigerator's 2K CBX; i.e., no cold compressors or expanders
- PURPOSE: Study, the effect of key 2-K CBX process parameters, that yield the best performance; i.e.,

- Practical issues key to objective but not directly coupled to process study
 - —Commercially available VPS and RSC require some mods to compensate for helium's high heat of compression these are not typically supplied or known to manufacturers
 - E.g., oil injection and oil cooler sizing
 - -Properly designed oil removal system
 - Although proper design is relatively simple, oil carry-over into CBX is an *unpublished but very common problem* (Fermi, BNL, CERN, SNS Target refrigerator, Triumf and others)

- Continued...practical issues key to objective
 - —Proper mechanical design to minimize risk of air leaks into sub-atmospheric stream
 - The use of 'guard vacuum' (as it is known in the field)
 - Proper helium mass-spectrometer leak testing during fabrication
 - Proper selection of joints and seals
 - Usefulness of oil-flooded vacuum pumps (sealing)
 - —Integrated helium purifier to remove air contamination
 - 'ppm' (parts-per-million) level of contamination will occur and be present despite best practices and design
 - Will affect the interval length between warm-ups

Design to minimize possibility of leaks and effect of leaks, but also design as if (i.e., assume) they will be there!

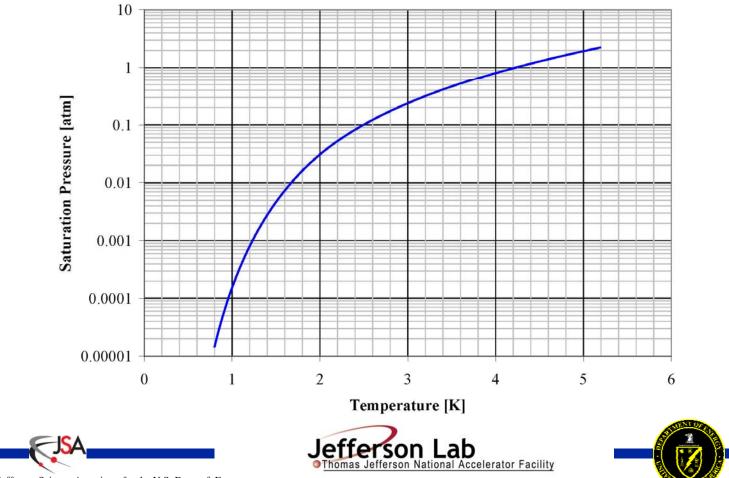
- Two comparable (recent) 2~K systems

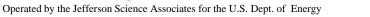
 —JLab Cryogenic Test Facility (CTF)
 —DESY TESLA Test Facility (TTF)
- 'Comparable' meaning distinct and separate:
 —4.5-K plant (supplying super-critical helium to 2-K CBX)
 - —VPS and RSC
- Only able to obtain data on JLab CTF

	JLab CTF	DESY TTF
Load Temperature	2.0 K	1.8 K
Nominal Load	180 W (9 g/s)	200 W (10 g/s)
4.5-K Plant	Koch Model 2200 588 W at 4.5 K, or 5.35 g/s 4.5 K liquefaction	Linde AG 900 W at 4.5 K and, 2 kW at 70 K
Vacuum Pumps	Kinney Lobe Blower, KMBD-8000 Kinney Liquid Ring Pump, KLRC-2100S	Leybold Lobe Blowers RA16000, RA13000, RA9001 Leybold Rotary Vane Pumps, SV1200

- Possible optimization goals
 - -Maximum overall efficiency
 - This objective seeks to minimize input power and utility consumption for a specified load
 - Typically (but not always) used for new designs
 - —Maximum system capacity
 - i.e., for the given equipment, what is the largest load that can be supported, regardless of the input power
 - Typically (but not always) used for existing equipment
- In general, other optimization goals
 - —Maximum reliability
 - —Maximum availability
 - -Minimum maintenance

- These optimizations are usually not mutually exclusive
- Usually, optimization for maximum overall efficiency results in a global optimum of the others
- For this study, will seek to maximize overall efficiency using typical realistic performance not specific to any particular manufacturer


- Process parameters
 - -Fixed process parameters
 - i.e., either constant values or fixed characteristics
 - E.g., load temperature, 4.5 K system exergetic efficiency, isothermal efficiency of VPS, heat in-leak, sub-atm stream pressure drop
 - -Varied process parameters
 - i.e., varied over a predetermined range or set of proposed configurations
 - E.g., mass flow ratio, total HX Ntu's, supply pressure
 - —Overall efficiency of 2-K system is strongly influenced by both of these types of parameters



- Fixed parameters:
 - —Load temperature for helium II
 - $T \sim ln(p)$, so $T \sim$ isothermal input power

Office of Science

- Fixed parameters...continued
 - -Overall exergetic efficiency of commercial 4.5-K liquefier system
 - This 'system' includes not only the cold box but also the compression and gas management systems.
 - Unpublished data indicated 11-13%
 - —Isothermal efficiency of VPS
 - This is a very significant usage of the total input power losses (~40%)
 - -Parasitic (non-load) heat in-leak into the process
 - Assumed 55 W, divided proportionally to each HX size
 - Maybe somewhat large but will deter from too optimistic performance

	w_L [g/s]	\mathbf{E}_L [kW]	P _T [kW]	η C [-]
GM Cryocooler	0.014	0.0952	19.5	0.5%
Linde 1600	1.97	13.6	124	10.9%
Linde 1600 (Mod)	2.10	14.5	129	11.3%
Linde 2200 (Mod)	3.92	27.1	206	13.2%
CTF (Koch 2200)	5.35	37.0	307	12.0%
CTI/Helix 1500W	11.0	76.0	807	9.4%
SSC ASST-A	34.1	235.9	1582	14.9%

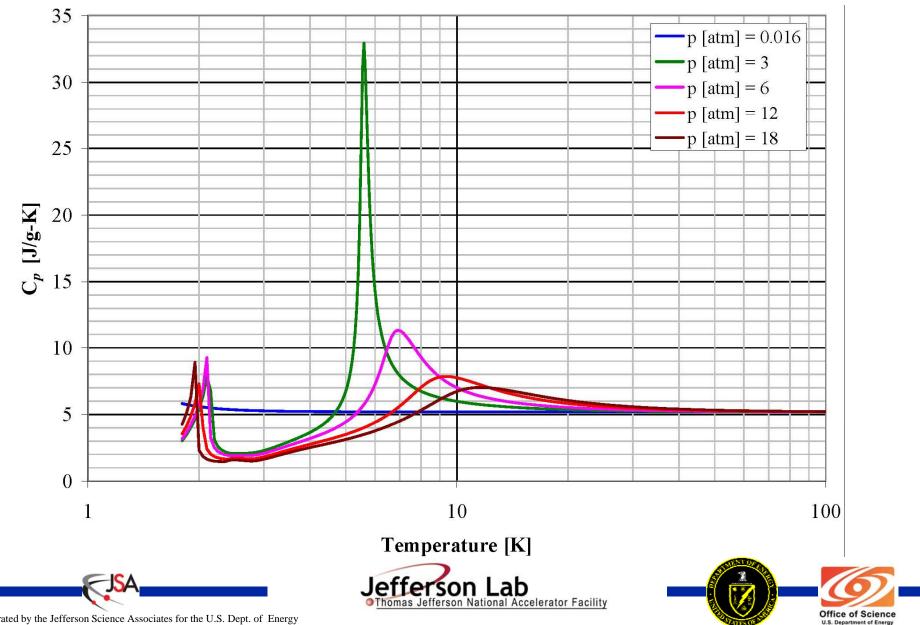
Nomenclature:

w_L - net helium liquefaction flow [g/s] $\Delta \varepsilon_L$ - specific exergy for 4.5-K liquefaction = 6.91 [kJ/g] E_L - load Carnot (reversible) input power [kW], = w_L* $\Delta \varepsilon_L$ w_{LN} - nitrogen mass flow [g/s], 1.3 [gph / (g/s)] or 4.9 [lph / (g/s)] η_{LN} - LN equivalent efficiency [-], = 35% (assumed in this study) $\Delta \varepsilon_{LN}$ - specific exergy for LN cooling, = 0.70 [kJ/g] E_{LN} - LN cooling Carnot input power [kW], = $\Delta \varepsilon_{LN}$ * w_{LN} P_{LN} - equivalent input power for LN [kW], = E_{LN} / η_{LN} P_m - total electrical power input [kW] P_T - total power input (incl. LN) [kW], = P_m + P_{LN} η_C - Carnot efficiency, = E_L / P_T

- Fixed parameters...continued
 - —Sub-atmospheric pressure drop
 - From load to VPS suction
 - Assumed proportional to HX size (Ntu's)
 - Most importantly, this affects the size of the VPS required.
 - i.e., the suction pressure is inversely proportionally to the VPS volumetric capacity requirement

- Varied process parameters
 - —(Mass) Flow ratio: ratio of high pressure helium flow to subatmospheric helium flow in the main HX
 - Varied from 40 to 100% (as solution allows)
 - Also called 'flow imbalance'
 - —Total HX Ntu's
 - Varied from 20 to 45 (inc. 5)
 - Greater than 45 not studied due to excessive sub-atmospheric pressure drop
 - Proportional to HX effective length
 - Also, for a fixed return flow, this is proportional to the HX size and total thermal rating (UA)

- Varied process parameters...continued
 - -Supply pressure to 2-K CBX (from RSC discharge)
 - Varied from 6 to 18 atm (inc. 3)
 - Determines availability (exergy) supplied to 2-K CBX and to a lesser degree the input power to the RSC


- Helium's specific heat capacity & HX's
 - —Cannot ignore very non-linear C_p [J/g-K] for both real fluid near liquid-vapor dome and for Helium II (i.e., below T_{λ})
 - Note: Helium's critical pressure and temperature is 2.245 atm & 5.195 K
 - Helium $C_p \approx 5.2 \text{ J/g-K}$ at 1 atm 300 K
 - —Process design must deal with C_p variation in the most reversible manner possible.
 - —What is the (theoretically) most reversible stream temperature difference (ΔT_{hl}) distribution in a counter flow HX?

 $\Delta T_{hl} / T = \text{constant}$ (ref. Grassmann & Kopp)

- Helium's C_p & HX's...continued
 - —Ideal ΔT_{hl} distribution is quite different from the predicted logarithmic temperature distribution for a constant stream capacity HX
 - —To deal with this, increasing HX Ntu's (i.e., effective length) will,
 - Decrease finite temperature difference losses but,
 - Increase sub-atmospheric stream pressure drop losses
 - -Fortunately in practice, HX exergetic losses are only on the order of 5% of the total equivalent input power
 - These HX losses are composed of losses due to a finite temperature difference, pressure drop and heat in-leak
 - Sub-atm pressure drop in HX's composes almost all of HX pressure drop losses, but is only ~13% of the 5% (i.e., less than 1% of total input power)

- Helium's C_p & HX's...continued
 - —So, for HX design, require
 - At least 1 meter of effective length per 10 Ntu's (for aluminum brazed HX's)
 - Sufficient cross-sectional area so that sub-atmospheric pressure drop is no more than 25% of the load saturation pressure

- Model component characterizations •
 - -Fluid properties: HePak (v3.4) for helium and GasPak (v3.30) for nitrogen
 - -4.5-K liquefaction system exergetic efficiency
 - Large liquefiers $\sim 25\%$ (i.e., 100's g/s)
 - For liquefier systems producing 2~3 g/s, the study will assume 10% (except where liquid nitrogen pre-cooling is employed for the 2-K CBX, where it will be 11%)

<u>Note</u>: The performance of the 2 K system is primarily dependent on the 4.5 K system exergetic efficiency!

• Assume supply is super-critical (SC) helium at 3 atm and 4.5 K (i.e., close to liquid enthalpy for easy of flow distribution)

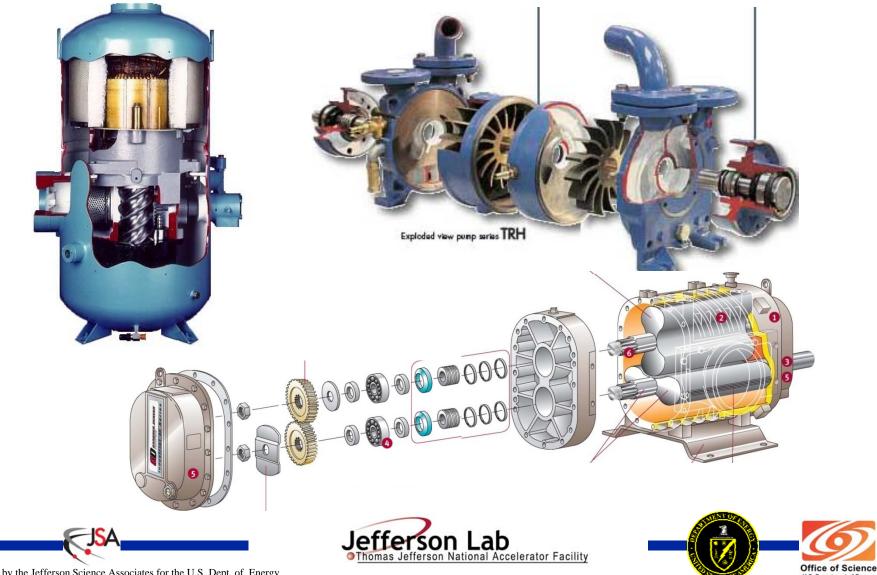
Note: Many small systems do not use SC helium supply, but rather sub~ cooled liquid. This must be examined carefully since two phase flow is possible.

Model component characterizations

- Model component characterizations...cont.
 - —Vacuum pumping system (VPS)
 - Typically consists of (one or several) roots (lobe) blower(s) and either a liquid ring type pump(s) or a rotary vane type pump(s)
 - Isothermal efficiency (η_{iso}) is proportional the logarithm of the pressure ratio; but this is essential constant
 - Based upon JLab's CTF VPS, use $\eta_{iso} = 14.5\%$
 - HX pressure drop for sub-atm stream can contribute significantly to both the displacement (size) required for the VPS and the isothermal efficiency (due to an increased pressure ratio)

-Compression system

- Typically an oil-flooded rotary screw compressor (RSC)
- Isothermal efficiency is primarily a function of the pressure ratio (for a given stage type and built-in-volume ratio)
- From published data, use a linear characterization,

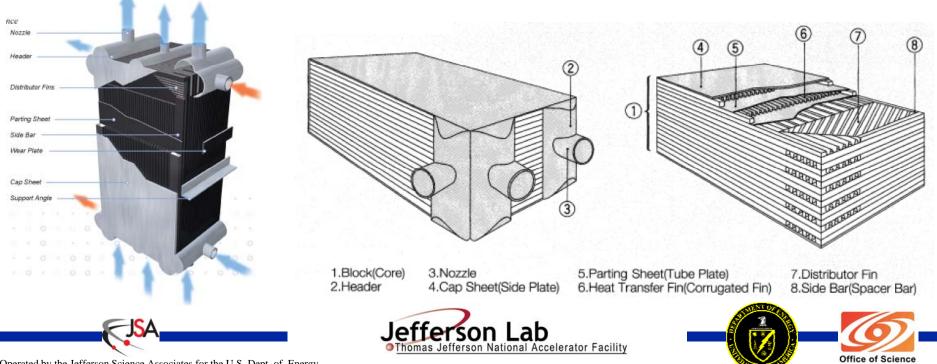

 $\eta_{iso} = 0.6 - 0.0177 \cdot (p_{r,c} - 3)$, valid from 3~18 atm

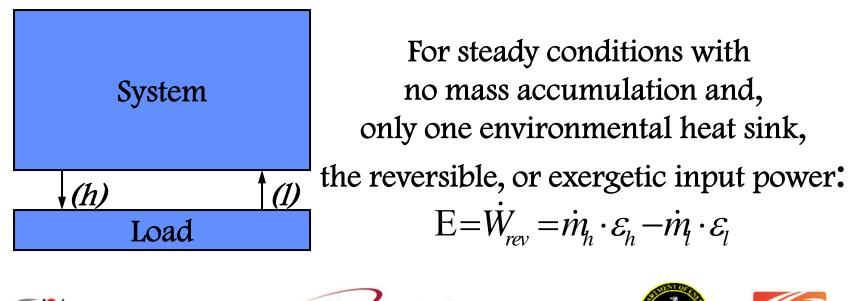
Model component characterizations...cont. ullet

- Heat exchangers
 - -For sub-atmospheric pressure drop use,

 $\Delta p_I[atm] = (2x10^{-4}) \cdot Ntu$

i.e., $\Delta p_1 = 0.004$ to 0.009 atm for 20 to 45 Ntu's


- —For (UA) and Ntu calculations, use integrated cooling curve since constant (or average) stream capacity is grossly inaccurate
 - i.e., methodology is to sub-divide HX into sufficiently small temperature spans so that constant stream capacity assumption becomes sufficiently precise
 - It is important to preserve sub-division and overall energy balance



- Heat exchangers...continued
 - -Calculation of HX thermal effectiveness is more involved since the minimum stream temperature difference (i.e., 'pinch') may not occur at the ends
 - —The condition where the 'pinch'=0 is then the maximum heat transfer possible

Operated by the Jefferson Science Associates for the U.S. Dept. of Energy $% \label{eq:constraint}$

- Exergy & Its Usage
 - -Useful in quantifying how input power is utilized in the process
 - —Specific physical exergy, $\varepsilon = h T_o^* s$
 - $T_o = 300$ K (reference temperature of zero availability)
 - —Example;

- Measures of Process Performance
 - -Exergetic efficiency (η_{O})
 - Also known as efficiency as compared to Carnot, or (abbreviated) just 'Carnot' efficiency
 - Ratio of reversible input power required by load to actual total input power
 - For cases involving LN pre-cooling, need to account for cooling provided by this utility
 - Equivalent input power is reversible input power divided by LN system Carnot efficiency
 - For this study assume $\eta_{C,LN} = 35\%$
 - Add equivalent input power of LN pre-cooling to input power to obtain total equivalent input power

• Measures of Process Performance...continued

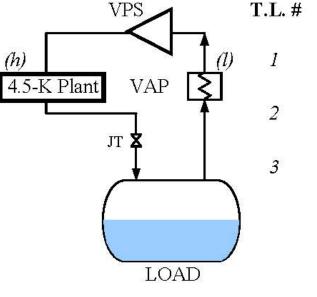
—Inverse of Coefficient of Performance (COP_{INV})

- Two types used
- <u>*Real*</u> COP_{*INV*} ratio of total (equivalent) input power to the heat into Helium II bath (or 'heat load')

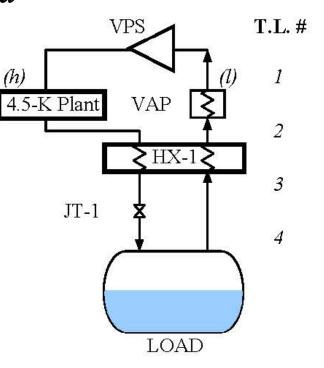
$$COP_{INV} = \frac{P_{tot}}{q_L}$$

• <u>Ideal</u> COP_{INV} – ratio of reversible input power required by CBX & load (i.e., the availability given to the CBX) to the heat into the Helium II bath

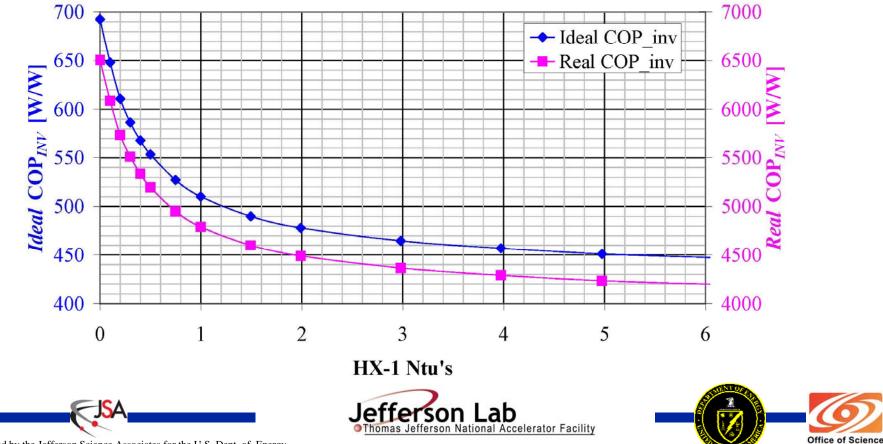
$$COP_{INV} = \frac{E_{cbx}}{q_L}$$


- Measures of Process Performance...continued
 - -Real & Ideal COP_{INV} useful in examining loss effects between active and passive components
 - —Key independent process parameters (flow ratio, total HX Ntu's and 2-K CBX supply pressure) will be studied with respect to these COP_{INV} 's.
 - -Consistency of interface locations and process conditions between 4.5-K liquefier and 2-K CBX important so comparing performance parameters is meaningful
 - 3 atm, 4.5 K supply to 2~K CBX
 - Either 1.05 atm, 300 K or 1.2 atm, 79.4 K from 2~K system to 4.5~K liquefier system

- Direct Vacuum Pumping
 - —This is a very commonly used method
 - Useful for 2-K loads less than 50 W and for short or very infrequent testing programs
 - —No or very little sensible recovery of load refrigeration; subatmospheric return flow is warm to ambient temperature using ambient air heat exchanger ('VAP') VPS T.L. #
 - —For 4.5-K plant with $\eta_c = 10\%$,
 - $-Ideal \operatorname{COP}_{INV} \sim 700 \mathrm{W/W}$
 - $-RealCOP_{INV} \sim 6500 \text{ W/W}$



- Direct Vacuum Pumping...continued
 - —If a small HX is introduced to recovery a portion of the highly valuable subatmospheric stream refrigeration [] between 2 and 4.5 K...
 - —Reduces COP_{INV} 's by ~30% for 2 Ntu's
 - —Reduces COP_{INV} 's by ~35% for 6 Ntu's



• Direct Vacuum Pumping...continued

—At 6 Ntu's

- Ideal $COP_{INV} \sim 450 \text{ W/W}$
- *Real* COP_{*INV*}~4200 W/W

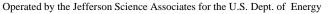
Operated by the Jefferson Science Associates for the U.S. Dept. of Energy $% \label{eq:constraint}$

- Direct vacuum pumping result provides an upper limit (worst case) on COP_{INV} values to expect from process configurations to be studied
- As a lower limit (best case) on expected COP_{INV} values, performance of large 2-K systems using cold-compressors is ~900 W/W (for *real* process) for 4.5-K plant with $\eta_c = 25\%$

<u>Note</u>: Using cold-compressors with small 4.5-K systems (say, $\eta_c \sim 10\%$) may NOT be more efficient than a properly designed 2 K refrigeration recovery system.

- Comparable 2~K systems JLab CTF —Real COP_{INV}~3400 W/W
- In summary, for process configurations to be studied, real COP_{INV} should be,
 - —Much less than 4200 W/W
 - —Probably less than 3400 W/W
 - -Greater than 900 W/W

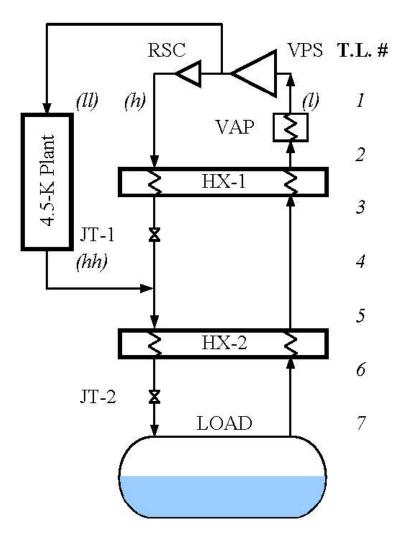
Joad	
Temperature	2.09 [K]
Pressure	0.040 [atm]
Heat Load	140 [W]
Mass flow	9.0 [g/s]
Effective latent heat	15.5 [J/g]
Exergy	24.5 [kW]

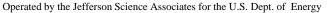

4.5-K L	iquefier System	
Compre.	SSOFS	
	Input power	270 [kW]
LN Syste	em	
	Mass flow	6.8 [g/s]
	Carnot efficiency	35.0% [-]
	Equivalent input power	13.4 [kW]
Sub-Tot	al	284 [kW]

Vacuum Pumping System	
Pressure ratio	42.8 [-]
Isothermal efficiency	14.2% [-]
Input power	149 [kW]

2-K Compressor System	
Pressure ratio	13.8 [-]
Isothermal efficiency	38.0% [-]
Input power	38.9 [kW]

rall 2-K System						
Total input power	472 [kW]					
$\operatorname{COP}_{\mathit{INV}}$	3368 [W/W]					
Carnot efficiency	5.2% [-]					


- Process model simulation
 - -Common parameters for each process configuration studied
 - Load temperature of 2 K (i.e., 0.0310 atm saturation pressure)
 - High pressure stream total pressure drop of 0.35 atm (distributed proportionally to HX Ntu's)
 - 2-K system compressor suction pressure of 1.05 atm
 - 2-K system compressor suction/discharge and vacuum pumping system discharge temperature of 300 K
 - 2~K system compressor and vacuum pumping system motor efficiency of 90%
 - Coldest HX size of 5 Ntu's (except for C2~B)
 - LN pre-cooling system Carnot efficiency of 35% (for C2-B)
 - 4.5-K liquefier system Carnot efficiency of 10% (except C2-B which is 11%) and supply to 2-K CBX of 3 atm 4.5 K
 - Total return flow (from 2-K load) of 12 g/s (to be consistent)



- Configuration C2-A
 - Refrigeration of subatmospheric (1) flow from 2-K load recovered to nearly 300 K using HX-1 & HX-2; then warmed to 300 K using ambient vaporizer (VAP)
 - -Vacuum pumping system (VPS) compresses to slightly positive pressure of 1.05 atm, where a portion (the make-up) is diverted to the 4.5-K plant {i.e., *(II)* stream}

- Configuration C2-A...continued
 - -Recall that 4.5~K plant (i.e., commercial 4.5~K liquefier system) has its own compressor system
 - —Flow is compressed by the 2-K compressor system (RSC) to high pressure and fed to 2-K cold box HX-1 {as stream (h) } at a supply pressure of $p_{h,1}$
 - -HX-1 is imbalanced; the flow ratio (ξ_{hl}) is the ratio between the (h) to (l) stream mass flow rates
 - The *(h)* stream pressure is dropped across the throttling (or Joule-Thompson, 'JT') valve JT-1, then mixed with the 3 atm 4.5K make-up flow from the 4.5-K plant
 - -HX-2 is a balanced HX (with 5 Ntu's) operating between approx. 4.5 and 2 K
 - —Finally JT-2 drops the ~3 atm supply to the load pressure of 0.031 atm, resulting in a two-phase supply into the Helium II bath
 - —The 2-K heat load (q_I) boils-off the helium II...and the entire cycle repeats

Ambient temperature (T₀)

9 LK

[W]

Calc.

T1,5 [K]

Ec.ise

[kW]

E4K

[kW]

3.94

28.6

14.2

17.9

-5.4E-09

48.1

6.9

55

(UA)

W/K

1855.7

191.0

161

Set Ntu's

2046.7

HX-1

35.00

1.62-03

niso

[-]

¶G4K

[-]

10.0%

14.5%

45.1%

Ntu

[-]

35.06

4.94

2.58

39.99

5.00

-1.3E-02

Pc

[kW]

197.1

31.6

HX-2

Configuration C2-A (example)...continued •

C2-A

78.0%

 ΔT_{LM}

[K]

7.90

0.66

23.58

qL.

[W]

p,

[-]

45.7

11.4

243.4

q

[kW]

14.665

0.126

3.787

14.79

Ts

[K]

300.0

300.0

 $\Delta T_{hl,CE}$

[K]

x

[-]

PD.

[atm]

1.05

12.00

13.3%

0.52

0.14

65.77

2-K Refrigeration Recovery Process Study

Flow ratio to HX-1: $\xi_{hl,2} = w_{h,1} / w_{L1}$

 Δp_l

[atm]

0.0066

0.0009

0.0005

0.0080

Рсм

[atm]

0

[CFM]

P4K, sup

[atm]

3.00

6799

0.0310

 $\Delta T_{hl,WE}$

[K]

TL

[K]

Ps

[atm]

T_{4Ksup}

[K]

0.0230

1.05

4.50

2.00

60.77

1.09

5.00

 Δp_h

[atm]

0.306

0.044

0.350

WJT2

[g/s]

Wc

[g/s]

W4K, sup

[g/s]

2.64

12.00

9.36

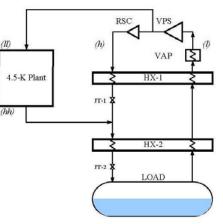
12.00

HX-1

HX-2

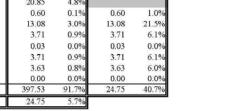
Vap

Totals:


Load

VPS

RSC


4.5-K Plan

		(h) Stream			(l) Stream						
T.L. #	T [K]	p [atm]	h [J/g]	s [kJ/g]	w [g/s]	T [K]	p [atm]	h [J/g]	s [kJ/g]	w [g/s]	T.L. #	
1	300.00	12.00	1577.12	1.552	9.36	300.00	0.0230	1573.20	-2.351	12.00	1	
2	300.00	12.00	1577.12	1.552	9.36	239.23	0.0235	1257.61	-2.301	12.00	2	
3	4.45	11.69	15.53	6.997	9.36	3.94	0.0301	35.56	3.036	12.00	3	
4	5.13	3.00	15.53	6.601	9.36	3.94	0.0301	35.56	3.036	12.00	4	
5	5.02	3.00	14.71	6.648	12.00	3.94	0.0301	35.56	3.036	12.00	5	
6	2.15	2.96	4.76	7.457	12.00	2.00	0.0310	25.05	4.154	12.00	6	
7	2.00	0.0310	4.76	7.154	12.00	2.001283	0.0310	25.05	4.154	12.00	7	
		()	h) Stream				(ll) Stream				
4	4.50	3.00	11.79	6.829	2.64	300.00	1.05	1573.54	0.030	2.64	1	

		Exergy Usage						
	Total Proc	cess (tp)	Cold Bo	x (cb)				
COPINV	178	1	250	0				
	[kW]	Frac.	[kW]	Frac.				
	Input Exe	rgy (P)	Input Exe	rgy (E)				
4.5-K Plant	179.5	41.4%	17.9	29.5%				
VPS	219.0	50.5%	28.6	47.0%				
RSC	35.1	8.1%	14.2	23.4%				
Input Tot.	433.54	100.0%	60.76	100.0%				
	Ot	utput/Usefu	l Exergy (E))				
Load	36.01	8.3%	36.01	59.3%				
	Outp	out/Non-Use	ful Exergy	(I)				
4.5-K Plant	161.52	37.3%						
VPS	190.41	43.9%						
RSC	20.85	4.8%						
Vap	0.60	0.1%	0.60	1.0%				
HX-1	13.08	3.0%	13.08	21.5%				
HX-2	3.71	0.9%	3.71	6.1%				
Mixing	0.03	0.0%	0.03	0.0%				
JT-1	3.71	0.9%	3.71	6.1%				
JT-2	3.63	0.8%	3.63	6.0%				
Calc. Err.	0.00	0.0%	0.00	0.0%				
Non-Useful	397.53	91.7%	24.75	40.7%				
A LL ODM	01.75	5.50/						

305 [K]

8

[-]

Niter

 η_m

[-]

90.0%

90.0%

50

λ

 \mathbf{P}_m

[kW]

P4K

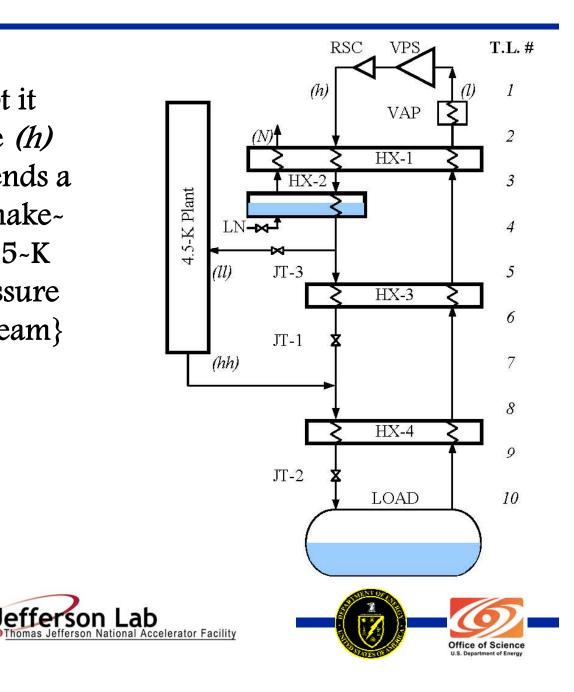
[kW]

179.5

219.0

35.1

1.3


99.9%

93.0%

Configuration C2-A-p

 Similar to C2-A, except it uses LN to pre-cool the (h) stream to 80 K, then sends a portion (equal to the make-up flow) back to the 4.5-K plant at a reduced pressure of 1.2 atm {i.e., (ll) stream} through JT-3

- Configuration C2-A-p...continued
 - —Need for JT-3 is a practical consequence of matching operating pressures between 4.5-K plant and 2-K system
 - —Carnot efficiency of 4.5-K plant is increased by ~1% (from 10% to 11%) as a result of the cooling provided by the 80-K flow from the 2-K CBX
 - —So, from HX-3 downward, this configuration looks just like C2-A
 - —Note that at some lower flow ratio (in HX-3) the use of LN would not be necessary; so, this configuration's performance below this point was not studied

• Configuration C2-A-p (example)...continued

			(N) Stream		ŝ		(h) Stream				(f) Stream			
T.L.	Т	р	h	8	w	Т	р	h	8	w	т	р	h	8	w	T.L.
#	[K]	[atm]	[J/g]	[kJ/g]	[g/s]	[K]	[atm]	[J/g]	[kJ/g]	[g/s]	[K]	[atm]	[J/g]	[kJ/g]	[g/s]	#
1						300.00	12.00	1577.12	1.552	12.00	300.00	0.0237	1573.20	-2.334	12.00	1
2	260.00	1.00	269.80	6.163	4.64	300.00	12.00	1577.12	1.552	12.00	260.00	0.0241	1365.48	-2.308	12.00	2
~				01100									1000110			-
3	78.89	1.20	77.86	6.370	4.64	91.96	11.94	496.11	2.312	12.00	65.98	0.0253	357.94	-1.148	12.00	3
	And the second se															
4	91.34	4.00	-92.67	6.856	4.64	79.39	11.92	430.56	2.474	12.00	65.98	0.0253	357.94	-1.148	12.00	4
5	79.91	1.20	(II) Stream 430.56	1.032	2.76	79.39	11.92	430.56	2.474	9.24	65.98	0.0253	357.94	-1.148	12.00	5
2	79.91	1.20	450.50	1.052	2.70	19.39	11.92	450.50	2.4/4	9.24	05.90	0.0235	357.94	-1.140	12.00	2
6						4.92	11.69	17.06	6.900	9.24	4.15	0.0301	36.65	2.956	12.00	6
		(hh) Stream			-8.4E-07										
7	4.50	3.00	11.79	6.829	2.76	5.30	3.00	17.06	6.514	9.24	4.15	0.0301	36.65	2.956	12.00	7
8						6.17	2.00	10.00	6.600	12.00	4.10	0.0201	2000	2.000	12.00	0
0						5.17	3.00	15.85	6.582	12.00	4.15	0.0301	36.65	2.956	12.00	8
9						2.15	2.96	4.82	7.448	12.00	2.00	0.0310	25.05	4.154	12.00	9
10						2.00	0.0310	4.82	7.145	12.00	2.00	0.0310	25.05	4.154	12.00	10
v ratio	to HX-3: 2	$\xi_{hl,5} = w_{h,5}$		77.0%		1	Ambient ter	mperature	(T ₀)	305 [K]	1	EX-2 Neede	_	TRUE Set	Error
w ratio	Δp _h	Δp	ΔT _{hL,HE}	ΔT _{hi,CE}	ΔT _{LM}	q	q _{LK}	(UA)	Ntu	ε	к]	5	et Total N	tu's	Set 40.00	
w ratio					ΔT _{LM} [K] 32.43							5		tu's	Set	<i>Error</i> 3.5E-01 -1.1E-02
	Δp _h [atm]	Δp _i [atm]	ΔT _{AL HE} [K]	∆T _{ALCE} [K]	[K]	<i>q</i> [kW]	9_LK [W]	(UA) [W/K]	Ntu [-]	£ [-]	1	5	Set Total No.	tu's tu's tu's	Set 40.00 25.32	3.5E-03
-1(<i>h</i>)	Δp _h [atm] 0.056	Δp _f [atm] 0.0012	ΔT _{AL HE} [K] 40.00	ΔT _{ALCE} [K] 25.97	[K] 32.43	q [kW] 12.090	9LR [W] 8.1	(UA) [W/K] 372.8	Ntu [-] 6.41	£ [-] 82.9%	4	5 5 6	Set Total N Set HX-3 N Set HX-4 N	tu's [tu's [tu's [[K]	Set 40.00 25.32 5.00	3.5E-03 -1.1E-02
-1(<i>h</i>) -1(<i>N</i>) -2 -3	Δp _h [atm] 0.056 (10) ► 0.029 0.222	Δp; [atm] 0.0012 0.20 0.0048	ΔT _{hξ,HE} [K] 40.00 40.00 13.06 13.41	ΔT _{MCE} [K] 25.97 13.06 0.50 0.78	[K] 32.43 25.25 3.85 2.80	q [kW] 12.090 0.890 0.791 3.856	<i>q_{LK}</i> [W] 8.1 0.8 4.5 34.8	(UA) [W/K] 372.8 35.3 205.6 1378.4	Ntu [-] 6.41 8.24 3.26 25.41	E [-] 82.996 82.296 96.296 99.496		5 5 5 6 6 6 7 7 6 7 7 7 7 7 7 7 7 7 7 7	Set Total Ni Set HX-3 N Set HX-4 N Calc. $\Delta T_{h_{L},S}$ Calc. T_{LS} [F & (for $\Delta T_{h_{L},S}$	[tu's [tu's [tu's [[K] G]	Set 40.00 25.32 5.00 13.41 65.98 0.8	3.5E-03 -1.1E-02 1.6E-07
-1(h) -1(N) -2 -3 -4	Δp _h [atm] 0.056 (20) ► 0.029	Δp; [atm] 0.0012 0.20 0.0048 0.0009	ΔT _{hL,WE} [K] 40.00 40.00 13.06 13.41 1.03	ΔT _{ALCE} [K] 25.97 13.06 0.50 0.78 0.15	[K] 32.43 25.25 3.85 2.80 0.73	q [kW] 12.090 0.890 0.791 3.856 0.139	<i>q</i> _{LR} [W] 8.1 0.8 4.5	(UA) [W/K] 372.8 35.3 205.6 1378.4 191.9	Ntu [-] 6.41 8.24 3.26 25.41 4.95	€ [-] 82.9%6 ¥ 82.2%6 ¥ 96.2%6 ¥		5 5 5 6 6 6 7 6 6 7 6 6 7 6 6 7 6 7 6 7	Set Total Ni Set HX-3 N Set HX-4 N Calc. $\Delta T_{hL,S}$ Calc. T_{LS} [F L (for ΔT_{hL} ; Calc. T_{LS} [F	[tu's [tu's [tu's [[K] G]	Set 40.00 25.32 5.00 13.41 65.98 0.8 4.15	3.5E-03 -1.1E-02 1.6E-07
-1(h) -1(N) -2 -3 -4	Δp _A [atm] 0.056 (2) = 0.029 0.222 0.044	Δ p r [atm] 0.0012 0.20 0.0048 0.0009 0.0004	ΔT _{hξ,HE} [K] 40.00 40.00 13.06 13.41	ΔT _{MCE} [K] 25.97 13.06 0.50 0.78	[K] 32.43 25.25 3.85 2.80	q [kW] 12.090 0.890 0.791 3.856 0.139 2.493	4 LR [W] 8.1 0.8 4.5 34.8 6.9	(UA) [W/K] 372.8 35.3 205.6 1378.4 191.9 137	Ntu [-] 6.41 8.24 3.26 25.41 4.95 2.20	E [-] 82.996 82.296 96.296 99.496			Set Total No Set HX-3 N Set HX-4 N Calc. ΔT_{hLS} Calc. T_{LS} [F L (for ΔT_{hLS}) Calc. T_{LS} [F L (for T_{LS})	[tu's [tu's [tu's [[K] G]	Set 40.00 25.32 5.00 13.41 65.98 0.8 4.15 1.4	3.5E-01 -1.1E-02 1.6E-07 -3.2E-08
-1(h) -1(N) -2 -3 -4	Δp _h [atm] 0.056 (10) ► 0.029 0.222	Δp; [atm] 0.0012 0.20 0.0048 0.0009	ΔT _{hL,WE} [K] 40.00 40.00 13.06 13.41 1.03	ΔT _{ALCE} [K] 25.97 13.06 0.50 0.78 0.15	[K] 32.43 25.25 3.85 2.80 0.73	q [kW] 12.090 0.890 0.791 3.856 0.139	<i>q_{LK}</i> [W] 8.1 0.8 4.5 34.8	(UA) [W/K] 372.8 35.3 205.6 1378.4 191.9	Ntu [-] 6.41 8.24 3.26 25.41 4.95	E [-] 82.996 82.296 96.296 99.496			Set Total No Set HX-3 N Set HX-4 N Calc. ΔT_{hLS} Calc. T_{LS} [F L (for ΔT_{hLS}) Calc. T_{LS} [F L (for T_{LS}) Nur	μu's [tu's [tu's [[K] q q q q	Set 40.00 25.32 5.00 13.41 65.98 0.8 4.15 1.4 70	3.5E-01 -1.1E-02 1.6E-07 -3.2E-08
-1(h) -1(N) -2 -3 -4	Δp _A [atm] 0.056 (2) = 0.029 0.222 0.044	Δ p r [atm] 0.0012 0.20 0.0048 0.0009 0.0004	ΔT _{hL,WE} [K] 40.00 40.00 13.06 13.41 1.03	ΔT _{ALCE} [K] 25.97 13.06 0.50 0.78 0.15	[K] 32.43 25.25 3.85 2.80 0.73	q [kW] 12.090 0.890 0.791 3.856 0.139 2.493	4 LR [W] 8.1 0.8 4.5 34.8 6.9	(UA) [W/K] 372.8 35.3 205.6 1378.4 191.9 137	Ntu [-] 6.41 8.24 3.26 25.41 4.95 2.20	E [-] 82.996 82.296 96.296 99.496			Set Total No Set HX-3 N Set HX-4 N Calc. ΔT_{hLS} Calc. T_{LS} [F L (for ΔT_{hLS}) Calc. T_{LS} [F L (for T_{LS})	μu's [tu's [tu's [[K] q q q q	Set 40.00 25.32 5.00 13.41 65.98 0.8 4.15 1.4	3.5E-01 -1.1E-02 1.6E-07 -3.2E-08
-1(h) -1(N) -2 -3 -4	Δp _A [atm] 0.056 (2) = 0.029 0.222 0.044	Δ p r [atm] 0.0012 0.20 0.0048 0.0009 0.0004	ΔT _{hL,WE} [K] 40.00 40.00 13.06 13.41 1.03	ΔT _{ALCE} [K] 25.97 13.06 0.50 0.78 0.15	[K] 32.43 25.25 3.85 2.80 0.73	q [kW] 12.090 0.890 0.791 3.856 0.139 2.493 17.77	4 LR [W] 8.1 0.8 4.5 34.8 6.9	(UA) [W/K] 372.8 35.3 205.6 1378.4 191.9 137 2184.0	Ntu [-] 6.41 8.24 3.26 25.41 4.95 2.20 40.03	E [-] 82.996 82.296 96.296 99.496			Set Total No Set HX-3 N Set HX-4 N Calc. ΔT_{hLS} Calc. T_{LS} [F L (for ΔT_{hLS}) Calc. T_{LS} [F L (for T_{LS}) Nur	μu's [tu's [tu's [[K] q q q q	Set 40.00 25.32 5.00 13.41 65.98 0.8 4.15 1.4 70	3.5E-01 -1.1E-02 1.6E-07 -3.2E-08
-1(h) -1(N) -2 -3 -4	Δp _a [atm] 0.056 (20) ► 0.029 0.222 0.044 0.350	Δp ₁ [atm] 0.0012 0.20 0.0048 0.0009 0.0004 0.00073	ΔT _{at,WE} [K] 40.00 40.00 13.06 13.41 1.03 5.00	ΔT _{ALCE} [K] 25.97 13.06 0.50 0.78 0.15 45.00	[K] 32.43 25.25 3.85 2.80 0.73 18.20	q [kW] 12.090 0.890 0.791 3.856 0.139 2.493 17.77	4 LR [W] 8.1 0.8 4.5 34.8 6.9 55.0	(UA) [W/K] 372.8 35.3 205.6 1378.4 191.9 137 2184.0 1(h) - HX-	Ntu [-] 6.41 8.24 3.26 25.41 4.95 2.20 40.03	E 82.996 × 82.296 × 96.296 × 99.496 × 93.296 ×			Set Total No Set HX-3 N Set HX-4 N Calc. ΔT_{hLS} Calc. T_{LS} [F L (for ΔT_{hLS}) Calc. T_{LS} [F L (for T_{LS}) Nur	μu's [tu's [tu's [[K] q q q q	Set 40.00 25.32 5.00 13.41 65.98 0.8 4.15 1.4 70	3.5E-01 -1.1E-02 1.6E-07 -3.2E-08
-1(h) -1(N) -2 -3 -4	Δp _h [atm] 0.056 (20) = 0.222 0.044 0.350	Δp; [atm] 0.0012 0.20 0.00048 0.0009 0.0004 0.00073 P	ΔT _{ALWE} [K] 40.00 40.00 13.06 13.41 1.03 5.00	ΔT _{hi} _{CE} [K] 25.97 13.06 0.50 0.78 0.15 45.00	[K] 32.43 25.25 3.85 2.80 0.73 18.20 4	q [kW] 12.090 0.890 0.791 3.856 0.139 2.493 17.77	<i>q</i> LR [W] 8.1 0.8 4.5 34.8 6.9 55.0	(UA) [W/K] 372.8 35.3 205.6 1378.4 191.9 137 2184.0 1(h) - HX quality, x _N	Ntu [-] 6.41 8.24 3.26 25.41 4.95 2.20 40.03 ((N))}	€ [-] 82,9% ↓ 96,2% ↓ 99,4% ↓ 93,2% ↓ 1.8E+00 [-]		Set Total No Set HX-3 N Set HX-4 N Calc. ΔT_{hLS} Calc. T_{LS} [F L (for ΔT_{hLS}) Calc. T_{LS} [F L (for T_{LS}) Nur	μu's [tu's [tu's [[K] q q q q	Set 40.00 25.32 5.00 13.41 65.98 0.8 4.15 1.4 70	3.5E-01 -1.1E-02 1.6E-07 -3.2E-08
-1(h) -1(N) -2 -3 -4 als:	Δp _h [atm] 0.056 (1/) ► 0.029 0.222 0.044 0.350 0.350	Δp _f [atm] 0.0012 0.0048 0.0009 0.0004 0.00073 0.0004 0.0073	ΔT _{41,172} [K] 40,00 13,06 13,41 1.03 5,00 T [K] 2,00	ΔT _{MCE} [K] 25.97 13.06 0.50 0.15 45.00 x [-] 13.6%	[K] 32.43 25.25 3.85 2.80 0.73 18.20 [W] 242.7	<i>q</i> [kW] 12.090 0.890 0.791 3.856 0.139 2.493 17.77	<i>LR</i> [W] 8.1 0.8 4.5 34.8 6.9 55.0 Ntu's (HX-1 HX-2 LN ₂ o HX-2 LN ₂ o HX-1 heliun	(UA) [W/K] 372.8 35.3 205.6 1378.4 191.9 137 2184.0 1(h) - HX- quality, x _N m bypass, s	Ntu [-] 6.41 8.24 3.26 25.41 4.95 2.20 40.03 40.03 ((N))} ((N))	E [-] 82.9% ¥ 96.2% ¥ 99.4% ¥ 93.2% ¥ 1.8E+00 13.3% [0.82]	-] -] g/s]		Set Total No Set HX-3 N Set HX-4 N Calc. ΔT_{hLS} Calc. T_{LS} [F 4 (for ΔT_{hLS}) Calc. T_{LS} [F 4 (for T_{LS}) Num	μu's [tu's [tu's [[K] q q q q	Set 40.00 25.32 5.00 13.41 65.98 0.8 4.15 1.4 70	3.5E-01 -1.1E-02 1.6E-07 -3.2E-08
-1(h) -1(N) -2 -3 -4 als:	Δp _λ [atm] 0.056 (20) 0.029 0.222 0.044 0.350 W ₂₇ [g's] 1.2.00 W _c	Δp; [atm] 0.0012 0.20 0.0048 0.0009 0.0004 0.0073 P [atm] 0.0310 Q	ΔT _{41,H2} [K] 40.00 40.00 13.06 13.41 1.43 5.00 T [K] 2.00 P ₂	ΔT _{ALCE} [K] 25.97 13.06 0.50 0.78 0.15 45.00 x [-] 13.6%	[K] 32.43 25.25 3.85 2.80 0.73 18.20	q [kW] 12.090 0.890 0.791 3.856 0.139 2.493 17.77 1 1 1 1 1 1 1 1 1 1 1 1 1	<i>q_{LX}</i> [W] 8.1 0.8 4.5 34.8 6.9 55.0 Ntu's {HX-1 HX-2 LN ₂ 0 HX-1 helium E _{ciso}	(UA) [W/K] 372.8 35.3 205.6 1378.4 191.9 137 2184.0 1(h) - HX- quality, x _H m bypass, s η_{wo}	Ntu [-] 6.41 8.24 3.26 25.41 4.95 2.20 40.03 ((N)) [(N)] P _c [Е [-] 82.9% × 82.2% × 96.2% × 93.2% × 93.2% × 1.8E+00 [1.3.3% [0.82]	-] -] g/s] Pm		Set Total No Set HX-3 N Set HX-4 N Calc. ΔT_{hLS} Calc. T_{LS} [F 4 (for ΔT_{hLS}) Calc. T_{LS} [F 4 (for T_{LS}) Num	μu's [tu's [tu's [[K] q q q q	Set 40.00 25.32 5.00 13.41 65.98 0.8 4.15 1.4 70	3.5E-01 -1.1E-02 1.6E-07 -3.2E-08
-1(h) -1(N) -2 -3 -4 als:	Δp _λ [atm] 0.056 (1/) ► 0.029 0.222 0.044 0.350 0.350	Δp _f [atm] 0.0012 0.0048 0.0009 0.0004 0.00073 0.0004 0.0073	ΔT _{41,172} [K] 40,00 13,06 13,41 1.03 5,00 T [K] 2,00	ΔT _{4ζCE} [K] 25.97 13.06 0.78 0.15 45.00 x [-] 13.6% PD [atm]	[K] 32.43 25.25 3.85 2.80 0.73 18.20	<i>q</i> [kW] 12.090 0.890 0.791 3.856 0.139 2.493 17.77	<i>LR</i> [W] 8.1 0.8 4.5 34.8 6.9 55.0 Ntu's (HX-1 HX-2 LN ₂ o HX-2 LN ₂ o HX-1 heliun	(UA) [W/K] 372.8 35.3 205.6 1378.4 191.9 137 2184.0 1(h) - HX- quality, x _N m bypass, s	Ntu [-] 6.41 8.24 3.26 25.41 4.95 2.20 40.03 40.03 ((N))} ((N))	E [-] 82.9% ¥ 96.2% ¥ 99.4% ¥ 93.2% ¥ 1.8E+00 13.3% [0.82]	-] -] g/s]		Set Total No Set HX-3 N Set HX-4 N Calc. ΔT_{hLS} Calc. T_{LS} [F 4 (for ΔT_{hLS}) Calc. T_{LS} [F 4 (for T_{LS}) Num	μu's [tu's [tu's [[K] q q q q	Set 40.00 25.32 5.00 13.41 65.98 0.8 4.15 1.4 70	3.5E-01 -1.1E-02 1.6E-07 -3.2E-08
-1(h) -1(N) -2 -3 -4 als:	Δp _h [atm] 0.056 (M) 0.022 0.044 0.350 W _{JT} [g's] 12.00	Δp; [atm] 0.0012 0.002 0.0048 0.0009 0.0004 0.0073 P [atm] 0.0310 Q [CFM]	ΔT _{M(HT} [K] 40.00 13.06 13.41 1.03 5.00 T [K] 2.00 P ₂ [atm]	ΔT _{ALCE} [K] 25.97 13.06 0.50 0.78 0.15 45.00 x [-] 13.6%	[K] 32.43 25.25 3.85 2.80 0.73 18.20	<i>q</i> [kW] 12.090 0.890 0.791 3.856 0.139 2.493 17.77 T _g [K]	<i>q_{LK}</i> [W] 8.1 0.8 4.5 34.8 6.9 55.0 Xtu's (HX-1 4X-2 LN ₂ 6 HX-1 helium B _{ciao} [KW]	(UA) [W/K] 372.8 35.3 205.6 1378.4 191.9 137 2184.0 137 2184.0 1(<i>h</i>) - HX- quality, <i>x_H</i> m bypass, <i>y</i> ¶ _{ivy} [-]	Ntu [-] 6.41 8.24 3.26 25.41 4.95 2.20 40.03 40.03 40.03 (N)} P _c [RW]	Е [-] 82.9% « 96.2% « 99.4% « 93.2% « 93.2% « 1.8.8*00 [1.3.3% [0.82] [П _п [-]	-] -] g/s] P_m [kW]		Set Total No Set HX-3 N Set HX-4 N Calc. ΔT_{hLS} Calc. T_{LS} [F 4 (for ΔT_{hLS}) Calc. T_{LS} [F 4 (for T_{LS}) Num	μu's [tu's [tu's [[K] q q q q	Set 40.00 25.32 5.00 13.41 65.98 0.8 4.15 1.4 70	3.5E-01 -1.1E-02 1.6E-07 -3.2E-08
-1(h) -1(N) -2 -3 -4) als: als:	Δ P _λ [atm] 0.056 (20) 56 0.029 0.222 0.044 0.3500 0.3500 0.3500 0.3500 0.3500 0.3500 0	Δp; [atm] 0.0012 0.002 0.0048 0.0009 0.0004 0.0073 P [atm] 0.0310 Q [CFM]	ΔT _{A(.02} [K] 40.00 40.00 13.06 13.41 1.03 5.00 T [K] 2.00 Ps [atm] 0.0237 1.05	ΔT _{4(CE} [K] 25.97 13.06 0.50 0.78 0.15 45.00 x [-] 13.6% P _D [atm] 1.05	[K] 32.43 25.25 3.85 2.80 0.73 18.20 [W] 242.7 P, [-] 44.4	<i>q</i> [kW] 12.090 0.890 0.791 3.856 0.139 2.493 17.77	9 LE [W] 8.1 0.8 4.5 34.8 6.9 5550 Ntu's (HX-1 HX-2 LN ₂ c HX-1 heliun [KW] 28.4 18.3	(UA) [W/K] 372.8 35.3 205.6 1378.4 191.9 137 2184.0 1(<i>t</i>) - HX- quality, <i>x_N</i> m bypass, <i>y</i> η_{w} [-] 14.5%	Ntu [-] 6.41 8.24 3.26 25.41 4.95 2.20 40.03 40.03 ((V))} P _c [KW] 195.6 40.5	Е [-] 82.9% 96.2% 99.2% 93.2% 93.2% 1.82*00 [13.3% [-] 90.0%	-] -] g/s] Pm [kW] 217.4 45.0		Set Total No Set HX-3 N Set HX-4 N Calc. ΔT_{hLS} Calc. T_{LS} [F 4 (for ΔT_{hLS}) Calc. T_{LS} [F 4 (for T_{LS}) Num	μu's [tu's [tu's [[K] q q q q	Set 40.00 25.32 5.00 13.41 65.98 0.8 4.15 1.4 70	3.5E-01 -1.1E-02 1.6E-07 -3.2E-08
-1(h) -1(N) -2 -3 -4) als: als:	ΔP _h [atm] 0.056 (27) 0.029 0.222 0.044 0.350 W ₂₇ [g's] 12.00 W _e [12.00 W _{ce} 12.00 W _{ce}	Ap; [atm] 0.0012 0.20 0.0048 0.0009 0.0004 0.0073 P [atm] 0.0310 Q [CFM] 6612 Pray	ΔT _{A(402} [K] 40.00 40.00 13.06 13.41 1.03 5.00 T [K] 2.00 Ps [atm] 0.0237 1.05 T _{exp}	ΔT _{4(CE} [K] 25.97 13.06 0.50 0.78 0.15 45.00 x [-] 13.6% P _D [atm] 1.05	[K] 32.43 25.25 3.85 2.80 0.73 18.20 [W] 242.7 P, [-] 44.4	<i>q</i> [kW] 12.090 0.890 0.791 3.856 0.139 2.493 17.77	<i>q</i> _{LX} [W] 8.1 0.8 4.5 34.8 6.9 55.0 55.0 Ntn's {HX−1 HX−2 LN ₂ 0 HX−1 heliun E _{sino} [kW] 28.4 18.3 B _{inp}	(UA) [W/K] 372.8 35.3 205.6 1378.4 191.9 137 2184.0 1(h) - HX quality, x _N m bypas, s 7 ₁₀₀ [-] 14.5% 45.1% 7 ₁₀ 7 ₁₀	Ntu [-] 6.41 8.24 3.26 25.41 4.95 2.20 40.03 40.03 h(N)} [] p _e [] [] 195.6 40.5 40.5	Е [-] 82.9% 96.2% 99.2% 93.2% 93.2% 1.82*00 [13.3% [-] 90.0%	-] -] g/s] P _m [k W] 217.4 45.0 P _{nny}		Set Total No Set HX-3 N Set HX-4 N Calc. ΔT_{hLS} Calc. T_{LS} [F 4 (for ΔT_{hLS}) Calc. T_{LS} [F 4 (for T_{LS}) Num	μu's [tu's [tu's [[K] q q q q	Set 40.00 25.32 5.00 13.41 65.98 0.8 4.15 1.4 70	3.5E-01 -1.1E-02 1.6E-07 -3.2E-08
-1(h) -1(N) -2 -3 -4 -4 -4 -3 -3 -4 -3 -3 -4 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5	Δp _k [atm] 0.056 (2) 0.222 0.044 0.350 ¹⁰ / ₂ / ₂ (g's) 12.00 ¹⁰ / ₂ (g's) 12.00 ¹⁰ / ₂ (g's) 12.00	Ap; [stm] 0.0012 0.20 0.0048 0.0009 0.0004 0.0004 0.0004 0.00073 0.00073 P [stm] 0.0310 0 (CFM] 6612 Perep [atm]	ΔT _{h(HZ} [K] 40.00 40.00 13.06 13.41 1.03 5.00 T [K] 2.00 Ps [atm] 0.0237 7.05 T _{esp} [K]	ΔT _{4(CE} [K] 25.97 13.06 0.50 0.78 0.15 45.00 x [-] 13.6% P _D [atm] 1.05	[K] 32.43 25.25 3.85 2.80 0.73 18.20 [W] 242.7 P, [-] 44.4	<i>q</i> [kW] 12.090 0.890 0.791 3.856 0.139 2.493 17.77	9 LE [W] 8.1 0.8 4.5 34,8 6.9 55.0 55.0 55.0 55.0 4X-1 heliun E _{ciao} [KW] 28.4 18.3 B _{inp} [KW]	(UA) [W/K] 372.8 35.3 205.6 1378.4 191.9 137 2184.0 1(<i>t</i>) - HX- quality, <i>x_N</i> m bypass, s 1 (<i>t</i>) - HX- quality, <i>x_N</i> 1 (<i>t</i>) - HX- 1 (Ntu [-] 6.41 8.24 3.26 25.41 4.95 2.20 40.03 40.03 ((V))} P _c [KW] 195.6 40.5	Е [-] 82.9% 96.2% 99.2% 93.2% 93.2% 1.82*00 [13.3% [-] 90.0%	-] -] g/s] Pm [kW] 217.4 45.0 Pmp [kW]		Set Total No Set HX-3 N Set HX-4 N Calc. ΔT_{hLS} Calc. T_{LS} [F 4 (for ΔT_{hLS}) Calc. T_{LS} [F 4 (for T_{LS}) Num	μu's [tu's [tu's [[K] q q q q	Set 40.00 25.32 5.00 13.41 65.98 0.8 4.15 1.4 70	3.5E-01 -1.1E-02 1.6E-07 -3.2E-08
-1(h) -1(N) -2 -3 -4) als: als:	ΔP _h [atm] 0.056 (27) 0.029 0.222 0.044 0.350 W ₂₇ [g's] 12.00 W _e [12.00 W _{ce} 12.00 W _{ce}	Ap; [atm] 0.0012 0.20 0.0048 0.0009 0.0004 0.0073 P [atm] 0.0310 <i>Q</i> [CFM] 6612	ΔT _{A(402} [K] 40.00 40.00 13.06 13.41 1.03 5.00 T [K] 2.00 Ps [atm] 0.0237 1.05 T _{exp}	ΔT _{4(CE} [K] 25.97 13.06 0.50 0.78 0.15 45.00 x [-] 13.6% P _D [atm] 1.05	[K] 32.43 25.25 3.85 2.80 0.73 18.20 [W] 242.7 P, [-] 44.4	<i>q</i> [kW] 12.090 0.890 0.791 3.856 0.139 2.493 17.77	<i>q</i> _{L,K} [W] 8.1 0.8 4.5 34.8 6.9 55.0 55.0 Ntn's {HX−1 HX−2 LN ₂ 0 HX−1 heliun E _{sino} [kW] 28.4 18.3 B _{inp}	(UA) [W/K] 372.8 35.3 205.6 1378.4 191.9 137 2184.0 1(h) - HX quality, x _N m bypas, s 7 ₁₀₀ [-] 14.5% 45.1% 7 ₁₀ 7 ₁₀	Ntu [-] 6.41 8.24 3.26 25.41 4.95 2.20 40.03 40.03 h(N)} [] p _e [] [] 195.6 40.5 40.5	Е [-] 82.9% 96.2% 99.2% 93.2% 93.2% 1.82*00 [13.3% [-] 90.0%	-] -] g/s] P _m [k W] 217.4 45.0 P _{nny}		Set Total No Set HX-3 N Set HX-4 N Calc. ΔT_{hLS} Calc. T_{LS} [F 4 (for ΔT_{hLS}) Calc. T_{LS} [F 4 (for T_{LS}) Num	μu's [tu's [tu's [[K] q q q q	Set 40.00 25.32 5.00 13.41 65.98 0.8 4.15 1.4 70	3.5E-01 -1.1E-02 1.6E-07 -3.2E-08

Operated by the Jefferson Science Associates for the U.S. Dept. of Energy

VPS

VAP

HX-3

HX-4

LOAD

Cold Box (cb)

3.2

28.4 43.19

18.3 27.7

65.84 1 xergy (**E**) 35.90 l Exergy (**I**)

0.31

5.75

0.30

8.36

3.97

0.05

3.98

3.57

3.64

0.00

20.03

Frac.

24.39

4.9

0.5%

0.5%

12.7%

6.0%

0.1%

6.0%

5.4%

5.5%

0.0%

нх-2 м л-3

JT-1

JT-2

Exergy L Total Process (tp)

Fra

34.9

52.19

100.0

t/Non-Uset

31.09

1.49

45.3%

6.4%

0.1%

1.4%

0.1%

2.0%

1.0%

0.0%

1.0%

0.9%

0.9%

0.0%

91.4%

145.4

217.4

416.99

129.45

5.97

189.01

26.73

0.31

5.75

0.30

8.36

3.97

0.05

3.98

3.57

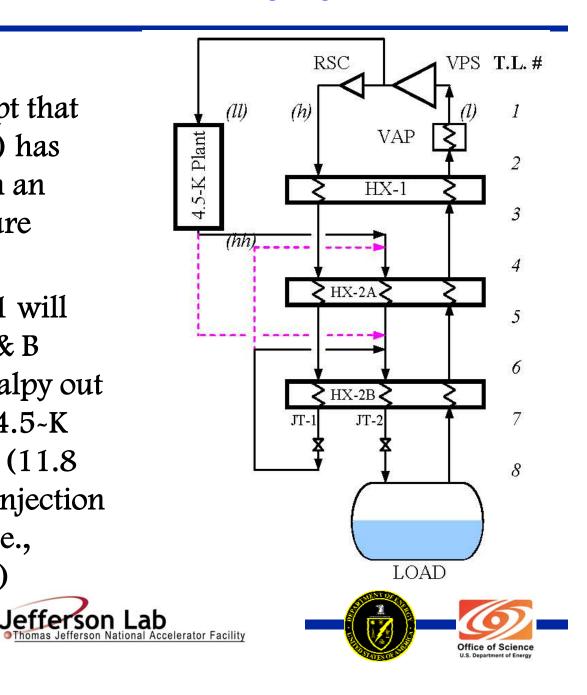
3.64

0.00

381.09

JT-3

Calc. Err.


Non-Useful

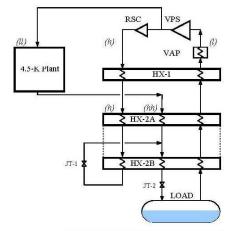
9.2 2.2

45.0 10.89

- Configuration C2-B

 Similar to C2-A, except that coldest HX (HX-2A/B) has been sub-divided with an additional high pressure stream pass (hh)
 - Re-injection from JT-1 will occur between HX-A & B
 when (h) stream enthalpy out of HX-2B is less than 4.5-K
 plant supply enthalpy (11.8 J/g); otherwise these injection points are swapped (i.e., magenta colored lines)

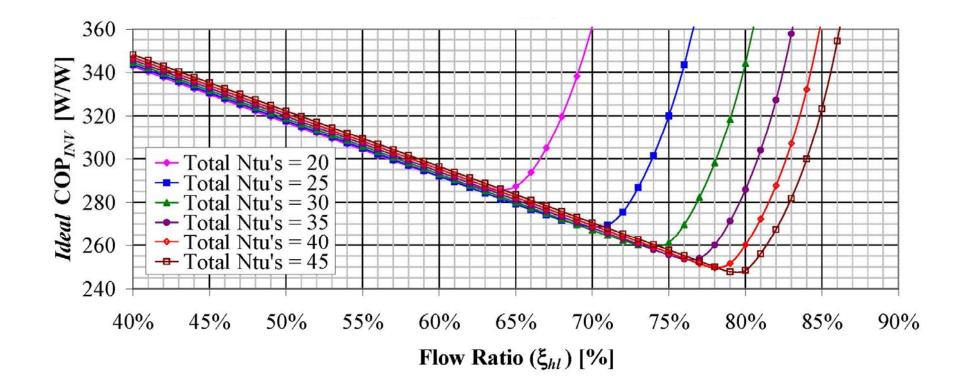
- Configuration C2~B...continued
 - —Motivation is centered around the fact that the specific heat of the *(h)* stream is less than the *(l)* stream for a good portion of the HX
 - —Length of HX-2A/B is not fixed at 5 Ntu's for this configuration (since this would result in an over-determined problem); rather;
 - Ntu's for HX~2A & 2B are not allowed to exceed 5, while
 - Total HX Ntu's are constrained as previously specified


Configuration C2~B (example)...continued C2-B

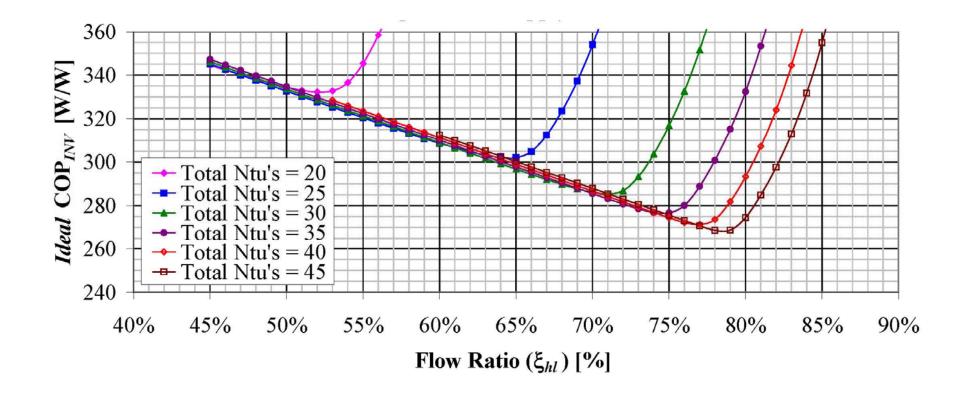
2-K Refrigeration Recovery Process Study

		1	(h) Stream					(II) Stream				(1) Stream			
T.L.	Т	р	h	3	w	Т	р	h	8	w	Т	р	h	3	w	T.L
#	[K]	[atm]	[J/g]	[kJ/g]	[g/s]	[K]	[atm]	[J/g]	[kJ/g]	[g/s]	[K]	[atm]	[J/g]	[kJ/g]	[g/s]	#
1	300.00	12.00	1577.12	1.552	9.48	300.00	1.05	1573.54	0.030	2.52	300.00	0.0230	1573.20	-2.351	12.00	1
2	300.00	12.00	1577.12	1.552	9.48						242.14	0.0235	1272.71	-2.305	12.00	2
3	4.50	11.69	15.67	6.987	9.48						3.84	0.0302	35.05	3.078	12.00	3
	1.50	11.00	15 (7	6.007	0.48	1.50	3.00	hh) Stream	6 020	2.52	3.84	0 0202	35.05	2.078	12.00	4
4	4.50	11.69	15.67	6.987	9.48	4.50	3.00	11.79	6.829	2.52	3.84	0.0302	35.05	3.078	12.00	4
5	4.24	11.68	14.87	7.041	9.48	4.24	3.00	10.67	6.904	2.52	3.67	0.0303	34.14	3.151	12.00	5
6	4.24	11.68	14.87	7.041	9.48	4.24	3.00	10.67	6.904	12.00	3.67	0.0303	34.14	3.151	12.00	6
7	2.31	11.65	10.67	7.418	9.48	2.31	2.96	5.32	7.383	12.00	2.00	0.0310	25.05	4.154	12.00	7
8						2.00	0.0310	5.32	7.072	12.00	2.00	0.0310	25.05	4.154	12.00	8
	∆p _h [atm]	Δp _l [atm]	ΔT _{hl, WE} [K]	$\Delta T_{hl,CE}$ [K]	ΔT _{LM} [K]	<i>q</i> [kW]	<i>q</i> _{LK} [W]	(UA) [W/K]	Ntu [-]	є [-]						
IX-1	0.314	0.00675	57.86	0.66	7.73	14.852	49.3	1920.6	35.9	99.9%	7					
IX-2A							1 C C C C C C C C C C C C C C C C C C C									
	0.004	0.00008	0.66	0.57	0.62	0.011	0.6	17.7	0.4	35.2%	7					
	0.004 0.033	0.00008 0.00070	0.66	0.57	0.62 0.56	0.011 0.109	0.6 5.1	17.7 196.1	0.4 3.7	35.2% 85.5%	- set					
IX-2B				10000000000000	Concernent and a second	2022000000000	a construction of the second			85.5%	- set	N _{iter}	λ	Lþdate ∆p's		
HX-2B Vap Totals:		0.00070	0.57	0.31	0.56	0.109	a construction of the second	196.1	3.7	85.5%	-	N _{iter} 5	λ			
IX-2B √ap	0.033	0.00070 0.00048	0.57 5.00	0.31	0.56 22.86	0.109 3.606	5.1	196.1 158	3.7 2.5	85.5%	🗸 Max. Ntu					
IX-2B √ap	0.033	0.00070 0.00048 0.00800	0.57 5.00	0.31 62.86	0.56 22.86	0.109 3.606 14.97	5.1 55.0	196.1 158 2134.4	3.7 2.5 40.0	85.5%	Max. Ntu 40.0					
HX-2B Vap Totals:	0.033 0.350 0.036 W _{JT2} [g/s]	0.00070 0.00048 0.00800 0.00078 PL [atm]	0.57 5.00 ◀ (HX-2A T _L [K]	0.31 62.86 .+HX-2B) x [-]	0.56 22.86 ► <i>¶</i> _L [W]	0.109 3.606 14.97	5.1 55.0	196.1 158 2134.4	3.7 2.5 40.0	85.5%	Max. Ntu 40.0					
HX-2B Vap Totals:	0.033 0.350 0.036 W _{JT2}	0.00070 0.00048 0.00800 0.00078 PL	0.57 5.00 ◀ (HX-24 ▼ _L	0.31 62.86 . + HX-2B) x	0.56 22.86 ►	0.109 3.606 14.97	5.1 55.0	196.1 158 2134.4	3.7 2.5 40.0	85.5%	Max. Ntu 40.0					
HX-2B Vap Totals:	0.033 0.350 0.036 W _{JT2} [g/s] 12.00 W _c	0.00070 0.00048 0.00800 0.00078 PL [atm] 0.0310	0.57 5.00 ◄ (HX-2A T _L [K] 2.00 Ps	0.31 62.86 + HX-2B) x [-] 15.7%	0.56 22.86 4 4 4 2 2 3 6 7 7 7 7 7 7 7 7	0.109 3.606 14.97 0.12	5.1 55.0 5.7 B _{c,iso}	196.1 158 2134.4 213.8 71 iso	3.7 2.5 40.0 4.1	85.5%	Max. Ntu 40.0 5.0					
HX-2B Vap Fotals:	0.033 0.350 0.036 W _{JT2} [g/s] 12.00 W _c [g/s]	0.00070 0.00048 0.00800 0.00078 PL [atm] 0.0310 Q [CFM]	0.57 5.00 ◀ (HX-2A T _L [K] 2.00 P _S [atm]	0.31 62.86 + HX-2B) x [-] 15.7% PD [atm]	0.56 22.86 4 [W] 236.7 P _r [-]	0.109 3.606 14.97 0.12 T _S [K]	5.1 55.0 5.7 B _{c,iso} [k W]	196.1 158 2134.4 213.8 Ti sso [-]	3.7 2.5 40.0 4.1 P _c [k W]	85.5%	Max. Ntu 40.0 5.0 P _m [kW]					
HX-2B Vap Totals: Load VPS	0.033 0.350 0.036 w _{JT2} [g/s] 12.00 w _c [g/s] 12.00	0.00070 0.00048 0.00800 0.00078 PL [atm] 0.0310	0.57 5.00 ◄ (HX-2A T _L [K] 2.00 P _S [atm] 0.0230	0.31 62.86 + HX-2B) x [-] 15.7% PD [atm] 1.05	0.56 22.86 4 [W] 236.7 P [-] 45.7	0.109 3.606 14.97 0.12 T _S [K] 300.0	5.1 55.0 5.7 B _{c,iso} [kW] 28.6	196.1 158 2134.4 213.8 1 _{iso} [-] 14.5%	3.7 2.5 40.0 4.1 4.1 [kW] 197.1	85.5% 5	Max. Ntu 40.0 5.0 P _m [kW] 219.0					
HX-2B Vap Fotals:	0.033 0.350 0.036 w _{JT2} [g/s] 12.00 w _c [g/s] 12.00 9.48	0.00070 0.00048 0.00800 0.00078 P£ [atm] 0.0310 Q [CFM] 6799	0.57 5.00 ◄ (HX-2A T _L [K] 2.00 Ps [atm] 0.0230 1.05	0.31 62.86 + HX-2B) x [-] 15.7% PD [atm] 1.05 12.00	0.56 22.86 4 4 236.7 P 7 11.4	0.109 3.606 14.97 0.12 T _S [K]	5.1 55.0 5.7 E _{c,iso} [kW] 28.6 14.4	196.1 158 2134.4 213.8 T _{lico} [-] 14.5% 45.1%	3.7 2.5 40.0 4.1 P _c [kW] 197.1 32.0	85.5%	Max. Ntu 40.0 5.0 P _m [kW] 219.0 35.5					
IX-2B Vap otals: .oad	0.033 0.350 0.036 w _{JT2} [g/s] 12.00 w _c [g/s] 12.00	0.00070 0.00048 0.00800 0.00078 PL [atm] 0.0310 Q [CFM]	0.57 5.00 ◄ (HX-2A T _L [K] 2.00 P _S [atm] 0.0230	0.31 62.86 + HX-2B) x [-] 15.7% PD [atm] 1.05	0.56 22.86 4 [W] 236.7 P [-] 45.7	0.109 3.606 14.97 0.12 T _S [K] 300.0	5.1 55.0 5.7 B _{c,iso} [kW] 28.6	196.1 158 2134.4 213.8 1 _{iso} [-] 14.5%	3.7 2.5 40.0 4.1 4.1 [kW] 197.1	85.5% 5	Max. Ntu 40.0 5.0 P _m [kW] 219.0					

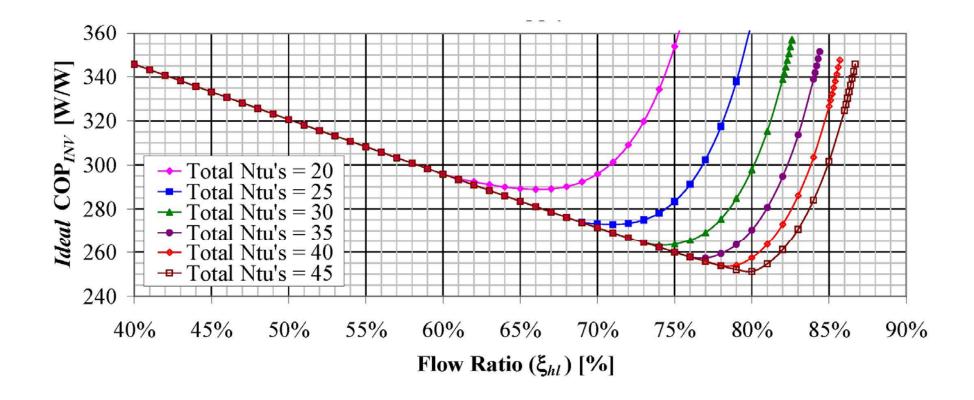
	Exergy Usage							
	Total Proc	cess (tp)	Cold Bo	x (cb)				
COPINV	179	19	254.	.0				
	[kW]	Frac.	[kW]	Frac.				
	Input Exe	rgy (P)	Input Exe	rgy (E)				
4.5-K Plant	171.3	40.2%	17.1	28.5%				
VPS	219.0	51.4%	28.6	47.59				
RSC	35.5	8.3%	14.4	24.09				
Input Tot.	425.84	100.0%	60.13	100.09				
	a	tput/Useful	Exergy (E))				
Load	35.02	8.2%	35.02	58.29				
	Outp	ut/Non-Use	ful Exergy	(I)				
4.5-K Plant	154.18	36.2%						
VPS	190.41	44.7%						
RSC	21.12	5.0%						
Vap	0.55	0.1%	0.55	0.99				
HX-1	13.06	3.1%	13.06	21.79				
HX-2A	0.18	0.0%	0.18	0.39				
HX-2B	2.71	0.6%	2.71	4.59				
JT-1	4.87	1.1%	4.87	8.19				
JT-2	3.73	0.9%	3.73	6.29				
Calc. Err.	0.00	0.0%	0.00	0.09				
Non-Useful	390.82	91.8%	25.11	41.89				
2-K CBX	25.11	5.9%						


- Process Model Results
 - —At 12 atm supply pressure $(p_{h,1})$ to 2-K CBX, *ideal* and *real* COP_{INV}'s for three configurations vs.
 - Flow ratio (ξ_{hi}) : 40 to 100% (as solution allows)
 - Total HX Ntu's (Ntu_{tot}) : 20 to 45
 - —Results at other supply pressures ($p_{h,I} = 6, 9, 15, 18$ atm) similar in trend and nature, i.e.,
 - There exists a optimum (minimum) COP_{INV} at a particular $\xi_{hl,opt}$ for each $p_{h,1}$ & Ntu_{tot} combination
 - At $\xi_{hl} < \xi_{hl,opt}$, COP_{INV} increases ~linearly
 - At $\xi_{hl} > \xi_{hl,opt}$, COP_{INV} increase quickly
 - —Note 'knee' of the (constant Ntu_{tot}) curves are sharper for C2-A and C2-A-p than for C2-B

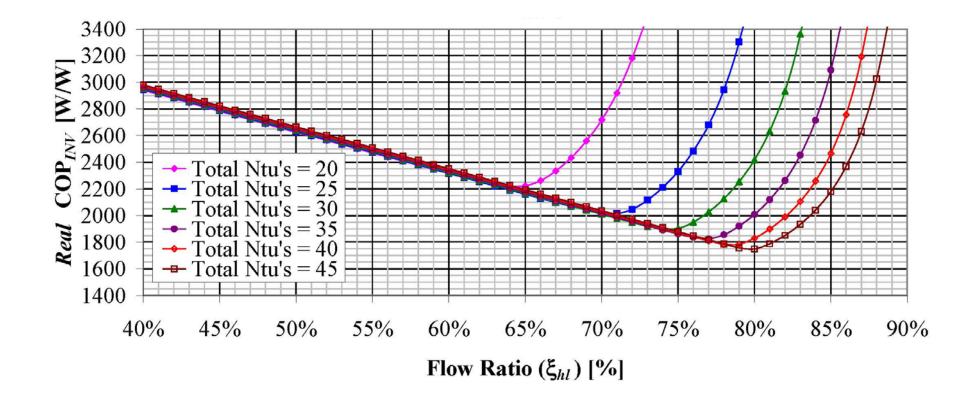
• *Ideal* COP_{INV} for configuration C2-A at 12 atm



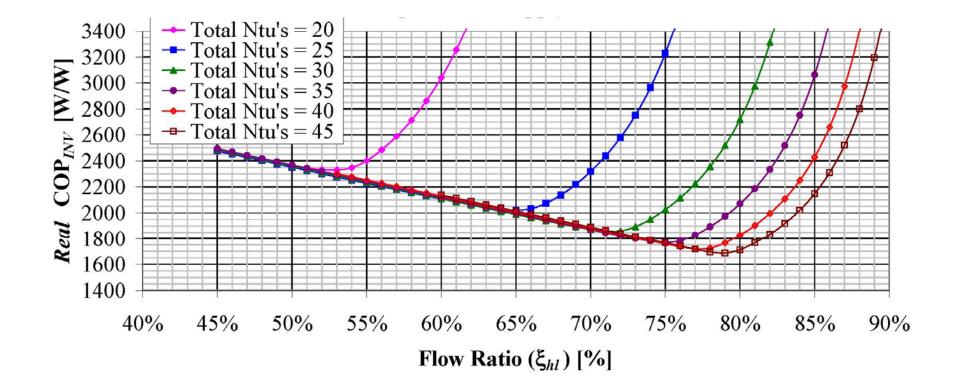
• *Ideal* COP_{*INV*} for configuration C2-A-p at 12 atm



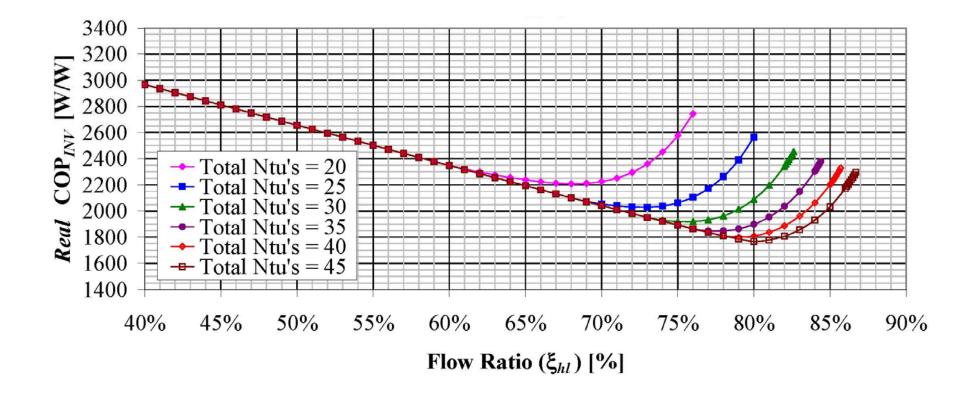
• *Ideal* COP_{INV} for configuration C2-B at 12 atm



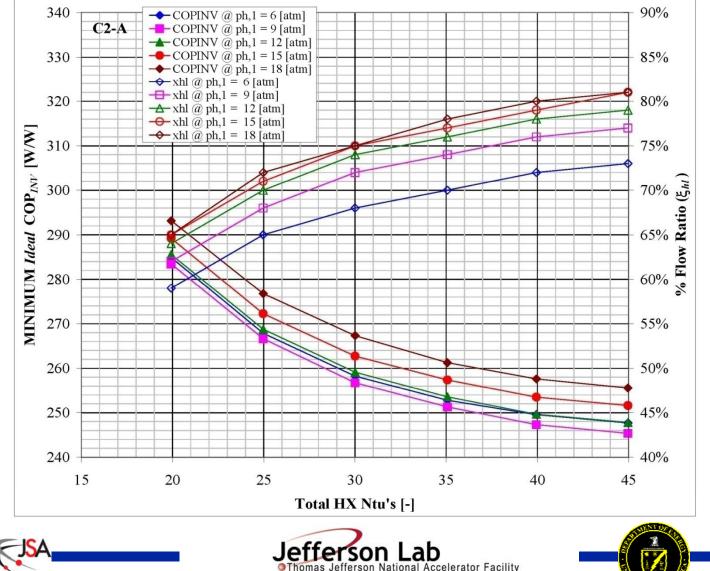
• *Real* COP_{INV} for configuration C2-A at 12 atm

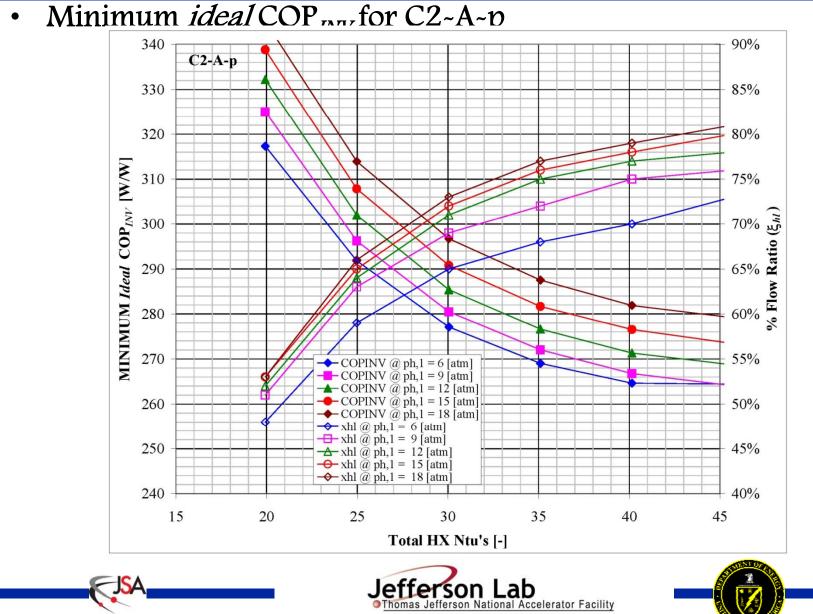


• *Real* COP_{INV} for configuration C2-A-p at 12 atm



• *Real* COP_{*INV*} for configuration C2-B at 12 atm

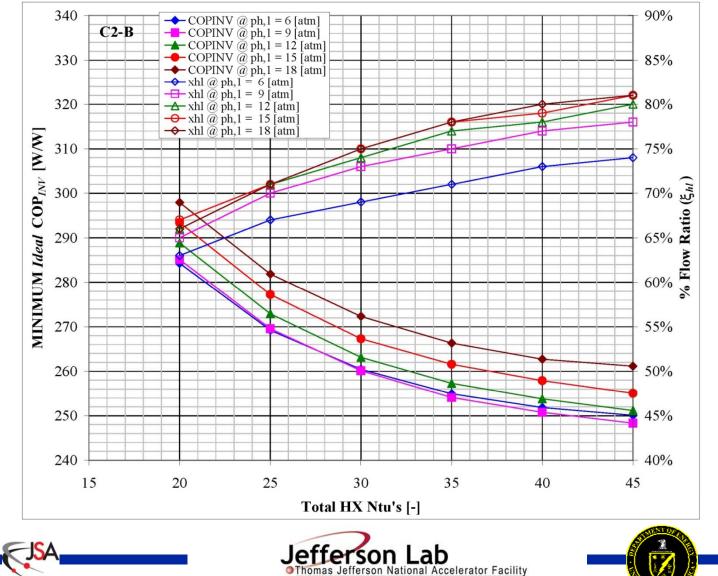

- Process Model Results...continued
 - —Optimum (minimum) *ideal* and *real* COP_{*INV*}'s and their associated $\xi_{hl,opt}$ vs. Ntu_{tot} at each $p_{h,1}$
 - —Overall behavior of optimums are similar in trend and nature
 - Ntu_{tot} is most influential parameter for performance and as it increases so the performance always increases



• Minimum *ideal* COP_{INV} for C2-A



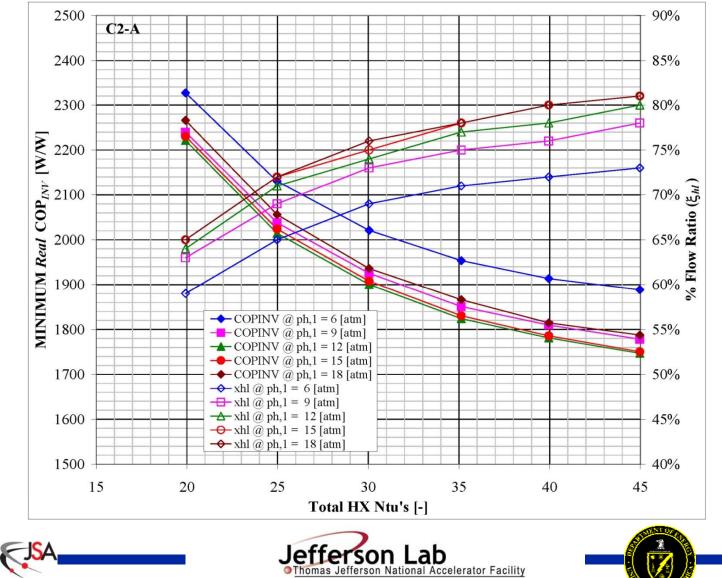
Office of Science U.S. Department of Energy



Office of Science

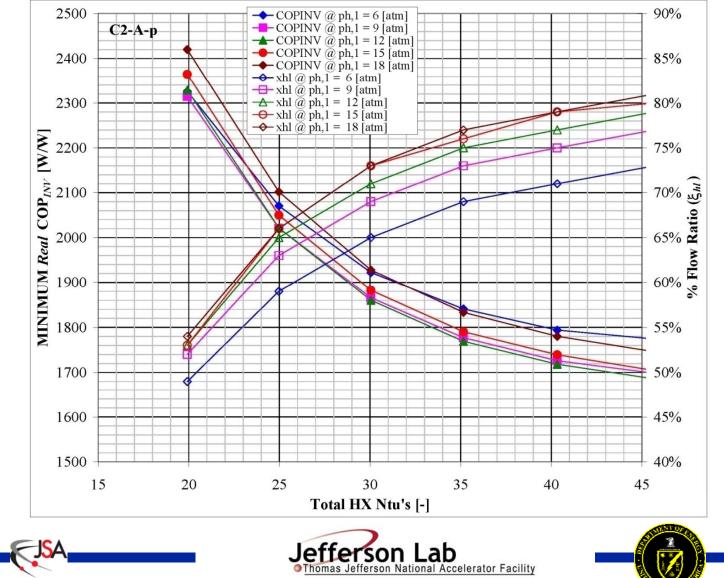
U.S. Department of Energy

• Minimum *ideal* COP_{INV} for C2~B

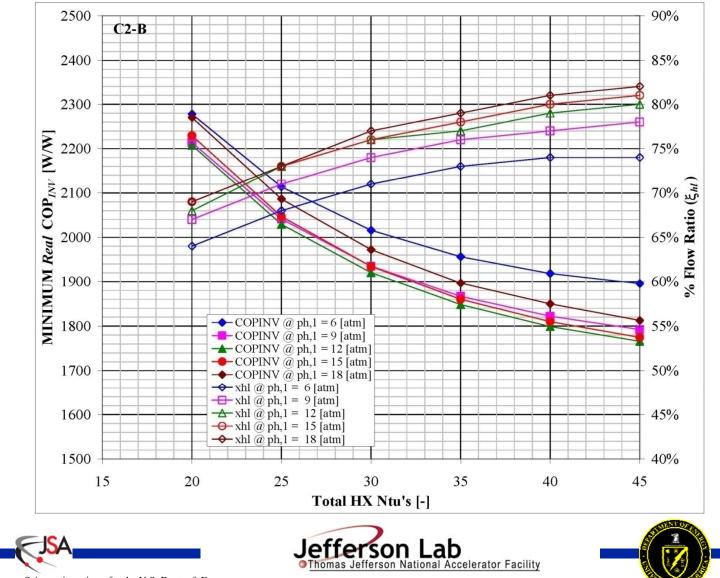


Office of Science

U.S. Department of Energy



Office of Science



• Minimum *real* COP_{INV} for C2-A-p

Office of Science

• Minimum *real* COP_{INV} for C2~B

- -Process Model Results...continued
 - Optimum *real* COP_{*INV*}'s for C2-A-p are less than C2-A (and C2-B), but the optimum *ideal* COP_{*INV*}'s for C2-A are less than C2-A-p (and C2-B)
 - Recall 4.5-K plant Carnot efficiency is 11% for C2-A-p (rather than 10% for C2-A and C2-B), resulting in a higher real performance, but
 - throttling loss of JT-3 (i.e., 80-K high pressure stream to 4.5-K plant) is detrimental to ideal performance
 - Ideal and real optimum flow ratios are close, but in general, not equal
 - $p_{h,1} = 12$ atm always yielded a superior *real* COP_{*INV*}, but the $p_{h,1} = 9$ or 6 atm yielded a slightly better (lower) *ideal* COP_{*INV*}
 - A higher ξ_{hl} is more influential on *real* process and,
 - Lower $p_{h,1}$ is more influential on *ideal* process

- Process Model Results...continued
 - —So, for reasonable HX sizes (Ntu_{tot} > 30 Ntu's) and a supply pressure $(p_{h,I}) > 9$ atm
 - Optimum flow ratio (ξ_{h}) is roughly 70 to 80%, with
 - *Ideal* COP_{INV} of 250 to 300 W/W, and
 - $Real COP_{INV}$ of 1750 to 1950 W/W
 - -Best real process performance occurred at
 - Ntu_{tot} = 45 and $p_{h,I}$ = 12 atm,
 - C2-A and C2-B: COP_{INV} of ~1750 W/W
 - C2~A~p: COP_{*INV*} of ~1690 W/W

- Process Model Results...continued
 - —Distribution of 2-K CBX availability
 - Unsurprisingly, major loss component is warm(er) HX
 - For C2-A & C2-B: 2-K load ~60% of total availability (i.e., exergy flux) given to 2-K CBX
 - For C2-A-p: 2-K load ~55% of total availability

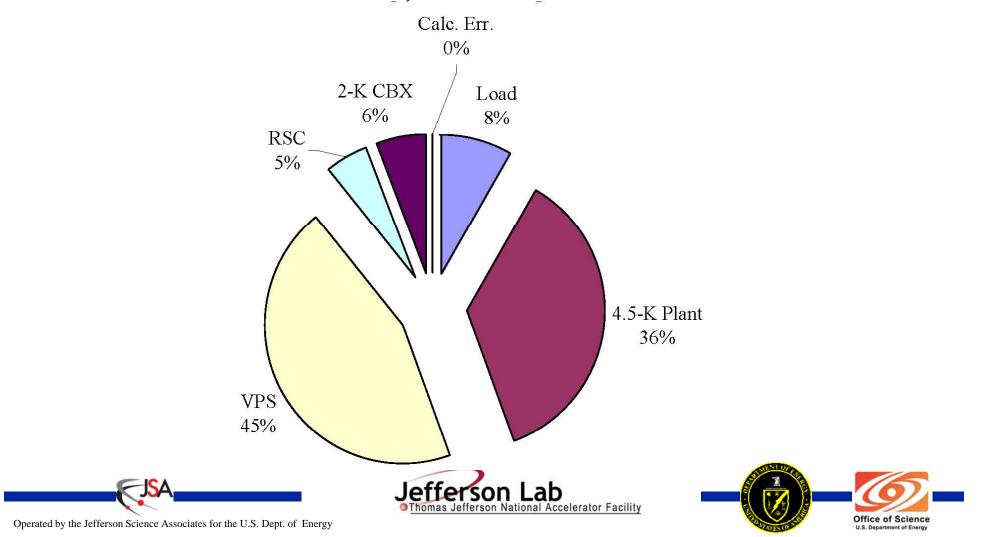
• Availability distribution of C2-A at optimum *ideal* $COP_{INV}(\xi_{hI} = 78\%, p_{hI} = 12 \text{ atm}) \text{ for Ntu}_{tot} = 40$ JT-2 6% Calc. Err. JT-1 0% 6% Mixing 0% HX-2 6% HX-1 Load 22% 59% Vap 1% Jefferson Lab nomas Jefferson National Accelerator Facility Office of Science Operated by the Jefferson Science Associates for the U.S. Dept. of Energy

• Availability distribution of C2-A-p at optimum *ideal* $COP_{INV}(\xi_{hl} = 77\%, p_{h.l} = 12 \text{ atm}) \text{ for Ntu}_{tot} = 40$ JT-3 6% Calc. Err. JT-2 0% 5% **JT-1** Mixing 6% 0% HX-4 6% Load HX-3 55% 13% HX-2 0% HX-1 Vap 9% 0% son Lad 10mas Jefferson National Accelerator Facility Office of Science Operated by the Jefferson Science Associates for the U.S. Dept. of Energy

• Availability distribution of C2-B at optimum *ideal* $COP_{INV}(\xi_{hl} = 79\%, p_{h,l} = 12 \text{ atm}) \text{ for Ntu}_{tot} = 40$ JT-2 6% Calc. Err. 0% JT-1 8% HX-2B 5% HX-2A 0% Load HX-1 58% 22% Vap 1% Jefferson Lab homas Jefferson National Accelerator Facility Office of Science Operated by the Jefferson Science Associates for the U.S. Dept. of Energy

- Process Model Results...continued
 - —Distribution of *real* process input power usage (useful and non-useful)
 - Only $\sim 8\%$ of input power used (usefully) by 2-K load
 - For C2-A, major loss components are:
 - $-\sim 44\%$ for VPS
 - $-\sim$ 37% for 4.5~K plant
 - $-\sim 5\%$ for RSC
 - $-\sim 6\%$ for 2~K CBX (losses)
 - C2-B similar to C2-A
 - For C2~A~p,
 - 2-K CBX losses higher (~9% vs. ~6%) due to LN system and JT-3 losses

Input power distribution of C2-A at optimum *real* $COP_{INV}(\xi_{hl} = 78\%, p_{h,l} = 12 \text{ atm}) \text{ for Ntu}_{tot} = 40$ Calc. Err. 0% 2-K CBX Load 6% 8% RSC 5% 4.5-K Plant 37% VPS 44%


Jefferson Lab

iomas Jefferson National Accelerator Facility

• Input power distribution of C2-A-p at optimum *real* $COP_{INV}(\xi_{hl} = 77\%, p_{h.1} = 12 \text{ atm}) \text{ for Ntu}_{tot} = 40$ Calc. Err. 0% **2-K CBX** Load 9% 9% RSC 6% 4.5-K Plant 31% VPS 45% fferson Lab iomas Jefferson National Accelerator Facility Office of Science Operated by the Jefferson Science Associates for the U.S. Dept. of Energy

• Input power distribution of C2-B at optimum *real* $COP_{INV}(\xi_{hI} = 79\%, p_{h,I} = 12 \text{ atm})$ for $Ntu_{tot} = 40$

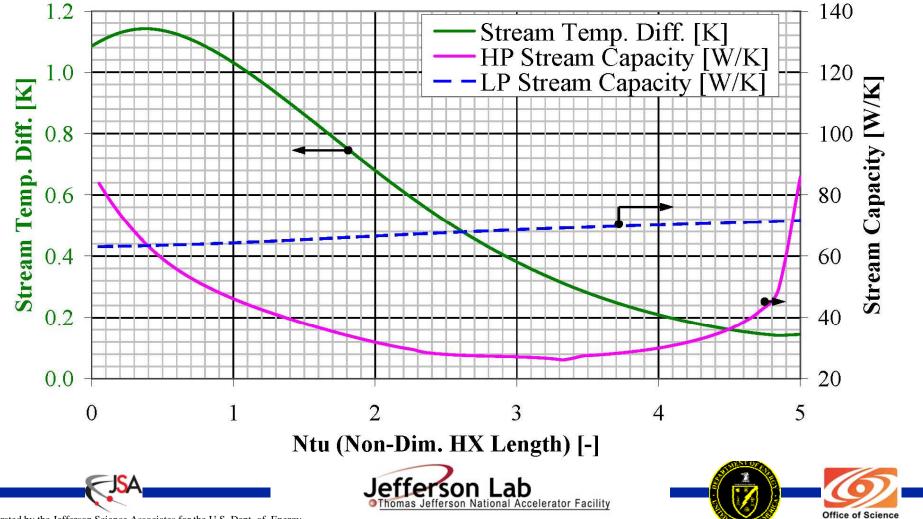
• Process Model Results...continued

—Cooling curves for C2-A HX-1 and HX-2 at minimum *real* COP_{INV} ($\xi_{hl} = 78\%$, $p_{h,l} = 12$ atm) for Ntu_{tot} = 40

-Exergy loss distribution

		HX-1	HX-2
Total Exergy Loss	[kW]	13.08	3.71
Loss Due to Temperature Difference	[-]	50.8%	66.3%
Loss Due to Pressure Drop	[-]	14.4%	6.1%
Loss Due to Heat In-Leak	[-]	34.9%	27.2%

—The following plots clearly show the (very) non-constant specific heat behavior of the real fluid



• C2-A HX-1 Cooling Curve ($\xi_{hl} = 78\%$, $p_{h,1} = 12$ atm, $Ntu_{tot} = 40$) Stream Temp. Diff. [K] Stream Capacity [W/K Stream Temp. Diff. [K] HP Stream Capacity [W/K] - LP Stream Capacity [W/K] 0.1 Ntu (Non-Dim. HX Length) [-] efferson Lab Office of Science Operated by the Jefferson Science Associates for the U.S. Dept. of Energy

• C2-A HX-2 Cooling Curve ($\xi_{hl} = 78\%$, $p_{h,1} = 12$ atm, Ntu_{tot} = 40)

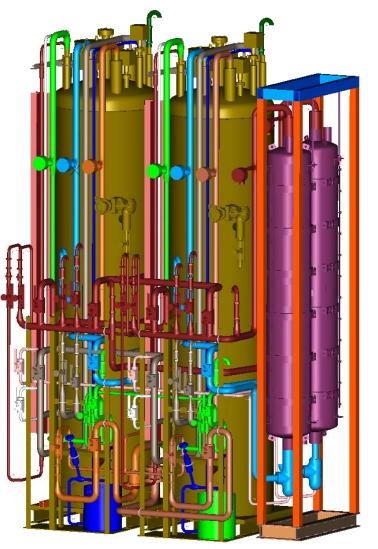
Operated by the Jefferson Science Associates for the U.S. Dept. of Energy

- Process Model Results...continued
 - -C2-A HX-1 cooling curve
 - Imbalanced HX (flow-wise)
 - (h) stream capacity > (l) stream capacity only between ~13 to 7.5 K {for (h) stream}, with peak ~9 K
 - (1) stream capacity is nearly constant (as expected for a low pressure gas)
 - -C2-A HX-2 cooling curve
 - Balanced HX (flow-wise)
 - (*h*) stream capacity < (*l*) stream capacity except at ends
 - This eludes to motivation for studying C2-B
 - Note that recycling high-pressure flow through JT-1 and back-through HX-2 reduces HX-2 losses (by increasing high pressure stream capacity), but the throttling loss of JT-1 costs more than was saved

- Process Model Results...continued
 - —Note that in both HX's there are (2) stationary points & (1) inflection point in ΔT_{hl} vs. Ntu (length) plot
 - —Temperature of sub-atmospheric stream exiting warmest HX is still quite cold (~240 K)
 - Ambient vaporizer (VAP) duty is $\sim 25\%$ of HX-1 (for C2-A)
 - But, the real process input loss is ~0.1% (~1% for the ideal process) as compared to HX-1 real process input power loss of ~3% (~22% for ideal process)
 - Thermal 'value' (exergy) of fluid becomes much less as the temperature approaches the zero reference temperature ($T_o = 300$ K for this study)
 - This is a consequence of the 2nd law of thermodynamics on the ideal gas behavior of helium (i.e., not a 'real' fluid effect)
 - Note: the requirement for the ambient vaporizer is to protect the VPS from low suction temperatures (and provide consistency for the process study)

- Conclusions
 - —For a 2-K process employing a distinctly separate and commercially available 4.5-K liquefier system, vacuum pumping system and (2-K) compressor system, the following appear achievable,
 - An *ideal* COP_{INV} of ~250 W/W
 - A real COP_{INV} of ~1800 W/W
 - This is 3.6 times better than a direct vacuum pumping process (using no cold HX), 1.9 times better than JLab's CTF

- Conclusions...continued
 - —As mentioned previously, some sort of purification is highly desirable to remove air (leak) contamination
 - C2-A and C2-B would require separate purification units to process either full flow or make-up flow to 4.5-K plant
 - Purification capability built into 4.5-K liquefiers are typically either inadequate or will seriously reduce its capacity during purification
 - C2-A-p most readily lends itself to a simple integration of a *full flow* purifier by adding carbon beds in the high pressure stream just after the flow leaves the LN boiler (HX-2)
 - The slightly superior performance of C2-A-p (for Ntu_{tot} \geq 30) should be given low weighting in consideration as compared to the importance of flow purification



• Conclusions...continued

(Separate) Dual 60 g/s Helium Purifier

- Conclusions...continued
 - -Additional advantages of LN pre-cooling
 - Flow mal-distribution in HX's is a rather under-published but very common problem it's effect is quite significant on HX performance
 - As such, under performance in HX-1 (for C2-A-p) can be eliminated or greatly reduced in exchange for additional LN usage
 - Also, additional LN usage is generally much less costly than allowing the warm-end HX (i.e., HX-1 in C2-A-p) under-performance to be 'carried' to below 80 K

- Conclusions...continued
 - —Despite its greater complexity, as indicated by C2-B's blunter 'knee' (ξ_{hl} vs. COP_{*l*NV} curves</sub>); it may offer a more stable process for designs having a lower total HX Ntu's (say, Ntu_{tot} \leq 20)
 - —LN system exergetic efficiency is site/project specific (depending on the cost and availability of the LN, as well as, the availability required of the 2 K system)
 - -Remember that the exergetic efficiency used for the 4.5-K liquefier system is the most important parameter for any 2 K system!

Configuration	Ideal COP _{INV} [W/W]	Real COP _{INV} [W/W]	Notes
C1	693	6500	No cold-end HX
C1-A	478 (a) 447 (b)	4490 (a) 4200 (b)	 (a) Cold-end HX = 2 NTU's (b) Cold-end HX = 6 NTU's
C2-A	250	1780	Ntu _{tot} = 40; $p_{h,I} = 12$ atm; $\xi_{hl,opt} = 78\%$
С2-А-р	271	1720	Ntu _{tot} = 40; $p_{h,I} = 12$ atm; $\xi_{hl,opt} = 77\%$
С2-В	254 ^(c)	1800 ^(d)	Ntu _{tot} = 40; $\mathbf{p}_{h,I}$ = 12 atm (c) $\xi_{hl,opt}$ = 78%; (d) $\xi_{hl,opt}$ = 79%
JLab CTF	N/A	3400	
CC System	N/A	900	4.5 K System, $\eta_{C} = 25\%$

<u>Note</u>: CC (cold-compressor) system – performance possible using Floating Pressure cycle with well matched cold box and compressor system

- Conclusions...continued
 - —Example using results presented:
 - Specified: 2-K load of $(q_L =)$ 174 W
 - Select configuration C2-A-p
 - Select $p_{h,I} = 12$ atm and $Ntu_{tot} = 40$
 - From plots read, at 40 Ntu's, $\xi_{hl,opt} = 77\%$ and (minimum) real COP_{INV} = 1720 W/W
 - For all cases assume enthalpy difference supplied to the 2-K load is (Δh =) 20 J/g (this is conservative: assumes 4.5 to 2 K HX with 1.75 Ntu's for liquid supply and 3.5 Ntu's for SC supply)
 - So, the total refrigeration flow (from the 2-K load to VPS) is = 174 [W] / 20 [J/g] = 8.7 g/s
 - Required make-up flow from commercial 4.5-K liquefier system is = $(1 0.77) \cdot 8.7 [g/s] = 2.0 g/s$
 - Total equivalent input power required is = 1720 [W/W] · 174 [W] / 1000 [W/kW] = 300 kW

- Conclusions...continued
 - —As a note of caution for this previously worked example this study has assumed that the equipment used (i.e., 4.5-K plant, VPS and RSC) is available in a continuum of capacities. Of course, this is not the case, as equipment is only available in specific sizes

- —So, really...why not use direct vacuum pumping?
- —What might a cost comparison look like?

- Conclusions...continued
 - -Case-1: direct vacuum pumping with,
 - 4.5-K LHe supplied by dewar (say, 1.3 atm)
 - No cold~end HX
 - -Case-2: same as Case-1 except use,
 - Cold~end HX (6 Ntu's)
 - -Case-3: same as Case-1 except use,
 - 4.5-K helium supplied by 10% Carnot liquefier, and
 - -Case-4: same as Case-1 except use,
 - 4.5-K helium supplied by 10% Carnot liquefier
 - Cold~end HX (6 Ntu's)
 - -Case-5: Like JLab CTF (ideally)
 - -Case-6: Use one of configurations studied with,

efferson Lab

National Accelerator Facility

Office of Science

- 4.5-K helium supplied by 10% Carnot liquefier
- Cold~end HX (6 Ntu's)

Operated by the Jefferson Science Associates for the U.S. Dept. of Energy

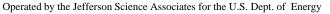
Conclusions...continued

2-K Load	180 [W]
Specific 4.5-K Liquefier Cost	300 [K\$/(g/s)]
Specific Vacuum Sys. Cost	60 [K\$/(g/s)]

	Case-1	Case-2	Case-3	Case -4	Case-5	Case-6	
4.5-K Mass Flow	16.7	10.2	13.6	8.7	5.4	2.2	[g/s]
2-K Mass Flow	13.5	8.3	13.6	8.7	9.7	8.7	[g/s]
4.5-K Liquefier System	-	-	4,072	2,620	1,605	655	[K\$]
Vaccum Pumping System	811	497	814	524	582	524	[K\$]
Compressor System	1. 			1.00	250	200	[K\$]
Misc. Equipment	100	150	200	200	250	250	[K\$]
Engineering	10	10	58	58	58	58	[K\$]
Installation	19	19	154	154	154	154	[K\$]
Commisioning	340	-	38	38	38	38	[K\$]
Total Capital	940	676	5,336	3,594	2,937	1,879	[K\$]

Cost of Electricity	0.055 [\$/kW-h]
4.5-K Helium Unit Cost	3.40 [\$/1]

2	Case-1	Case-2	Case-3	Case -4	Case-5	Case-5	
COP _{INV}	1.3	0.81	4.8	3.1	3.4	1.8	[kW/W]
Operating Power	239	147	864	558	606	324	[kW]
1/4 Year Operating Cost	3,602	2,209	104	67	73	39	[K\$/3 mo.]
Yearly Operating Cost	14,407	8,835	416	269	292	156	[K\$/yr]



- Conclusions...continued
 - —Quarter year operating cost for direct vacuum pumping using a LHe dewar is approx. 2 times more than the capital cost required for the proposed 2-K configurations
 - —Capital cost for direct vacuum pumping using a 4.5-K liquefier is approx. 1.9 to 2.8 times the capital cost required for the proposed 2-K configurations; and roughly the same for operating costs (1.7 to 2.7)

- Conclusions...continued
 - -Recommendations for further study
 - Characterization of the isothermal efficiency for various VPS to lead to a classification for use over various flow ranges and methods to improve the efficiency of these systems
 - Testing of alternate HX designs that are less expensive than brazedaluminum plate-fin HX's but that are easier to manufacture and have less sub-atmospheric pressure drop than spiral-wound finned tubing type
- Questions? Thank you!

